Christian Fotsing
email: fotsingc@ensma.fr

ENSMA Annie Geniet Lisi

Using semantic properties for real time scheduling

We consider interacting tasks with conditional statements. The classical temporal model associates a single WCET to each task, and considers the union of the realtime primitives that occur in the different branches of conditional statements. Thus the model considers only a non realistic worst case, which can lead to erroneous conclusions. Furthermore, semantic is never considered. We extend the task model with conditional statements, and the notion of schedule is replaced by the notion of scheduling tree. We then present some examples which illustrate the benefit of taking semantic into account. This lays the basis for a complete model based scheduling analysis which explicitely takes conditional statements and semantic into account.

Introduction

We consider real time applications dedicated to process control. They are generally modeled as a set of periodic, possibly interacting tasks. For safety reasons, tasks have to respect firm deadlines. One of the main challenges for system designer is to ensure that all deadlines are met. This is the concern of scheduling. Scheduling theory relies on the temporal modeling of tasks. Classically, a task τ i <r i , C i , D i , P i > is modeled by four temporal parameters [START_REF] Liu | Scheduling algorithms for multiprogramming in real-time environnement[END_REF]: its first release time r i , its worst case execution time (WCET) C i , its relative deadline D i which is the maximum acceptable delay between release and completion of any instances of the task, and its period P i . A task consists in an infinite set of instances (or jobs) released at times r i + k × P i , where k is a natural integer. Tasks may also communicate or share critical resources. They may thus use real-time primitives (send or receive messages, lock and unlock resources). In classical approaches, one single WCET is associated to each task. If a task contains conditional statements, its WCET corre-sponds to the longest execution path of the task. It can be obtained either by simulation or by static syntaxical analysis of the task code [START_REF] Colin | Calcul de majorants des pires temps d'exécution : état de l'art[END_REF]. All real-time primitives are also considered to occur, even if they are in different branches of conditional statements. Thus scheduling analysis is performed from a non realistic model. This can lead to erroneous conclusions. Our aim is to illustrate that the classical modeling of tasks must be refined. Moreover, we illustrate through some examples that semantic must also be considered, otherwise, again erroneous conclusions could be drawn. The paper is organised as follows. First we present our assumptions. Then, we present our task model and the scheduling model: since we consider conditional statements, the notion of schedule is no longer suited, and must be replaced by the notion of scheduling tree which describes the different possible effective behaviors of the application. We present the limitations of the classical approach through some examples and we conclude and present our future investigations.

Context and classical temporal model 2.1 General context

In this paper, we consider applications composed of interacting periodic tasks. They run on preemptive uniprocessor systems. We consider pre-runtime (off-line) scheduling. This means that we want to obtain, from the modeling of the tasks, a global execution model of the application. This execution model (a schedule in classical scheduling analysis) can then be implemented within the system. We assume that tasks consist in [START_REF] Choquet-Geniet | Exhaustive computation of the scheduled task execution sequences of a real-time application[END_REF][START_REF] Grolleau | Off line computation of real time schedules by means of petri nets[END_REF] • blocks composed of imperative statements. b i (j) denotes the i th block of the tasks, with execution time equal to j,

• conditional statements: IF condition THEN ... ELSE End if,

• Lock(R) and Unlock(R) where R is a resource of the system,

• Send(M) and Receive(M) where M is a message linked to a mailbox.

We assume that real-time primitive processing times are included in the processing times of neighbour blocks. Furthermore, execution times of condition evaluation are included in the execution times of the statements of the branches THEN and ELSE. E.g., for task T 1 on Figure 1, the computing time required by the evaluation of the condition is included in the execution times of blocks b 2 and b 3 . Then we model tasks by execution trees (Figure 1).

Task without conditional statements

The WCET is an upper bound of the execution time required by the task when it runs alone on the processor. The sequential model is here the effective description of the behavior of the task.

Task with conditional statements

Each branch of the execution tree is associated to its own WCET. The global WCET is then the maximal value of these WCET. Figure 3 illustrates the WCET computation.

Figure 3. Evaluation of WCET for a task with conditional statements

Task with conditional statements and resource utilization

We consider a task with a conditional statement such that:

• The THEN branch has a WCET equal to C 1 , and uses resource R 1 between execution times t 1 and t 2

• The ELSE branch has a WCET equal to C 2 , and uses resource R 2 between execution times t 1 and t 2

The sequential model has a WCET equal to max(C 1 , C 2), and the task is considered to use R 1 between t 1 and t 2 and R 2 between t 1 and t 2 . Figure 4 illustrates this case. We consider a task with a conditional statement such that:

• The THEN branch has a WCET equal to C 1 , and sends a message M 1 at execution time t

• The ELSE branch has a WCET equal to C 2 , and receives a message M 2 at execution time t'

The sequential model has a WCET equal to max(C 1 , C 2), and the task is considered to send message M 1 at time t and to receive message M 2 at time t'. Figure 5 illustrates this case.

Figure 5. Conditional statement and communication 3 Scheduling

Classical scheduling approaches compute schedules from the WCET. Schedules here completely hide conditional behaviours of tasks. Now, if one wants to depicte the actual behaviour of the system, he has to consider the tree modeling of tasks, and he cannot thus produce one single schedule. He must describe every possible paths followed by the application. Thus, we must introduce a new execution model: the scheduling tree, which lets explicitely appear each conditional node. Consider the application of Figure 6, composed of two synchronous tasks. The behavior of the application must be modeled on the time interval [0, 16] where 16 is the hyperperiod 1 , and it is then iterated. A scheduling tree is given in Figure 6. The application processes T 2 for one time unit, then the conditional statement of T 2 is scheduled. There are thus two subtrees, which correspond to the further behaviour of the application if the "then" respectively "else" branch of T 2 is chosen. The application can here have 8 different behaviours on [0, 16]. A scheduling tree is then valid if all deadlines are met whatever the different choices made in conditional statements. The scheduling tree of Figure 6 is valid since the first occurrence of T 2 completes either at time 3 or at time 4, and the second occurrence at times 11 or 12, whatever the followed branch. And task T 1 completes between times 12 and 16. So all deadlines are met. A real-time system is then said to be globally (or strongly) feasible if there exists at least one valid scheduling tree. We are now interested in the feasibility analysis. We consider pre run-time (off-line) analysis for uniprocessor systems. When sequential models are used, we have a necessary condition for a system to be feasible:

1 the lcm of all periods

Classical analysis versus our analysis 4.1 Utilization of several resources

We consider a system S 1 composed of two tasks T 1 <0, 16, 32, 32> and T 2 <0, 2, 4, 4>. They share two resources R 1 and R 2 .

• T 1 uses R 1 between execution time units 3 and 6

• T 1 uses R 2 between execution time units 4 and 8

• T 2 uses R 1 during its first execution time unit and then R 2 during the second.

We first use here the sequential model, and conclude that the system is not feasible, because task T 2 always miss its third deadline. Indeed, between times 0 and 8, 2 instances of T 2 are processed, for 4 time units. T 1 is thus processed for 4 time units within the 8 first time units. Thus at time 8, T 2 is released, but R 1 is locked by T 1 , and it cannot be unlocked before time 10. But then R 2 will be locked for still 2 more time units, thus won't be available before time 12. Thus T 2 will miss its deadline (see Figure 7). We now refine our analysis, and consider the pseudo-code of tasks. We assume that the sequential model of T 1 has been deduced from the code given in Figure 8. We can observe that resources R 1 and R 2 are never both used by an instance of T 1 . The former analysis thus doen't hold.

2 the utilization factor U is defined as In fact, either T 1 uses R 1 and then T 2 can be processed at time 10 even if R 2 is still locked, or T 1 uses R 2 , then T 2 can be processed at time 8 before T 1 locks R 2 . We present in Figure 9 a valid scheduling tree of the application. The system is thus feasible, despite the negative conclusion when using the classical sequential model.

U = n i=1 C i P i

Considering semantic

We consider a system S 2 composed of two communicating tasks T 1 <0, 5, 9, 9> and T 2 <0, 5, 9, 9>. We assume that:

• T 1 receives a message M to T 2 after its 1 st execution time unit

• T 1 sends a message M' from T 2 after its 4 th execution time unit

• T 2 receives a message M' from T 1 after its 2 nd execution time unit

• T 2 sends a message M to T 1 after its 3 rd execution time unit

This system is not feasible for two reasons:

• it doesn't respect the necessary condition (property 1): U = 5 9 + 5 9 = 10 9 > 1,

• deadlock cannot be avoided. Now, let us assume that this sequential model comes from the pseudo code described in Figure 10. Furthermore,

. System S 2 since x is an input parameter of both tasks, and, since they are always released at the same time, they always consider the same value for x. We can notice that, according to the semantic of tests, either T 2 executes its THEN branch and T 2 its ELSE branch, or conversely. Thus either message M is send and received or message M'. The deadlock thus doesn't take place. Moreover, the case corresponding to U greater than 1 is impossible, because of the semantic. And the system is feasible in practise. Figure 11 presents a valid scheduling tree. Here again, only the semantically correct branches have been kept. We have laid the basis for future works. We intend to develop a complete model based methodology for scheduling analysis. For that purpose, we will extend the Petri nets based methodology proposed in [START_REF] Choquet-Geniet | Exhaustive computation of the scheduled task execution sequences of a real-time application[END_REF][START_REF] Grolleau | Off line computation of real time schedules by means of petri nets[END_REF]. The former examples prove that the classical sequential model of tasks as well as the notion of schedule must be refined. They also prove that it is mandatory to take semantic into account in the feasibility analysis. The general frame of our future investigations is given in Figure 12.

Figure 1 .

 1 Figure 1. Modeling of a task with conditional statement by an execution tree

Figure 2 .

 2 Figure 2. Usual model for the task of Figure 1

Figure 4 .

 4 Figure 4. Conditional statement and utilization of resources

Figure 6 .

 6 Figure 6. Scheduling tree

Figure 7 .Figure 8 .

 78 Figure 7. System S 1 is not feasible

Figure 9 .

 9 Figure 9. A scheduling tree of S 1

Figure 11 .

 11 Figure 11. A scheduling tree of S 2 -Missing branches are semantically inconsistent

Figure 12 .

 12 Figure 12. Our methodology