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ABSTRACT
The architecture of supercomputers is evolving to expose massive
parallelism. MPI and OpenMP are widely used in application codes
on the largest supercomputers in the world. The community primar-
ily focused on composing MPI with OpenMP before its version 3.0
introduced task-based programming. Recent advances in OpenMP
task model and its interoperability with MPI enabled fine model
composition and seamless support for asynchrony. Yet, OpenMP
tasking overheads limit the gain of task-based applications over
their historical loop parallelization (parallel for construct).

This paper identifies the OpenMP task dependency graph discov-
ery speed as a limiting factor in the performance of task-based
applications. We study its impact on intra and inter-node per-
formances over two benchmarks (Cholesky, HPCG) and a proxy-
application (LULESH). We evaluate the performance impacts of
several discovery optimizations, and introduce a persistent task de-
pendency graph reducing overheads by a factor up to 15 at run-time.
We measure 2x speedup over parallel for versions weak scaled to
16K cores, due to improved cache memory use and communication
overlap, enabled by task refinement and depth-first scheduling.
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languages;
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1 INTRODUCTION
Supercomputers expose massive parallelism by interconnecting
a uniform set of parallel compute nodes. Each node is made of
multiple sockets of multi-core processors embedding accelerators.
As noted by [1] "It is therefore critical to find software solutions that
can effectively exploit this scale of combined inter-node and intra-node
parallelism". Ten years later, MPI and OpenMP are widely used in
application codes on the largest supercomputers in the world.

OpenMP has evolved to version 5.2, and its version 4.0 intro-
duced dependent tasks to refine synchronization between tasks
accessing the same (declared) memory region. Recent works [2–4]
have provided solutions for interoperability issues when nesting
MPI communications within OpenMP tasks [5–7], enabling the
overlap of communications through OpenMP task scheduling. Yet,
few applications have migrated towards such a task-based composi-
tion: at least two attempts led to convincing performances with the
porting of the Cholesky factorization [6] and the hydrodynamics
proxy-app LULESH [8]. Other attempts failed to implement func-
tional applications due to interoperability issues [5], had to tinker
application codes [7] to sequentialize communications, or added
coarse barriers losing potential communication overlap [9].

A possible explanation may be existing interoperability issues
between production runtimes (MPICH/Open MPI/GCC/LLVM) im-
posing on users to manage an extra non-standard library layer,
which could be standardized as proposed in [2, 10]. Moreover as
reported in [5], understanding an MPI+OpenMP application behav-
ior is difficult. Task-specific and hybrid visualization tools (Graphs,
Gantt charts [11]), debugger and profiler are needed, but none exists
supporting the MPI+OpenMP(tasks) composition understudy.

A most possible explanation why such a dependent task-based
composition is not widely adopted stems from the performance
overheads of handling OpenMP tasks [12]. Consider LULESH [13,
14]: a time step is a sequence of loops which iterate over the mesh
data structure. In the OpenMP version provided by LLNL, loops
are parallelized using OpenMP parallel-for construct. In cases
where the workset is large, the multicore execution cannot exploit
temporal locality of data. Furthermore, due to parallel-for coarse
barriers, communication overlap with computation exists but is not
expressed in the code, so it cannot be exploited by runtimes.

A contrario, a fine grain dependent task version of LULESH
can favor cache reuse with a parallel depth first scheduler such

https://doi.org/10.1145/3605573.3605602
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Figure 1: Intra-node LULESH performances with LLVM
OpenMP runtime release/16.x on 24 Intel(R) Xeon(R) Plat-
inum 8168 CPU @2.70GHz cores.

as [15], and exhibits a higher potential of computation concurrent
to communications. Fig. 1 presents performances using LLVM 16
runtime and filling 78% of the DRAM (-s 384 -i 16). Each run is
performed on a single process of 24 threads bound 1:1 onto Intel(R)
Xeon(R) Platinum 8168 CPU @2.70GHz cores sharing a NUMA
domain. The parallel for version takes about 86 s. to execute
with 98% work time reported by Caliper [16]. From left to right on
the task-based version, the number of tasks increases and grains are
refined. Fig. 1 reports the time (in seconds) for the task dependency
graph execution (blue filled curve) and its discovery (green dotted
curve). The discovery is the time from the first to the last task
creation, occuring on a single producer thread concurrently of its
execution by any threads (including the producer). The execution
corresponds to wall-clock time from the first task schedule to the
completion of the last task. It only depends on the scheduler and
the architecture: the performance increases while refining tasks,
thanks to better data reuse enabled by the depth first scheduler,
until the task discovery becomes too slow and bounds the total
execution time. Regardless of the number of tasks generated per
loop, the performance is at most 6.25% better than OpenMP parallel
for loop version, which is not enough relatively to the effort of
porting the application to OpenMP dependent task model. On the
same experience, GCC runtime did not report any improvements
on using dependent tasks.

If we were able to move the cross cutting point of the task graph
execution with its discovery along the dashed (blue) curve, the
overall performance would be improved. Note that it would not
only impact hierarchical memory use, but also in presence of com-
munication, earlier posting and more independent computation
discovered for overlapping. This paper presents that accelerating
the task dependency graph discovery improves both the work time
and communication overlap. The contributions are the following:

(1) a cutting-edge optimized OpenMP tasking runtime,
(2) a new extension to make the task dependency graph persis-

tent against iterations,
(3) an analysis of impact of the task graph discovery on dis-

tributed performances over two benchmarks (Cholesky, HPCG)
and a proxy-application (LULESH).

It is organized as follows: the next section presents an analysis of
intra-node performances of task-based LULESH code. The limiting
factor comes from the speed of task dependency graph discovery,
which is optimized in section 3. Section 4 studies the impact of
these optimizations on three hybrid MPI+OpenMP applications. In

section 5, we discuss on the portability of our results across different
facets addressed by HPC developers using MPI + OpenMP. We then
review related works before providing conclusion and perspectives.

2 MOTIVATION
Let us introduce the motivation of our work through the LULESH
case study. The Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics (LULESH) is a proxy application representing the
computation kernel of hydro-simulations, originally provided by
LLNL for co-designing towards exascale. As almost every CORAL
benchmark, LULESH adopts the MPI+X programming paradigm:
data are distributed among nodes of the supercomputer with MPI,
and shared-memory parallelism is adressedwithOpenMP parallel
for loops. The application simulates on an unstructured mesh with
𝑂 (𝑠3) nodes over 𝑖 time-step iterations. Parameters 𝑠 and 𝑖 can
be passed through command line arguments. The simulation is a
sequence of mesh-wide computational loops, MPI point-to-point
communications with neighbors mesh partites connected through
nodes, edges or faces, and an MPI collective communication re-
ducing the dynamic time step at the end of each iterations. The
proxy-application comes with two reports [13, 14] that present
how the source code should be used to remain representative of
HPC scientific simulation needs. For instance, constraints include
the mesh data structure representation, loop structures, and ex-
tra computation. Every version presented in this paper respects
these constraints. This section is devoted to preliminary analysis
on the impact of the Task Dependency Graph (TDG) discovery on
the performance with a focus on multi-core architecture.

2.1 Reference Parallel-for version
The original LULESH code from LLNL uses a fork-join programming
model. The computational loop sequences are parallelized with
OpenMP parallel for construct and data are distributed with
MPI communications outside of OpenMP constructs. The original
code performances are rather poor as studied in [17]. Therefore, we
backported the global allocation of temporary work arrays optimiza-
tion, which increases performances by 24% on our configuration
and is compatible with reports constraints.

Such a programming approach limits parallelism due to coarse
synchronizations. Load balancing is limited per-loop, while itera-
tions of separate loops could run in parallel independently. Addition-
ally, the code expresses a rigid sequence of parallel computations
due to barriers induced by OpenMP parallel-for loops semantic.
Temporal data reuse between loops cannot be achieved with the
limited size of hardware caches. Moreover, potential communication
overlap with computation exists, but it is not expressed in the code
due to parallel-for coarse barriers, and therefore cannot be ex-
ploited by the runtime. For instance, inter-process communications
could start as soon as nodes connecting mesh frontiers have been
computed instead of waiting for the entire local partite.

2.2 Task-based version
To overcome the OpenMP parallel-for drawbacks, one might
consider using dependent task-based programming models which
can express a higher potential of asynchronous computation and
communications, following the application data flow.
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Figure 2: LULESH on a 24-cores Skylake node using MPC-OMP with -s 384 -i 16 -tel tasks-per-loop

Thanks to the authors, we retrieved a task-based LULESH imple-
mentation developed by Ferat et al. [8] 1. To fully respect the men-
tioned constraints, it relies on using the OpenMP depend clause on
the taskloop construct [18] which is not standard yet. In addition,
the code uses the inoutset dependence-type recently introduced
in version 5.1 of the OpenMP specification, which not yet available
in production OpenMP compiler/runtime releases such as GCC,
LLVM or ICC. Therefore, the code is relevant to very up-to-date
OpenMP task based programming.

Its structure is the following and shown on Listing 1. The entire
application is wrapped into an OpenMP single region and replaces
all parallel-for constructs with dependent tasks generated by
taskloop. The correct order of execution is ensured through de-
pendences built upon read and write accesses on the mesh nodes
and elements. The computational part of the code comes from the
original version of the benchmark. A Tasks Per Loop (TPL) param-
eter defines the number of tasks on mesh-wide loops: tasks grain
and dependences are automatically infered from it. This parameter
modulates the number of tasks to find a compromise between the
parallelism expression and induced overheads.

MPI communications were placed into OpenMP tasks and are
inserted into the TDG as any other tasks. It enables communication
overlap with independant tasks, but also earlier request posting as
communications tasks only depends on on frontier nodes compu-
tation, as opposed to the parallel-for version where the entire
domain must be computed before initiating communications.

1 double dt;

2 for (int iter = 0 ; iter < max_iter ; ++iter)

3 {

4 # pragma omp task depend(out: dt)

5 {

6 double local_dt = compute_local_timestep();

7 MPI_Allreduce(&dt, &local_dt, sizeof(double, MPI_MIN,

MPI_COMM_WORLD));

8 }

9
10 # pragma omp taskloop depend(in: dt) depend(out: mesh.nodes[i])

firstprivate(iter) num_tasks(t)

1https://github.com/rpereira-dev/LULESH

11 for (int i = 0 ; i < mesh.nodes.size() ; ++i)

12 work_on_nodes(mesh.nodes[i], dt);

13
14 # pragma omp taskloop depend(in: dt, mesh.nodes[...]) depend(out:

mesh.elements[i]) firstprivate(iter) num_tasks(t)
15 for (int i = 0 ; i < mesh.elements.size() ; ++i)

16 work_on_elements(mesh.elements[i], dt);

17
18 // more domain-wide loops

19
20 # pragma omp task depend(out: rbuffer) detach(event)

21 MPI_Irecv(..., rbuffer, ...);

22
23 # pragma omp task depend(in: mesh.nodes[...]) depend(out: sbuffer)

24 Pack(sbuffer, mesh);

25
26 # pragma omp task depend(in: sbuffer) detach(event)

27 MPI_Isend(..., sbuffer, ...);

28
29 # pragma omp task depend(in: rbuffer) depend(out: mesh.nodes[...])

30 Unpack(rbuffer, mesh);

31
32 // more domain-wide loops

33 }

Listing 1: Task-based LULESH code structure

2.3 Performances Analysis
We reproduced the experiment presented Fig. 1 with LLVM on
Fig. 2 using the MPC OpenMP runtime: MPC-OMP. It is a standard-
compliant runtime publicly available 2. It features capability to mix
with any MPI implementations, polling MPI requests on OpenMP
scheduling points. It uses a LIFO and depth-first scheduling heuris-
tic, and showed similar performance if not slightly better than the
LLVM runtime. Optimizations presented in Section 3 were imple-
mented in the MPC-OMP runtime.

2.3.1 Methodology. We built a profiler within MPC-OMP for re-
porting metrics of task-based executions. The profiler traces tasks

2https://mpc.hpcframework.com/download/

https://github.com/rpereira-dev/LULESH
https://mpc.hpcframework.com/download/
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schedule, creation, and dependencies. Each event record are writ-
ten to preallocated memory region in DRAM during the execu-
tion, and flushed to disk on termination. They are timed using
omp_get_wtime routine under a microsecond precision. Config-
urable hardware counters can also be attached to records with
PAPI [19], allowing fine performance characterization at the task-
level, such as work time inflation due to non-uniform memory
accesses described in [20]. Such profiling approach can impact the
performances and is limited by the DRAM capacity. In the pro-
filed results of this paper, we ensured that the trace fits into the
DRAM and observed from 0% to 5% performance degradation over
non-profiled execution depending on the number of tasks.

We also implemented post-mortem analysis to compute perfor-
mance metrics. We adapted the parallel time breakdown proposed
in [21] to dependent tasking model: the work is the time spent
within a task body, the overhead is the time spent outside of a task
body while there is tasks ready, and the idleness is the time spent
ouside of a task body while there is no tasks ready. These times are
cumulated and averaged on cores.

2.3.2 Overview of the results. Fig. 2 depicts results from a profiled
execution of the experiment Fig. 1 with MPC-OMP. Fig. 2 (a) rep-
resents the overvall number of tasks and edges discovered for the
given TPL, and sugfigures (b) depicts the average overheads and
work time per task. As shown on Fig. 2 (a,b), the right-most point
reaches a total number of 7,5M OpenMP tasks with an average
grain of 250𝜇𝑠 . Fig. 2 (c) depicts the time breakdown averaged on
threads. The bottom blue stack is the work time, the middle red
stack the idle time and the top yellow stack the overhead. The
green dotted line represents the TDG discovery time on the single
producer thread. Fig. 2 (d) shows the work time inflation of each
TPL instances using the less inflated TPL instance as a reference.
Fig. 2 (e,f) respectively depicts the number of misses and stalled
cycles per cache-level, occuring when cores execute task work.

2.3.3 TPL analysis.

Coarse grain. The left-most point is the less inflated because
LULESH is memory-bound by the DRAM bandwidth and having
only 48 tasks per loop reduces the amount of parallel work and
thus, memory contention. This can be seen on Fig. 2 (c) where cores
spend a lot of time idling due to low parallelism. In average, it leads
to reducing DRAM contention and accelerating the work. Note that
the overall execution time still ends up slower due to idleness.

Middle grain. From 192 to 1,872 TPL, on Fig. 2 (d) the work time
deflates significantely from 40% inflation to 10%. Fig. 2 (e,f) provide
explanation: on this TPL range, we observe a reduction of L3 cache
misses (L3CM) and stalled cycles due to cache-miss. Whenever a
data access causes a L1DCM or a L2DCM, the memory controller
will more likely find the data in the L3 memory without having
to retrieve it from the DRAM. It accelerates memory access with
less process stalls, hence the observed work time deflation. This
better use of the memory hierarchy is the results of two tasking
mechanisms: (1) tasks refinement reduces average data size accessed
per task and (2) the depth-first scheduling heuristic favors the
execution of tasks’ successors improving cached-data reusability.

Fine grain. After 1,872 TPL, the application execution time is
bound by the TDG discovery time. Many edges are pruned because
tasks are getting consumed as soon as they are produced and no
longer exists on their successors’ discovery, as it can be seen on the
subfigure (a). This is also reflected by an increase in the idle time
on the subfigure (c) where threads ends up idling waiting for tasks
to spawn. Being discovery-bound limits the vision of the TDG to
the OpenMP scheduler: the depth-first scheduling heuristic cannot
be effective because successors are not known by the scheduler on
predecessors completion. Threads end up scheduling whatever is
ready (in a breadth first manner) resulting in poor cache reusability.

Instance Idle (s.) Work (s.) L2DCM L3CM
1,872 TPL Normal 3.5 1,477 98B 73B
4,608 TPL Normal 766.6 1,589 98B 91B
4,608 TPL Non overlapped 1.2 1,077 84B 53B

Table 1: Impact of the task graph discovery on thework time

2.3.4 Impact of the TDG discovery on the work time. Overlapping
TDG discovery with its execution has an impact on task scheduler
that promotes data reuse: if the TDG discovery is too slow, the data-
producing task will never activate its successor as it has not been
discovered yet. To measure the impact of the TDG discovery on
its execution time, we run a complementary experiment blocking
execution by threads until the TDG has been fully discovered. The
MPC-OMP scheduler will have access to the description of all the
dependencies before taking decisions.

Table 1 shows the cumulated work and idle time on threads, the
number of L2 data cache misses and L3 cache misses on different
configurations. The instance with tag Normal corresponds to ex-
ecution with TDG execution and discovery overlapping. Instance
with tag Non overlapped means the graph is first fully discovered
before starting its parallel execution.

The two first rows present results from the best (1,872 TPL) and
finest (4,608 TPL) grain execution shown on Fig. 2, under the Nor-
mal configuration. The third row presents results with 4,608 TPL
with non-overlapped configuration. Comparing the two configu-
ration with 4,608 TPL, in-depth knowledge of the TDG leads to
significantly reducing the cache misses in L2 (−15%) and L3 (−42%)
for a 32% work time reduction. We also observe almost no idle-
ness as threads do not have to wait for tasks to spawn. Work time
and idleness gain leads to a 40% parallel execution time reduction.
Though, the total execution time is still much slower in the non-
overlapped configuration because the entire graph must be unrolled
sequentially first: 357𝑠 with the non overlapped experiment and
112𝑠 for the normal execution.

2.4 Summary
In this section, we presented an in-depth analysis of the gains of a
task based LULESH against the parallel-for reference version.
Data reuses increase on high TPL value. We measure a minimal
time and work time at TPL=1,872 which is much bigger than the
number of cores (24). The task-based version executes in 69𝑠 with
MPC-OMP against 86𝑠 on the reference version using LLVM 16.
Moreover, we also report that accelerating the TDG discovery on
the task-based version would allow reaching finer task grain so
accessed data fitting into the L2 cache level. It would also enable
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effective depth-first over breadth-first scheduling, and less idleness
for a 40% gain on the parallel time.

3 ACCELERATING TDG DISCOVERY
TDG discovery speed is a limiting factor to reach high performances.
The purpose of this section is to present optimizations on OpenMP
TDG discovery related to runtime and user codes. Some of them are
standard, but we also propose an extension caching internal tasks
data structure with very light intrusive cost in term of code modi-
fication. All together, optimizations accelerate the TDG discovery
and we reports their impact on performances in section 3.3.

3.1 Reducing the number of edges
An edge corresponds to a precedence constraint between two tasks.
Because of the sequential task submission and the very local view
(per-procedure) of tasks, some unnecessary edges may appear be-
tween tasks which order of execution is already guaranteed from
other edges. To accelerate the TDG discovery, we present three
optimizations to remove unnecessary edges.

The optimization (a) is depicted in Fig. 3. It consists inminimizing
the number of dependences expressed from the user code preserving
both the parallelism and the correct order of execution. In this
example, the task line 1 writes (𝑥,𝑦) which are only read by the
task line 8. This provides two data addresses to be processed by the
runtime while only one is really needed. Such dependency pattern
appeared within Ferat et al. LULESH and were optimized.

1 # pragma omp task depend(out: x, y)
2 {
3     x += dx * dt;
4     y += dy * dt; 
5 }
6  
7 # pragma omp task depend(in:  x, y)
8     printf("%f %f\n", x, y);

Figure 3: Optimization (a) - multiple edges

The optimization (b) consists in automatically removing multiple
edges by the runtime. On edge creation, the runtime can detect
multiple edges with O(1) time-complexity thanks to the sequential
submission of dependent tasks. Note that optimization (a) differs
from (b) in the sense that it not only deletes multiple edges but also
cost of detecting them in (b). The optimization (b) is implemented
into GCC but not into LLVM. We implemented it in MPC-OMP.

The optimization (c) is related to the inoutset dependency type.
Tasks 𝑡𝑖 having a depend clause of type inoutset on the same data
can run concurrently but successor tasks with any other depen-
dency type on the same data will depend on every 𝑡𝑖 task. This de-
pendency type is also known as concurrent write in Athapascan [22]
or OmpSs [23] and is to be used when multiple tasks can write con-
currently in a memory block, giving this knowledge to the runtime
for optimizations. Fig. 4 depicts a minimal example of an inoutset
dependency scheme where𝑚 tasks (𝑋𝑖 )𝑖∈[1,𝑚] concurrently write
onto the vector 𝑥 which is read by the 𝑛 tasks (𝑌𝑗 )𝑗 ∈[1,𝑛] . The op-
timization (c) consists in inserting an extra empty node 𝑅 by the
runtime within the TDG to reduce the number of edges from𝑚.𝑛

m.n edges

...

Y1 Y2 Yn...

X1 X2 Xm

m+n edges

...X1 XmX2

R

Y1 YnY2 ...

1 for (int i = 1 ; i <= m ; ++i)
2 {
3     # pragma omp task depend(inoutset: x)
4         x[i] = i;
5 }
6
7 for (int j = 1 ; j <= n ; ++j)
8 {
9     # pragma omp task depend(in: x)
10         work(x, y[j]);
11 }

Yj}

Xi}

Figure 4: Optimization (c) - inoutset edges reduction

to𝑚 + 𝑛. This optimization is implemented in LLVM 3 but not into
GCC. We implemented it in MPC-OMP.

3.2 Persistent Task Sub Graph (PTSG)
LULESH is an iterative application onto an unstructured mesh.
On each iteration, the same task dependences are rediscovered
built upon mesh’ nodes and elements. To accelerate the discovery

+1 # pragma omp ptsg
2 for (int i = 0 ; i < iterations ; ++i)
3 {
4 # pragma omp task depend(in: x) firstprivate(i)
5     { }    /* some work */
6
7     [...]
8 }

Figure 5: Optimization (p) - persistent graph annotation

furthermore, the optimization (p) reduces overheads by adding
persistence to task dependences. It is illustrated in the Fig. 5. From
users point of view, it only consists in annotating a loop generating
dependant tasks in the same order and with the same dependency
scheme on each iteration.

Implementation. On the first iteration, the runtime discovers the
TDG just like before but internally marking tasks as persistent, so
they are not destroyed on completion. It also creates every edge,
as opposed to non-persistent mode which prunes edges to tasks al-
ready consumed, making the first iteration of persistent task graph
discovery slighly more costly. Creating every edge is necessary
since no edges are recreated on future iterations, to ensure the
correct order of execution with no race conditions. Then on future
iterations, the producer thread only copies tasks firstprivate
data such as the loop iterator variable. It relieves the runtime from
other tasking overheads sources such as the internal task descrip-
tor allocation, dependences processing (depend clause) or Internal
Control Variable (ICV) management. Therefore, task initialization
cost is reduced to a single memcpy on firstprivate data, repre-
senting 8 to 100 bytes in LULESH tasks. An implicit barrier at the
end of each iteration ensures that every task is completed before
re-instancing them.

3https://reviews.llvm.org/D97085
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Impact on codes, runtimes, and standard. The impact of persistent
TDG on user code is lite: from given task-based applications, a single
line of code (LoC) annotation on a loop enabled persistence. Our
implementation had amoderate impact onOpenMP runtime, adding
only 175 LoC but changing critical and highly concurrent runtime
code related to tasks’ lifecycle. The standardisation of persistent
task dependency graphs raises multiple issues. A taskgraph [24]
proposal was recently made. However, it does not provide fine
control on task attributes: everything is assumed persistent. They
also only provided specifications but no runtime implementations.
In our implementation, we allowed the update of firstprivate
data dynamically without invalidating the entire graph: Shared
data, dependences or ICVs could also be updated for instance, and
standardization is kept as future work.

Applicability. The main performance gain we obtained from per-
sistent graph is from dependency management. This is possible be-
cause our approach assumes dependences between tasks to remain
constant over iterations. However, on simulation over unstructured
meshes like LULESH, Adaptive Mesh Refinement (AMR) may occur
during the simulation, slightly changing the mesh and so, the TDG.
Nevertheless, because of the inherent costs of mesh adaptation,
applications try to amortize it over a few iterations. In that way,
our proposal would benefit from this already existing strategy.

optimizations n° of edges discovery (s.) total execution (s.)
none 93,981,434 83.43 84.45
(a) 74,242,924 71.75 74.67
(b) 40,772,315 67.53 71.83
(c) 78,989,786 75.61 79.18
(a)+(b) 46,174,616 66.89 72.06
(a)+(c) 68,690,584 70.85 73.93
(b)+(c) 45,963,012 56.27 72.33
(a)+(b)+(c) 36,845,383 32.13 70.61
(a)+(b)+(c)+(p) 22,533,984 2.12 75.71

Table 2: Graph optimizations crossing

3.3 Evaluation
Table 2 depicts the number of edges, the TDG discovery (single-
threaded, concurrent to execution) and the total execution time,
crossing each optimization on the Fig. 2 problem with𝑇𝑃𝐿 = 1, 872
for about 2.9 M. tasks of 365𝜇𝑠 grain in average. Comparing (b)
with (a)+(b), more edges are generated on the second case even
though TDGs discovery are about the same. This phenomena oc-
curs because when enabling optimizations, the TDG discovery is
faster leading to more predecessors existing on successors creation,
therefore less automatic pruning occurs slowing down the TDG
discovery. Though, enabling all optimizations (a)+(b)+(c) lead to 2.6
less edges and speedup on the discovery.

As shown on (a)+(b)+(c) and (a)+(b)+(c)+(p), enabling tasks’ per-
sistence optimization (p) drastically reduces the discovery time by a
factor of 15. Among the 2.12𝑠 of discovery, 0.86𝑠 correspond to the
first iteration discovery, and the remaining corresponds to the 15
other iterations taking 0.08𝑠 in average: the first iteration is about
10 times more costly than the others, as it is the one responsible
of building the dependency graph while the others simply update
tasks private data.

We expected the first persistent iteration (0.86𝑠) to be more costly
than non-persistent (2.01𝑠), since every edge must be created (edges

to tasks already consumed are not pruned with persistent tasking).
However, this is not the case: enabling (p) even reduces the number
of edges. This is a side effect of our implementation which has
an implicit barrier at the end of each iteration, removing inter-
iteration edges, and so, reducing the first iteration discovery cost in
the end. This barrier makes optimization (p) slightly increase the
total execution time (70.61𝑠 to 75.71𝑠 .) due to work time inflation
and more idleness, as tasks of iterations 𝑛 + 1 cannot start until
every tasks of iteration 𝑛 completed. This is shown on the Gantt
chart Fig.8 where one color represent one iteration. However, as
(p) accelerates the graph discovery, enabling effective depth-first
scheduling at finer grain.
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Figure 6: LULESH on Intel Skylake node with optimizations

Impact on Shared-memory Execution. Fig. 6 depicts the same time
breakdown as in Fig 2 but enabling every optimization. The TDG
execution is no longer bound by its discovery and enable effective
depth-first scheduling. It leads to 1.56x speedup over the parallel-
for version and 1.27x speedup over the non-optimized task-based
version. The 4,608 TPL configuration reaches a 1, 230𝑠 work time
for 82𝐵 L2DCM and 54𝐵 L3CM.

METG report. The Minimum Effective Task Granularity metric
was proposed [12] as a way to assess on the overheads of tasking
runtimes. For a given application and runtime system,𝑀𝐸𝑇𝐺 (𝑋%)
gives the minimum task grains for which an instance of execution
reaches 𝑋% of the best performances measured on any runtime
system. Their results on OpenMP shows a𝑀𝐸𝑇𝐺 (95%) = 1𝑚𝑠 for
several applications. Running LULESH with GCC, LLVM and MPC-
OMP tasking runtime, we measured an𝑀𝐸𝑇𝐺 (95%) of 65𝜇𝑠 with
9,216 TPL using MPC-OMP, which is 1.5 order of magnitude less
than the best OpenMP METG reported in [12] for such efficiency.

4 IMPACT ON DISTRIBUTED EXECUTION
The TDG discovery speed also impacts distributed execution for
application with MPI and OpenMP dependent tasks. We assemble
applications (LULESH, HPCG, Cholesky) with different parallel
characteristics (computation, communication) that will lead to three
conclusions. On considered applications, MPI communications are
nested into OpenMP task region as permitted by recent published
results on MPI interoperability [2, 4, 10, 25, 26]. We performed
distributed performance evaluations on AMD EPYC 7763 64-core
CPU, interconnected with Atos BXI V2 running Open MPI 4.1.4. In
our experiment, we place MPI processes per NUMA domain with
16 OpenMP threads compactly bound 1:1 to cores. LULESH was
scaled to fill 72% of each NUMA domain on this new architecture
(-s 256), running on 16 nodes with 125 MPI processes.
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4.1 Distributed LULESH Performances
LULESH comes with 3 types of point-to-point (P2P) requests com-
municating mesh partite frontiers with neighbors: a single node, an
edge, or a face, respectively with O(1), O(𝑠) and O(𝑠2) bytes transfers.
For our given problem size and our Open MPI configuration, O(1)
and O(𝑠) bytes MPI requests are performed with a eager protocol
but O(𝑠2) requests are performed using rendezvous.

As opposed to the parallel-for version, which implies entire
mesh-wide O(𝑛3) computation to complete before starting commu-
nications, the task-based version allows posting of MPI requests
as soon as predecessor tasks working on frontier nodes have com-
pleted. Hence, a depth-first scheduling strategy can lead to earlier
communication posting, and preserve independent work for over-
lapping communication, which is the subject of this study. Fig. 7
presents performances on an MPI process connected whose mesh
partite is connected to 26 other MPI processes. It shows the time
breakdown and the communication time for the parallel for ver-
sion (LLVM 16), the non-optimized task-based version (MPC-OMP),
and the optimized task-based version (MPC-OMP).

Computational Performances. Work/idle/overhead times were
retrieved using the methodology Section 2.3.1 for MPC-OMP and
Caliper for LLVM (which only provides work/non-work times). We

observe the same performance gain as on the previous architecture.
The optimized task-based is 2.0x and 1.2x more performant than the
parallel-for and the non-optimized task-based version, for the
exact same reason of hierarchical memory accesses. Note that we
observe work time deflation on the non-optimized task-based ver-
sion after 2,176. Above this threshold, the TDG discovery becomes
too slow to feed every core (as shown by the important idleness),
reducing the DRAM contention, which in turn, accelerates memory
accesses of the few threads working in parallel.

Methodology on Communications Profiling. We extended the pro-
filer presented in Section 2.3.1 with PMPI to support MPI communi-
cation profiling and analysis. Our analysis only consider send and
collective requests and comes with three metrics: the communica-
tion time, the overlapped work, and the overlap ratio. Given an
MPI request 𝑟 , the communication time 𝑐 (𝑟 ) is the duration from
𝑟 posting (MPI_Start, MPI_Isend, MPI_Iallreduce) to 𝑟 comple-
tion (success on MPI_Wait and MPI_Test). The overlaped work
𝑜𝑣 (𝑟 ) is the sum of work occuring in parallel of the communication
time on any local cores (16 in our evaluations). The communica-
tion and overlapped work are then obtained by reducing on every
MPI request, as 𝐶 =

∑
𝑐 (𝑟 ) and𝑊 =

∑
𝑜𝑣 (𝑟 ). Finally, we define

the overlap ratio as 𝑟𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑊
n-threads×𝐶 . This definition extends

the usual single-thread overlap measurements to multi-threading:
n-threads×𝐶 corresponds to an ideal overlapable work time on the
multi-threaded MPI process during the communication progression.

Communication Overlap with Computation. The parallel-for
version exhibits no overlap potential on P2P send communications.
All the requests are posted in non-blocking mode, and the execution
flow waits for every completion before pursuing any computation.
The collective is in blocking mode, posted at the beginning of a new
iteration. The collective of iteration 𝑛 + 1 depends on every task of
iteration 𝑛. However, the Gantt chart of the task-based version on
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Fig. 8 shows that there is some independent computational tasks
of iteration 𝑛 + 1 such as CalcFBHourglassForceForElems ready
for overlap. On the parallel-for version, all this work would
have been processed synchronously after the collective operation
following the sequential instruction flow.

On the task-based versions, the overlap ratio is improved when
enabling optimizations, and remains above 80% on any TPL against
50% in average without optimizations as shown Fig. 7: the applica-
tion discover tasking parallelism faster and more work is ready for
overlap masking communication costs.

To estimate the gain from integrating MPI communications into
OpenMP TDG following the data flow, we added explicit # pragma
omp taskwait before and after communication sequences. With
the tracing disabled, and on the most performant configuration
(TPL=4,608), we measured 131.0𝑠 with taskwait against 121.9𝑠 with
no taskwait: fine integration of MPI communications into OpenMP
TDG reduced by 7% the total execution time.

Communication Time. We made a breakdown of communication
time of each TPL, and in average, 94% of the communication time
corresponds to the MPI Iallreduce collective, and the remaining 6%
are the 26 P2P send communications. The variation observed on the
communication is therefore mostly related to this single collective.

Gantt charts Fig. 8 shows the execution of tasks from iterations
11 to 15 on the two task-based version of 𝑇𝑃𝐿 = 1, 152 of Fig. 7.
Boxes represent task schedules, and each color identifies a different
iteration. Time origins had been offset on each chart along the x-
axis, to align to the first task of the iteration 12 (green). Because of
the implicit task barrier on each iteration induced by our persistent
TDG implementation, no tasks from the iteration 𝑛 + 1 can start
until every task from iteration 𝑛 completed (bottom chart). Looking
at the two charts, this behavior seems to inflate collective synchro-
nization time globally. This phenomena likely explain why the the
(collective) communication time is faster on the non-optimized
version on 128 < 𝑇𝑃𝐿 < 1, 280.

Refining from 128 to 1, 280, we also observe a reduction on com-
munication time. We believe it comes from faster local execution
(as shown on the time breakdown), allowing in average earlier
collective communication matching on every MPI process.

However, refining furthermore on the non-optimized version
leads to important idleness, as the TDG discovery becomes too slow
to feed every core with work. This may explain the communication
time slowdown: every MPI process must wait for the slowest local
OpenMP TDG discovery. Results show that accelerating the TDG
discovery lead to a more stable communication time at fine grain.

4.2 Scaling to 65k cores
We performed a strong and a weak scaling on LULESH for both the
parallel-for (GCC 11.2.0) and our optimized task-based version
(MPC-OMP). We increased the number of simulation iteration from
64 to 1,024. Table 3 presents wall clock time results scaling from
8 MPI processes (= 1 node) to 4,096 processes on a single run. No
performances could be recorded on the weak-scaling above 1,331
processes because all versions abort on a numerical error.

From 8 to 1,000 MPI processes with 2,048 TPL, task-based exe-
cutions lasted about 2,000 s. with more than 95% weak-scaling effi-
ciency, and a 2.0x speedup compared to the parallel-for version.

The strong-scaling from 8 to 4,096MPI processes use a dynamic TPL
to balance parallelism and workload per tasks, ensuring at least 16
tasks per loops and at most 8,192 mesh nodes per tasks, as shown in
the last row. Performance improves over the parallel-for version
until 128 MPI processes for about 5% DRAM use; then, fine grain
execution provide no gain.

4.3 HPCG
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Figure 9: HPCG performances on 32 MPI processes on In-
tel processors for a matrix with n=41,943,040 on i=128 itera-
tions

The High Performance Conjugate Gradient (HPCG) is a bench-
mark used to rank supercomputers as a complement to the LIN-
PACK (HPL) benchmarks [27]. The baseline implementation is par-
allelized using parallel-for construct and barriers before commu-
nicating with MPI. We ported HPCG to using OpenMP dependent
taskmodel with two grains parameters defining the number of block
for vector-wise operations (TPL) and the number of sub-blocks for
SpMV operations, that we fix to 32 in future experiments. Fig. 9
present our results on 32 MPI processes of 24 threads varying the
TPL parameters, on the Intel Skylake processors of Section 2.

On Communications. Depending on the TPL, the communication
time varies from 5 to 37 s. for a cumulated work time around 700s.
It means with perfect overlap, at most 5% of the work time would be
overlaping communication. Moreover, even though TDG discovery
is fast-enough, the overlap ratio remains low (≤ 23%) meaning little
work is available in parallel of communications. Therefore, there is
little no to gain to expect from overlapping communication with
computational tasks on HPCG.

Time Breakdown. Regarding work time, the best performances
are reached for an average tasks grain of 80𝜇𝑠 using the right-most
1,536 TPL. It allows 20% work time reduction compared to the base-
line parallel-for version. Reasons are the same as LULESH: memory
accesses are faster due to better cache reuse. Even though TDG dis-
covery optimizations were enabled, fine grain tasks management
overheads deteriorate total execution time more than the work
time gain. Though, the minimal total time (30.6𝑠) is obtained with
TPL=144 (1𝑚𝑠/tasks) for 10% performances gain over the parallel
for version with LLVM 16 (34.1𝑠 . with 95% work time). Above this
grain, overheads and idleness deteriorates more performances than
the work time improvement. We explain this by the tasking runtime
contention: as shown on Fig. 9, the number of edges per tasks grows
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MPI processes 8 27 64 128 216 343 512 729 1,000 1,331 1,728 2,197 2,744 3,375 4,096
weak - for (s.) 3,926 3,935 3,953 3,954 3,979 4,006 4,012 4,141 4,181 N/A N/A N/A N/A N/A N/A
weak - task (s.) 2,065 2,136 2,074 2,088 2,153 2,077 2,093 2,185 2,089 N/A N/A N/A N/A N/A N/A
strong - for (s.) 3,926 895 305 150 85 61 44 30 19 15 11 10 8 10 11
strong - task (s.) 2,065 627 267 148 88 69 49 43 29 23 16 16 11 13 9
strong - TPL 2,048 599 256 129 74 47 32 21 16 16 16 16 16 16 16

Table 3: LULESH -s 256 -i 1024 - Weak and Strong scaling from 8 to 4,096 MPI processes

linearly from 24 to 1,536 TPL while the workload per task decreases.
Runtime-side, this is reflected by more threads accessing more often
shared data structure, such as the task dependency graph.

4.4 Tile-based Cholesky Factorization
Tile-based Cholesky dense matrix factorisation is a widely studied
application of dependant task-based programming. We retrieved
the version of [6] with dependent task and MPI communications
performed by tasks. Optimizations (a), (b) and (c) does not pro-
vide any performance improvement/degradation as they are not
reflected in the application: its dense dependency scheme is simpler
than sparse and indirection-based data structures found in HPCG
and LULESH. The optimization (p) provides performance gain on
TDG when iteratively decomposing matrices of same dimensions
and tile size. We evaluated the TDG discovery speed gain for a
matrix of size 𝑛 = 65, 536 with block sizes 𝑏 = 512, distributed on
32 MPI processes of 24 cores over 16 Intel nodes, same one used
in Section 2. Our results showed 5x asymptotical speedup on the
discovery when increasing the number of iterations. It showed no
significant impact on performances as the TDG discovery is already
fast due to coarse tasks and regular dependencies (<2% of total time).
On 16 Skylake nodes (768 cores), we measured 269s (with) and 274s
(without) optimizations for matrix n=65,536 with block-size m=512.

4.5 Summary
In this section, we analyzed performance gain induced by accel-
erating the TDG discovery on three applications. Our best result
shows a 2.0x speedup on LULESH using OpenMP tasking over
parallel-for weak-scaled to 16,000 cores, thanks to task grain
refinement and depth-first scheduling. Finely composing MPI and
OpenMP by integrating communications into dependent tasks lead
to 7% execution time reduction. HPCG evaluations reports moderate
performances with a 1.1x speedup, due to difficulties on balancing
work time gains with runtime contention. Cholesky results do not
provide neither performance improvements nor degradations.

5 DISCUSSIONS
Our results show a 2.0x speedup on the task-based version of
LULESH over the parallel-for/BSP one. These performances were
reached after accelerating the TDG discovery, enabling fine task
grain depth-first scheduling. It led to better use of the memory
hierarchy and overlapping of communication with computation.
Nevertheless, the level of performances of distributed task based
execution is only possible if the OpenMP runtime does not restrict
the graph discovery and interoperate with the MPI layer.

Task Throttling. Task Throttling is a runtime mechanism to
reduce tasking operational and memory overheads [28]. Once a
threshold is reached, producer threads stop producing and start

consuming tasks instead. This mechanism limits the vision by the
runtime scheduler of the future of the execution [7].

Both GCC and LLVM runtimes implements a threshold bound-
ing the number of ready-tasks that can co-exist. In the context of
OpenMP, task throttling was developed for independent task model
(OpenMP-3.0) as an efficient solution to bound the memory con-
sumption [28]. Note that in case of dependent tasks, ready-tasks
throttling threshold is not sufficient: as many successors tasks may
be created but not marked as ready. Therefore, the MPC-OMP run-
time implements in addition a total tasks threshold bounding the
total number of co-existing tasks (ready or not), with a parametra-
ble value4. Our evaluations showed best performances on LULESH
with 3, 072 tasks per loop on 33 loops, which represents around
100,000 tasks per simulation iterations. Even with faster TDG dis-
covery, GCC/LLVM runtimes would not benefit from finer tasks
and depth-first scheduling as their task throttling implementation
would not allow in-depth vision of the TDG. Though, throttling can
be fully disabled in LLVM 5 making memory usage bounds a user
responsibility. Finer control should be added to production OpenMP
runtimes to ensure bounds on both parallelism and memory usage
for dependent tasking.

Dependency Processing. The optimizations studied Section 3 illus-
trates that TDG discovery is a shared responsibility between user
codes and runtimes, which the standard interface can orchestrate.
The recent proposal on adding a depend clause on the taskloop
construct [18] is necessary to preserve existing code loop structure,
and may open to new compiler/runtime optimization. In this paper,
we introduced the notion of persistent TDG. This optimization was
a major step to enable fine task grain depth-first scheduling, by
reducing discovery costs by 15. We presented our implementation,
and its impact on codes in Section 3.2, and believe it should be some-
how adopted by production runtimes and standard specifications.
Yet, refining tasks bellow 80𝜇𝑠 on HPCG will likely require new
advances in parallel runtime system, as studied in ParSEC [29].

MPI/OpenMP Interoperability. All our experiments are assuming
the capacity of MPI and OpenMP to interoperate, i.e. automatically
overlapping communication with computation from OpenMP task
scheduler. This behavior is not granted by standards and many
solutions exist [2–4, 10, 25, 26]. The most portable currently is the
OpenMP detach clause approach [2, 10], but the MPI counterpart
has not yet been standardized, and users must adapt their code
to perform the interoperability ’by-hand’. We believe automatic
runtime interoperability is a more suitable solution.

Porting Applications to task-based MPI + OpenMP. Implementing
standard and efficient task-based versions of LULESH and HPCG
withMPI+OpenMPwas challenging. Fine synchronizations through

4Default is 10, 000, 000
5https://reviews.llvm.org/D63196
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dependent tasks is error prone, and task dependences-aware de-
bugger, profiler and visualization tools are needed but none exists
for the standard hybridation understudy. Porting LULESH from its
parallel for version to dependent OpenMP tasks, the original
user code was extended from 3,000 LoC and 45 #pragma to 4,500
LoC and 72 #pragma for task grain and dependency management.

6 RELATEDWORK
Optimizations in task based runtime. The OpenMP dependent

task model was adopted since the specifications 4.0 [30] but im-
plementations induces important overhead [31]. The history of
optimization in task graph runtime starts at least twenty years
before OpenMP 4.0. Cilk [32] was the precursor by considering end-
to-end optimizations from the compilation a fast and slow versions
of each task to the implementation of the stealing protocol without
costly lock operation on the general case execution path. This was
the starting point to several paper related to work stealing scheduler
optimization which is outside the scope of our TDG optimization.
Parsec [33] based their graph model on the parametrized graph
model [34] to implicitly represent tasks and their dependencies.
It was a huge step in optimizing the memory space related to a
task graph. Nevertheless, because this model does not fit well with
irregular applications, the authors have also added a the classical
task graph model proposed since the mid-90s [22, 23, 35, 36] built
at run-time from description of tasks and their accesses (read,write)
to the memory. Task graph optimization presented in section 3 are
almost present in all these runtime, but our runtime is the first
OpenMP runtime that systematically integrates them.

Persistent task graph. Moreover, we show that persistent task
graph greatly reduces overhead in task graph discovery. Kaapi [35]
is able to partition and distribute the data flow task graph to be
reuse during iterative computation on distributed architecture. It
was developed for checkpoint/recovery protocols. The overhead
is high: it includes the task graph construction and the scheduling
of the graph. [35] does not report any timings on representative
HPC application. In [24] the authors proposed an extension of the
OpenMP tasking model to be able to capture the graph unroll by
a code section in order to re-execute it on next iteration: all the
closures are captured during first execution included firstprivate
data passed by value. Because only simulated results are reported
with no runtime implementation and experimental results, it is
difficult to compare and evaluate the performance of the proposition.
[37] follows similar approach in capturing the tasks to replay the
closure during iterative computation.

Unlike these approaches, our proposal tries to only cache inter-
nal data structure and allocation occurring at task creation. The
producer re-executes the program instruction flow on every iter-
ations: firstprivate can be updated for instance. Also, as opposed
to [37], our approach allows the concurrent TDG discovery and
execution. It provides bounds on total execution time and memory
use through edges pruning or tasks throttling, for instance. Finally,
we report evaluation of the cost of creating persistent task graph as
well as the impact due to faster task graph discovery on the overall
application performance.

7 CONCLUSION AND FUTUREWORK
The portable and efficient programming and execution of HPC sci-
entific applications motivated the development of the two indepen-
dent programming standards MPI and OpenMP. Recent task-based
model of OpenMP provides new possible interactions with MPI.

In this paper, we showed that the OpenMP Task Dependency
Graph (TDG) discovery has an important impact on computational
and communication performances. We showed that combining
fine task grains and a depth-first scheduler improves the use of
the memory hierarchy and communications overlap. It lead us to
accelerate the TDG discovery with runtime and code optimizations,
implementing a new persistent TDG extension into MPC-OMP
compliant with scientific simulation code needs. Our results showed
up to 2.0x performances gain on LULESH weak-scaled to 16,000
cores against parallel for reference versions, and 1.2 speedup
on state of the art task-based version.

For the future, wewould like to see tasking persistence in OpenMP
specifications, as it is a major step towards accelerating TDG dis-
covery and reaching fine grain depth-first scheduling. Additionally,
we believe the TDG discovery could have impacts on accelerators
offloading, with similar effects onto SM memory and CPU/GPU
communications, which we would like to investigate. Finally, more
interactions between MPI and dependent task-based OpenMP are
to be explored to improve programming and performances.

REFERENCES
[1] Sanjay Chatterjee, Sagnak Tasırlar, Zoran Budimlic, Vincent Cavé, Milind Chabbi,

Max Grossman, Vivek Sarkar, and Yonghong Yan. Integrating Asynchronous
Task Parallelism with MPI. In 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, pages 712–725, 2013.

[2] Joachim Protze, Marc-André Hermanns, Matthias S Müller, Van Man Nguyen,
Julien Jaeger, Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. MPI
detach - Towards automatic asynchronous local completion. Parallel Computing,
109:102859, March 2022.

[3] Kevin Sala, Xavier Teruel, Josep M. Perez, Antonio J. Peña, Vicenç Beltran, and
Jesus Labarta. Integrating blocking and non-blocking MPI primitives with task-
based programming models. Parallel Computing, 85:153–166, 2019.

[4] Sangmin Seo, AbdelhalimAmer, Pavan Balaji, Cyril Bordage, George Bosilca, Alex
Brooks, Philip Carns, Adrián Castelló, Damien Genet, Thomas Herault, Shintaro
Iwasaki, Prateek Jindal, Laxmikant V. Kalé, Sriram Krishnamoorthy, Jonathan
Lifflander, Huiwei Lu, Esteban Meneses, Marc Snir, Yanhua Sun, Kenjiro Taura,
and Pete Beckman. Argobots: A Lightweight Low-Level Threading and Tasking
Framework. IEEE Transactions on Parallel and Distributed Systems, 29(3):512–526,
2018.

[5] Larry Meadows and Ken-ichi Ishikawa. OpenMP Tasking and MPI in a Lattice
QCD Benchmark. In Bronis R. de Supinski, Stephen L. Olivier, Christian Terboven,
BarbaraM. Chapman, andMatthias S. Müller, editors, Scaling OpenMP for Exascale
Performance and Portability, Cham, 2017. Springer International Publishing.

[6] Joseph Schuchart, Keisuke Tsugane, José Gracia, and Mitsuhisa Sato. The Impact
of Taskyield on the Design of Tasks Communicating Through MPI. In Evolving
OpenMP for Evolving Architectures. Springer International Publishing, 2018.

[7] Jérôme Richard, Guillaume Latu, Julien Bigot, and Thierry Gautier. Fine-Grained
MPI+OpenMP Plasma Simulations: Communication Overlap with Dependent
Tasks. In Ramin Yahyapour, editor, Euro-Par 2019: Parallel Processing, pages
419–433, Cham, 2019. Springer International Publishing.

[8] Manuel Ferat, Romain Pereira, Adrien Roussel, Patrick Carribault, Luiz-Angelo
Steffenel, publisher="Springer International Publishing" editor="Klemm Michael
Gautier, Thierry", Bronis R. de Supinski, Jannis Klinkenberg, and Brandon" Neth.
Enhancing MPI+OpenMP Task Based Applications for Heterogeneous Archi-
tectures with GPU Support. In OpenMP in a Modern World: From Multi-device
Support to Meta Programming, pages 3–16, Cham, 2022.

[9] Francesco Massimo, Mathieu Lobet, Julien Derouillat, Arnaud Beck, Guillaume
Bouchard, Mickael Grech, Fréderic Pérez, and Tommaso Vinci. A Task Program-
ming Implementation for the Particle in Cell Code Smilei. In Proceedings of the
Platform for Advanced Scientific Computing Conference, PASC ’22, New York, NY,
USA, 2022. Association for Computing Machinery.

[10] Joseph Schuchart, Philipp Samfass, Christoph Niethammer, José Gracia, and
George Bosilca. Callback-based completion notification using MPI Continuations.



Investigating Dependency Graph Discovery Impact on Task-based MPI+OpenMP Applications Performances ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

Parallel Computing, 106:102793, 05 2021.
[11] Vinicius et al. Garcia Pinto. A Visual Performance Analysis Framework for

Task-based Parallel Applications running on Hybrid Clusters. Concurrency and
Computation: Practice and Experience, 30(18):1–31, April 2018.

[12] Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, Nicolai Garcia,
Wilhem Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao, George Bosilca, Seema
Mirchandaney, Wonchan Leek, Sean Treichlerk, Patrick McCormick, and Alex
Aiken. Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime
Performance. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15, 2020.

[13] Ian Karlin. LULESH Programming Model and Performance Ports Overview. 2012.
[14] Ian Karlin, Jeff Keasler, and Neely Rob. LULESH 2.0 Updates and Changes. 2013.
[15] Guy E. Blelloch and Phillip B. Gibbons. Effectively sharing a cache among

threads. In Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’04, page 235–244, New York, NY, USA, 2004.
Association for Computing Machinery.

[16] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. Caliper: Per-
formance Introspection for HPC Software Stacks. In SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 550–560, 2016.

[17] I Karlin, J McGraw, J Keasler, and B Still. Tuning the LULESH Mini-app for
Current and Future Hardware. 2013.

[18] Marcos Maroñas, Xavier Teruel, and Vicenç Beltran. OpenMP Taskloop Depen-
dences. In Simon McIntosh-Smith, Bronis R. de Supinski, and Jannis Klinkenberg,
editors, OpenMP: Enabling Massive Node-Level Parallelism, pages 50–64, Cham,
2021. Springer International Publishing.

[19] Te Phhh, Shirley Moore, Jack Dongarra, N. Garner, K. London, and Phil Mucci. A
Portable Programming Interface for Performance Evaluation on Modern Proces-
sors. International Journal of High Performance Computing Applications, 14, 07
2000.

[20] Stephen L. Olivier, Bronis R. de Supinski, Martin Schulz, and Jan F. Prins. Char-
acterizing and mitigating work time inflation in task parallel programs. In SC
’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2012.

[21] Nathan R. Tallent and John M. Mellor-Crummey. Effective Performance Measure-
ment and Analysis of Multithreaded Applications. SIGPLAN Not., 44(4):229–240,
feb 2009.

[22] François Galilée, Jean-Louis Roch, Gerson G. H. Cavalheiro, and Mathias Doreille.
Athapascan-1: On-Line Building Data Flow Graph in a Parallel Language. In
Proceedings of the 1998 International Conference on Parallel Architectures and
Compilation Techniques, PACT ’98, page 88, USA, 1998. IEEE Computer Society.

[23] Alejandro Fernández, Vicenç Beltran, Xavier Martorell, Rosa M. Badia, Eduard
Ayguadé, and Jesus Labarta. Task-Based Programming with OmpSs and Its Ap-
plication. In Luís Lopes, Julius Žilinskas, Alexandru Costan, Roberto G. Cascella,
Gabor Kecskemeti, Emmanuel Jeannot, Mario Cannataro, Laura Ricci, Siegfried
Benkner, Salvador Petit, Vittorio Scarano, José Gracia, Sascha Hunold, Stephen L.
Scott, Stefan Lankes, Christian Lengauer, Jesús Carretero, Jens Breitbart, and
Michael Alexander, editors, Euro-Par 2014: Parallel Processing Workshops, pages
601–612, Cham, 2014. Springer International Publishing.

[24] Chenle Yu, Sara Royuela, and Eduardo Quiñones. Enhancing OpenMP Tasking
Model: Performance and Portability, pages 35–49. 09 2021.

[25] Seonmyeong Bak, Oscar Hernandez, Mark Gates, Piotr Luszczek, and Vivek
Sarkar. Task-Graph Scheduling Extensions for Efficient Synchronization and
Communication. In Proceedings of the ACM International Conference on Supercom-
puting, ICS ’21, page 88–101, New York, USA, 2021. Association for Computing
Machinery.

[26] Romain Pereira, Adrien Roussel, Patrick Carribault, and Thierry Gautier.
Communication-Aware Task Scheduling Strategy in Hybrid MPI+OpenMP Appli-
cations. In 17th International Workshop on OpenMP, OpenMP : Enabling Massive
Node-Level Parallelism, pages 1–15, Bristol, United Kingdom, September 2021.

[27] Jack Dongarra, Michael Heroux, and Piotr Luszczek. High-performance
conjugate-gradient benchmark: A new metric for ranking high-performance
computing systems. International Journal of High Performance Computing Appli-
cations, 30, 08 2015.

[28] Alejandro Duran, Julita Corbalan, and Eduard Ayguade. An adaptive cut-off
for task parallelism. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pages 1–11, 2008.

[29] J. Schuchart, P. Nookala, T. Herault, E. F. Valeev, and G. Bosilca. Pushing the
Boundaries of Small Tasks: Scalable Low-Overhead Data-Flow Programming in
TTG. In IEEE International Conference on Cluster Computing (CLUSTER), pages
117–128, Los Alamitos, CA, USA, sep 2022. IEEE Computer Society.

[30] Alejandro Duran, Josep M. Perez, Eduard Ayguadé, Rosa M. Badia, and Jesus
Labarta. Extending the OpenMP Tasking Model to Allow Dependent Tasks. In
Rudolf Eigenmann and Bronis R. de Supinski, editors, OpenMP in a New Era of
Parallelism, pages 111–122, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[31] Thierry Gautier, Christian Pérez, and Jérôme Richard. On the Impact of OpenMP
Task Granularity. In 14th International Workshop on OpenMP for Evolving Archi-
tectures, pages 205–221, Barcelone, Spain, September 2018. Springer.

[32] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of
the Cilk-5 Multithreaded Language. In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation, PLDI ’98, page
212–223, New York, NY, USA, 1998. Association for Computing Machinery.

[33] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre
Lemarinier, and Jack Dongarra. DAGuE: A Generic Distributed DAG Engine for
High Performance Computing. In 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum, pages 1151–1158, 2011.

[34] Michel Cosnard and Emmanuel Jeannot. Automatic Parallelization Techniques
Based on Compact DAG Extraction and Symbolic Scheduling. Parallel Processing
Letters, 11(1):151–168, 2001.

[35] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. KAAPI: A thread schedul-
ing runtime system for data flow computations on cluster of multi-processors.
PASCO’07: Proceedings of the 2007 International Workshop on Parallel Symbolic
Computation, pages 15–23, 07 2007.

[36] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. StarPU: A Unified Platform for Task Scheduling on HeterogeneousMulticore
Architectures. CCPE - Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, 23:187–198, February 2011.

[37] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. Cpp-
Taskflow: Fast Task-Based Parallel Programming Using Modern C++. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 974–
983, 2019.


	Abstract
	1 Introduction
	2 Motivation
	2.1 Reference Parallel-for version
	2.2 Task-based version
	2.3 Performances Analysis
	2.4 Summary

	3 Accelerating TDG Discovery
	3.1 Reducing the number of edges
	3.2 Persistent Task Sub Graph (PTSG)
	3.3 Evaluation

	4 Impact on Distributed Execution
	4.1 Distributed LULESH Performances
	4.2 Scaling to 65k cores
	4.3 HPCG
	4.4 Tile-based Cholesky Factorization
	4.5 Summary

	5 Discussions
	6 Related Work
	7 Conclusion and Future Work
	References

