
HAL Id: hal-04136651
https://hal.science/hal-04136651v1

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Extension of Ontology Based Databases to Handle
Preferences

Dilek Tapucu, Stéphane Jean, Yamine Aït-Ameur, Murat Osman Ünalir

To cite this version:
Dilek Tapucu, Stéphane Jean, Yamine Aït-Ameur, Murat Osman Ünalir. An Extension of Ontology
Based Databases to Handle Preferences. 11th International Conference on Enterprise Information Sys-
tems (ICEIS 2009), May 2009, Milan, Italy. pp.208-214, �10.5220/0002010102080213�. �hal-04136651�

https://hal.science/hal-04136651v1
https://hal.archives-ouvertes.fr

AN EXTENSION OF ONTOLOGY BASED DATABASES TO HANDLE
PREFERENCES

Dilek TAPUCU(1)(3), Yamine AIT-AMEUR(1), St́ephane JEAN(1) and Murat Osman̈UNALIR (2)

(1)LISI/ENSMA,and University of Poitiers, BP 40109, 86961 FuturoscopeCedex, France
{dilek.tapucu,yamine,jean}@ensma.fr

(2)Department of Computer Engineering, Ege University, 35100 Bornova, İzmir, Turkey
murat.osman.unalir@ege.edu.tr

(3)Department of Computer Engineering, Izmir Institute of Technology, 35340 Urla, İzmir, Turkey

Keywords: User Preferences, Ontology Based Database, Preference based Querying.

Abstract: Ontologies have been defined to make explicit the semantics of data. With the emergence of the SemanticWeb,
the amount of ontological data (or instances) available has increased. To manage such data, Ontology Based
DataBases (OBDBs), that store ontologies and their instance data in the same repository have been proposed.
These databases are associated with exploitation languages supporting description, querying, etc. on both
ontologies and data. However, usually queries return a big amount of data that may be sorted in order to find
the relevant ones. Moreover, in the current, few approaches considering user preferences when querying have
been developed. Yet this problem is fundamental for many applications especially in the e-commerce domain.
In this paper, we first propose an extension of an existing OBDB, called OntoDB through extension of their
ontology model in order to support semantic description of preferences. Secondly, an extension of an ontology
based query language, called OntoQL defined on OntoDB for querying ontological data with preferences is
presented. Finally, an implementation of the proposed extensions are described.

1 INTRODUCTION

Nowadays, ontologies are well accepted to describe
the explicit semantics of concepts and objects ma-
nipulated in a given domain. Domain ontologies are
used to provide with definitions and specifications of
these manipulated concepts. Several application do-
mains have seen the emergence of ontologies in or-
der to characterise the universe where these mod-
els act. Among these application domains, seman-
tic web, databases,ontology engineering are the most
well known. Ontologies are described according to
ontology models. These models introduce the notion
of classes and instances, and a significant amount of
classes and instances are defined when ontologies are
described. Storing, retrieving and manipulating on-
tology classes and instances is a major requirement of
Ontology engineering. In the last decade, the notion
of ontology based database (OBDB) has been devel-
oped (Dehainsala et al., 2007; Pierra et al., 2005) in
order to offer an infrastructure allowing management
of ontologies and their instances (Chong et al., 2005;
Petrini and Risch, 2007). At least these models store

the ontology and its instances, but some of them also
store the ontology model and extensively use meta
modeling techniques. However, the currently defined
OBDB do not deal with the representation of the non
functional aspects related to the ontology models. By
non functional aspects, we mean concepts that are
capable to describe externally defined properties like
quality, preferences or security. Indeed, most of the
well known ontology models like Owl, Plib, etc. do
not provide with such resources to represent such con-
cepts. Each time non functional concepts are intro-
duced, ad hoc concepts or extensions are introduced
in the ontology models like Owl, Plib, etc. or spe-
cific attributes like note or remark or a particular prop-
erty are used to encode these non functional aspects.
Rather than extending a specific ontology model, our
proposal consists in introducing a side model to de-
scribe the non functional concepts together with the
ontology model inside an OBDB. The advantage of
this approach is the possibility to adopt non func-
tional descriptions to any ontology model keeping its
definition unchanged. We particularly study the no-
tion of preference in this context. Technically, this

extension is possible only if the meta-model allows
to describe the ontology model can be manipulated.
Indeed, such an extension requires to be able to at-
tach ontology model elements to the non functional
model element. In our work, with the OntoDB ontol-
ogy based database, such a manipulation is possible.

This paper describes how a preference model can
be attached to an ontology model through the manip-
ulation of the meta-model level. We show how a spe-
cific preference model is linked to the concept of class
or property of the ontology model. Section 2 is an
overview of the material set up in this paper. Section
3 presents the preference model that we have defined,
shows how preferences are linked to ontological con-
cepts like classes and/or properties. Handling these
preferences in the OntoDB ontology based database
is presented in section 4. Section 5 sets up the ap-
proach on a case study and finally a conclusion and
some perspectives are presented.

2 STATE OF THE ART

This section presents the material needed to set
our approach. We first present the ontology based
database that support the description of an ontology
together with its instances. The second part presents
the approaches that have been proposed to handle
preferences in the database and semantic web areas.

2.1 Ontology Based Database

In the last years, many OBDB architectures have been
proposed. They can be classified in 3 categories ac-
cording to the number of schemas used.
Type 1 OBDBs. In type 1 OBDBs, information is
represented in a single schema composed of a unique
triple table(subject, predicate, object) (Chong et al.,
2005; Petrini and Risch, 2007; Alexaki et al., 2001;
Broekstra et al., 2002; Dehainsala et al., 2007; Pierra
et al., 2005). But this approach raises serious per-
formance issues when queries require many self-joins
over this table.
Type 2 OBDBs. Type 2 OBDBs store separately on-
tology descriptions and instance data in two differ-
ent schemas (Alexaki et al., 2001; Broekstra et al.,
2002). The schema for ontology descriptions depends
upon the ontology model used to represent ontolo-
gies (e.g., RDFS, OWL, PLIB). It is composed of ta-
bles used to store each ontology modeling primitive
such as classes, properties and subsumption relation-
ships. Separating representation of ontology descrip-
tions and instance data leads to better query response

time. However, this approach assumes a fixed ontol-
ogy model.
Type 3 OBDBs. OntoDB (Dehainsala et al., 2007;
Pierra et al., 2005) proposes to add another schema
to type 2 OBDBs. This schema calledmeta-schema
records the ontology model into a reflexive meta
model. For the ontology schema, the meta-schema
plays the same role as the one played by the sys-
tem catalog in traditional databases. Indeed, meta-
schema may allow: (1) generic access to the ontology,
(2) support of evolution of the used ontology model,
and (3) storage of different ontology models (OWL,
DAML+OIL, PLIB, etc.). Next, we will present the
OntoDB ontological database which we interpreted to
extend to handle preferences.

2.2 The OntoDB: Ontology Based
Database

In order to set up our approach, is needed to have
an infrastructure allowing to encoding ontologies and
the defined preference model together with a manip-
ulation language for exploiting the extension to pref-
erences. For our work, the OntoDB ontology based
database and the OntoQL language have been chosen.
OntoDB ensures models and their instances persis-
tency, whereas OntoQL allows to manage and query
ontologies and preferences.

2.2.1 OntoDB Architecture

The OntoDB architecture is composed of four parts
presented on Figure 2:

• The meta-base part (1). The meta-base, also of-
ten calledcatalog system, is a traditional part of
databases. It contains system tables used to man-
age all the data contained in the database. In On-
toDB, it contains in particular the description of
all tables and columns defined in the three other
parts of this architecture.

• The data part (3). It represents domain ob-
jects described by ontology classes membership
and values of properties defined on these classes.
These objects are represented according to the ta-
ble per class approach.

• The ontology part (4). It contains ontologies
defining semantics of the various domains cov-
ered by the database. OntoDB initially supports
the PLIB ontology model.

• The meta-schema part (2). The meta-schema
part records the ontology model used into a reflex-
ive meta-model. For the ontology part, the meta-

Figure 1: The OntoDB four parts architecture

schema part plays the same role as the one played
by the meta-base in traditional databases.

2.2.2 The OntoQL Exploitation Language

The OntoQL exploitation language has been designed
to exploit the power offered by the OntoDB architec-
ture (Jean et al., 2005; Jean et al., 2006). Indeed, On-
toQL is capable to access and manipulate the model,
its instances and its meta-model. For example, when
an ontology is stored, OntoQL is capable to man-
age the ontology (e.g. Hotels, Cities, Prices, rate),
itself, its instances (e.g. IbisPoitiers, hotel, Shera-
ton Paris) and the model that describe the ontologies
(e.g. #class, #property, #datatype).

The OntoQL language is equipped with an
data definition language DDL(CREATE, ALTER
clauses),a data manipulation language(INSERT
INTO, DELETE, UPDATE clauses) and a query lan-
guage(SELECT). These language modules allow to
accessing either the ontology model level (by pre-
fixing the accessed date with the # symbol) and the
ontology and its instances (when no prefix is avail-
able). For example, creating a preference concept
at the ontology model level is performed by adding
another new concetpt in theENTITY meta-model
resource using the following OntoQL clause;
CREATE ENTITY #Preference (

oid int,

...

);

Then, accessing and querying preferences is per-
formed by;
SELECT oid

FROM Preference

WHERE ...

2.3 Preferences

Several approaches handling preferences have been
proposed in various areas of information systems.

2.3.1 Preferences in databases

Handling preferences in databases has been the sub-
ject of several research work (Kieling and Kostler,
2000; Kieling, 2002; Chomicki, 2003; Agrawal and
Wimmers, 2000; Koutrika and Ioannidis, 2004; Viap-
piani et al., 2006). These approaches consider a set
of preferences that are evaluated on the logical model
of a database. Extensions of the SQL language are
defined within a specific preference clause. These ap-
proaches arestrongly linkedto the logical model of
the database, and therefore it is required for an user to
have a good knowledge of this logical model.

2.3.2 Preferences in semantic web

In the context of the semantic Web, preferences have
been studied following two main approaches (Siber-
ski et al., 2006), (P. Gursk and Vanekov, 2008),
(Toninelli et al., 2008). The first one consists in
introducing specific properties in the ontologies, at-
tached to classes. The second one consists in using
specific attributes of the ontology model likenote,
or definition to encode the preference. In both ap-
proaches, SPARQL queries (SPARQL Query Lan-
guage for RDF, 2008) take into account property
or attribute values. By examining preferences on
databases and semantic Web, we identify that they
both use definitions of the notion of preferences built
on manipulated models themselves. They all intro-
duce the preference notion at the model level. These
approaches are static and not flexible enough to han-
dle different preference models.

3 OUR APPROACH

Our approach consists in associating any side prefer-
ence model to any ontology based database that al-
lows to manipulate the ontology model through its
meta-model. Indeed, according to Figure 2, the pref-
erence resource concept of the preference model is
associated to the class or property concepts available
in the ontology model. Let us briefly describe the el-
ements composing these model and link.

3.1 Ontology Resource Definition

The propertyor class resource is introduced in order
to attach a preference to an ontology. Moreover, Prop-

Figure 2: Our Approach.

erty or ClassInstance resource is used to define spe-
cific instances of the ontology.

3.2 Preference Model

The preference model introduces specific resources
allowing to defining preferences. Two categories of
preferences are introduced: interpreted and non inter-
preted ones.

3.2.1 Interpreted preferences

Interpreted preferences are those preferences that can
be given an interpretation by means of an evaluation.
The nature of their definition depends on the attached
interpretation function.

a-Enumerated preferencesare interpreted by a set of
property values or class instances imported from
the ontology population. For example a prefer-
ence can be defined on ”Bob Marley” as an in-
stance of singer and on ”reggae” as a property
value of a song type. This enumeration is arbi-
trary defined by the preference modeler.

b- Numeric preferencesare interpreted by numeric
values. For example, the rating of a hotel can be
defined as1, 2, 3, or 4 starsin a given tourism
domain.

c- Boolean preferencesare interpreted as the pres-
ence or the absence of a given feature. For exam-
ple a preference on hotels can be expressed as the
presence of the following triple (’air condition-
ing’, ’wifi’, ’swimming pool’).

d- Interval preferencesare interpreted by intervals
of values. For example, thecheapand expen-
sivepreferences can be defined respectively by the
[10-20] and [90-100]intervals.

e- Fuzzy preferencesare interpreted by a probabil-
ity rating the presence of a given feature. If we
take the previous example, we get (’air condition-
ing’ 0,9, ’wifi’ 0.5, ’swimming pool’ 0.2) meaning
that a strongest preference is allowed to air condi-
tioning while having a swimming pool is weaker.
Notice that Boolean preference corresponds to a
fuzzy preference with a rating value equal 1.

3.2.2 Uninterpreted preferences

Uninterpreted preferences are defined as an enumera-
tion of a set of properties and classes values that are
picked from an ontology without any constraint on the
chosen values. It corresponds to an ad hoc expressed
preference.

3.2.3 Context based preferences

When a preference is defined according to a context,
it is possible to specify the context in which a given
preference is expressed. For example, the ”cheap”
preference is interpreted differently if we consider the
country where the preference is interpreted. There-
fore, a specific attribute is added to describe the con-
text where a preference is interpreted.

3.2.4 Ontology Preference Link

Once ontological concepts, resources and preferences
are defined, a link preflink, obeying to the class di-
agram of UML is described. The role of this link is
to attach a preference to a given ontological concept
that may be a class or a property. This link is used
to reach the preferences attached to ontological data.
The availability of a manipulation language allowing
to access meta-model data elements, concepts data el-
ements and instances in required. In our study, the
OntoQL language is used for this purpose.

4 Handling Preference in OntoDB

One can notice that current ontology models do not
offer the possibility to handle preferences expressed
on ontology concepts and instances. Since the On-
toDB architecture coupled with the OntoQL lan-
guage, allows to manipulate the ontology model, we
suggest to feed the ontology model with the prefer-
ence model. As a result, we will get, in the same
universe, both the ontology model and the preference
model. An explicit link between the propertyor class
ontology model concept and the preference model
concept is defined as well.

4.1 Extension of the OntoDB with
Preferences

The extension of OntoDB to handle the preferences
consists in describing a set ofCREATE OntoQL clauses
that create all the data elements of the UML data
model of preferences defined in Table 1. Table A.1
shows the creation of the Preference root entity, Ta-
ble A.2. shows the creation of the PreferenceURI at-
tached to a preference, and Table A.3. shows the cre-
ation of the PreferenceDefinition as inherited from
the preference concept.

Table 1: OntoQL Clause Creation (A.1-A.2-A.3)

CREATE ENTITY CREATE ENTITY CREATE ENTITY

#Preference(#Preference URI(#Preference

#oid int, #code int, Definition

#URI REF(#name string, UNDER

#Preference URI)); #classification #Preference(

string); #oid int);

All the other data elements of the UML class di-
agram of the preference model of Figure 2 are de-
scribed in Appendix A.1.

4.2 Linking Ontologies and Preferences
at the Ontology Model Level

Once the preferences are defined, they need to be
linked and attached to the ontological concept they
act on. This link, is established by the preflink class
of the UML class diagram of the preference model of
Figure 2. The following OntoQL statements allows
to create such a link in the OntoDB ontology based
database. Practically, to encode composition, the
preference link is absorbed by the ontology model
concept propertyor class. It becomes an attribute of
the propertyor class ontology model element. The
following OntoQL statement is defined.

ALTER ENTITY #property or class ADD ATTRIBUTE #PREF Link REF

(#Preference) ARRAY

4.3 Querying with Preferences

In order to handle the preferences in the OntoQL
queries, a preference interpreter has been developed
on top of the OntoQL engine. This is materialized
by adding aPREFERRING clause in the OntoQLSELECT
clause. An interpretation function is associated to
each kind of preference available in the preference
model. The form of theSELECT clause becomes as
follows,

SELECT ’selection’

FROM ’tableReference’

PREFERRING ’preferenceIdentifer’

5 A CASE STUDY

Let us assume that we have a customer who wants a
reservation for a Lodging Service to book an Hotel
Room. The customer submits a request to the holi-
day booking system. It includes the information about
the destination, travelling time and maximum bud-
get. The system finds the most suitable hotel based
on the information provided by the customers prefer-
ences (eg.standard, cheap).

5.1 Tourism Ontology Instantiation

The tourism ontology described by Figure 3-4 and the
corresponding ontology instances are defined in the
OntoDB database through two families of OntoQL
statements. The first statement consists in creating the
classes of the ontology. The next OntoQL statement
describes the creation of the Hotel.

Figure 3: Tourism Ontology Concepts.

CREATE Class Hotel (#id int, #name String, #starRate int,

#price int, #airCond boolean, #tv boolean, #wifi boolean,

#pool boolean, #jakuzi boolean);

In order to define ontology instances, theINSERT
INTO OntoQL clause is used. For example, to define
the Kyriad hotel corresponding to the #51 hotel
instance, we define the following OntoQL statement.

INSERT INTO Hotel (id, name, starRating, price, airCond,

tv, wifi, pool, jakuzi, tennisCourt, casino)

VALUES (51, ’Kyriad ’,3,55, yes,yes,yes, no,no,no,no);

Figure 4: Tourism Ontology Instantiation.

5.2 Defining Preferences in the Tourism
Domain

When addressing the tourism domain, qualities of
tourism institutions are evaluated by national or in-
ternational organizations. For our study, we restrict
the definition of such quality features to hotels. For
example, we are interested in defining the :

- star rating meaning that a hotel hasone, two, etc
starsin the starRating quality classification. The On-
toQL statement that defines athree star ratingis de-
scribed by:
INSERT INTO #Numeric Preference(#number value, #code,

#name, #classification)

VALUES(3, 51,’standard’,’starRating’);

- very cheap, cheap, expensive, very expensivethat
is attributed to a price in the cost quality classification.
The following OntoQL statement describes the cheap
quality as being any number belonging to the interval
[45..60].
INSERT INTO Interval Preference(#min value, #max value,

#code, #name, #classification)

VALUES(45, 60, 100,’cheap’,’cost’);

The other defined preferences related to the case
study are defined in Appendix A.2.

5.3 Attaching Preferences in the
Tourism Domain to Domain
Ontologies

When the preferences and the ontologies are de-
fined, it is possible to link ontology classes to the
preferences that are expressed on these classes.
For this purpose, the manipulated ontology class

is augmented by preferences thanks to theALTER
clause. A preference is attached to an instance of a
hotel. For example, the preferencecheapis attached
to the Kyriad hotel using the followingUPDATE
OntoQL clause. Here, we put names for readability
but identifiers are in fact used.

UPDATE Hotel set #pref link=ARRAY[’cheap’,

’standard’,’full board’] where name=’Kyriad’

Table 2: ALTER Class Hotel ADD Preference.

name price star PREFERENCE

Rating (cost,quality,promotion)

Kyriad 55 3 [cheap,standard,full board]

5.4 Querying Domain Ontologies with
Preferences

Once the three previous steps are realized, it becomes
possible to address queries to the ontology and its in-
stances. Next, we give two examples of queries with
quality.

1- The query that gives the 3 stars hotels is written
as follows.
SELECT name, starRate FROM Hotel PREFERRING ’standard’

When the PREFERRING clause is interpreted, the
query is automatically rewritten as follows,
SELECT name, starRate, preference From Hotel WHERE

starRate=3;

Table 3: Query Answer.

name starRate preference

Kyriad 3 standard

2- The query that asks for cheap hotels is written
as follows,
SELECT name, price FROM hotel PREFERRING ’cheap’;

When the PREFERRING clause is interpreted, the
query is automatically rewritten as follows,
SELECT name, price, preference From Hotel WHERE price

BETWEEN 45 and 60;

Table 4: Query Answer.

name price preference

Kyriad 55 cheap

Notice that all the authorized construction of the
OntoQL language can be used in building the query.
The last clause is thePREFERRING clause. It is used for
rewriting the queries into standard OntoQL queries.

6 CONCLUSION

This paper has presented an extension of a database
architecture in order to handle preference modeling
and querying with preferences not at the database log-
ical model but at the semantic level offered by the on-
tology. This extension requires:

• the explicit representation of the ontology in the
database. As a consequence, we have been able
to attach the preferences to the classes and to the
properties of the ontology and not to the columns
of the logical model of the database where in-
stances or data are stored;

• the possibility to access and to manipulate the on-
tology model through the access and manipulation
to the meta-model and

• finally, the availability of an exploitation language
allowing to manipulating both the instances, their
classes and the meta-model in the case of ontolo-
gies.

These requirements are fulfilled by the OntoDB
ontology based database and by the OntoQL exploita-
tion language. The extension of the ontology model
with the preference model permitted to attach various
types of preferences to classes and/or properties of
the ontology. As a consequence, we have been able
to describe semantic queries that handle preferences
expressed at the semantic level, and thus abstracting
from the logical model.

We believe that the possibility to access the meta-
model level well adapted to define model extensions
that preserve upward compatibility with the extended
model. This work has opened several new directions
and perspectives. Indeed, such extensions are possi-
ble for other different domain characterizations like
security, user profiles or model annotations.

REFERENCES

Agrawal, R. and Wimmers, E. L. (2000). A framework for
expressing and combining preferences. InSIGMOD
Conference, pages 297–306.

Alexaki, S., Christophides, V., Karvounarakis, G., Plex-
ousakis, D., and Tolle, K. (2001). Managing Volu-
minous RDF Description Bases. InProceedings of
the 2nd International Workshop on the Semantic Web,
pages 1–13.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. InProceedings
of the 1st International Semantic Web Conference
(ISWC’02), pages 54–68.

Chomicki, J. (2003). Preference formulas in relations
queries. ACM Transactions on Database Systems,
28:1–39.

Chong, E. I., Das, S., Eadon, G., and Srinivasan, J. (2005).
An Efficient SQL-based RDF Querying Scheme. In
Proceedings of the 31st international conference on
Very Large Data Bases (VLDB’05), pages 1216–1227.

Dehainsala, H., Pierra, G., and Bellatreche, L. (2007). On-
toDB: An Ontology-Based Database for Data Inten-
sive Applications. InProceedings of the 12th Interna-
tional Conference on Database Systems for Advanced
Applications (DASFAA’07), pages 497–508.

Jean, S., Äıt-Ameur, Y., and Pierra, G. (2006). Query-
ing Ontology Based Database Using OntoQL. In
Proceedings of On the Move to Meaningful Internet
Systems 2006:(ODBASE’06), volume 4275 ofLecture
Notes in Computer Science. Springer.

Jean, S., Pierra, G., and Ait-ameur, Y. (2005). Ontoql:
an exploitation language for obdbs. InVLDB Ph.D.
Workshop.

Kieling, W. (2002). Foundations of preferences in database
systems. In Mars, N. J. I., editor,Knowledge and Data
Engineering, pages 311–322. IOS Press, Amsterdam.

Kieling, W. and Kostler, G. (2000). Preference sql -design,
implementation, experience. In Mars, N. J. I., editor,
Knowledge and Data Engineering, pages 778 – 789.
IOS Press, Amsterdam.

Koutrika, G. and Ioannidis, Y. E. (2004). Personalization of
queries in database systems. InICDE, pages 597–608.

P. Gursk, T.Horvth, J. J. and Vanekov, V. (2008). User pref-
erence web search – experiments with a system con-
necting web and user. In Mars, N. J. I., editor,To ap-
pear in the Computing and Informatics Journal, pages
25–32. IOS Press, Amsterdam.

Petrini, J. and Risch, T. (2007). SWARD: Semantic Web
Abridged Relational Databases. InProceedings of
the 18th International Conference on Database and
Expert Systems Applications (DEXA’07), pages 455–
459.

Pierra, G., Dehainsala, H., Aı̈t-Ameur, Y., and Bellatreche,
L. (2005). Base de Donnéesà Base Ontologique :
principes et mise en œuvre.Ingénierie des Systèmes
d’Information, 10(2):91–115.

Siberski, W., Pan, J. Z., and Thaden, U. (2006). Querying
the semantic web with preferences. InIn Proceed-
ings of the 5th International Semantic Web Conference
(ISWC, pages 612–624.

SPARQL Query Language for RDF (January 2008).
SPARQL. http://www.w3.org/TR/rdf-sparql-query/.

Toninelli, A., Corradi, A., and Montanari, R. (2008).
Semantic-based discovery to support mobile context-
aware service access.Computer Communications,
31(5):935–949.

Viappiani, P., Faltings, B., and Pu, P. (2006). Preference-
based search using example-critiquing with sugges-
tions. Journal of Artificial Intelligence Research,
27:2006.

APPENDIX

Appendix A: OntoQL Statements for Preferences

Table 5: Preference Model Creation (Appendix A.1)

CREATE ENTITY #Preference URI(

#code int, #name string, #classification string);

CREATE ENTITY #Preference(

#oid int, #URI REF(#Preference URI));

CREATE ENTITY #Preference Definition

UNDER #Preference(#oid int);

CREATE ENTITY #Interpreted Pref

UNDER #Preference Definition(#oid int);

CREATE ENTITY #Enumerated Pref

UNDER #Interpreted Preference(

#pref value REF #property or class instance ARRAY);

CREATE ENTITY #Numeric Pref

UNDER #Interpreted Preference(#number int);

CREATE ENTITY #Boolean Pref

UNDER #Interpreted Preference(#properties REF(#property) ARRAY);

CREATE ENTITY #Interval Pref UNDER #Interpreted Preference(

#min value int,#max value int);

CREATE ENTITY #Fuzzy Pref UNDER #Interpreted Preference(

#prob value float, #property REF (#property) ARRAY);

CREATE ENTITY #UnInterpreted Pref UNDER #Preference Definition(

#pref value REF (#property or class instance)ARRAY);

CREATE ENTITY #Context Pref Definition UNDER #Preference(

#context REF (#property or class instance),

#preference REF (#Preference Definition), #context name String);

Table 6: Preference Insertion (Appendix A.2)

INSERT INTO #Numeric Pref(#number value,#code,#name,

#classification) VALUES(2, 50,’low’,’starRating’);

INSERT INTO #Numeric Pref(#number value,#code,#name,

#classification) VALUES(3, 51,’standard’,’starRating’);

INSERT INTO #Numeric Pref(#number value,#code,#name,

#classification) VALUES(4, 52,’middle’,’starRating’);

INSERT INTO #Numeric Pref(#number value,#code,#name,

#classification) VALUES(5, 53,’lux’,’starRating’);

INSERT INTO Interval Pref(#min value,#max value,#code,#name,

#classification) VALUES(20, 45, 99,’very cheap’,’cost’);

INSERT INTO Interval Pref(#min value,#max value,#code,#name,

#classification) VALUES(45, 60, 100,’cheap’,’cost’);

INSERT INTO Interval Pref(#min value,#max value,#code,#name,

#classification) VALUES(60, 90, 101,’expensive’,’cost’);

INSERT INTO Interval Pref(#min value,#max value,#code,#name,

#classification) VALUES(90, 100, 102,’very expensive’,’cost’);

