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Abstract

Image resolution is an important criterion for many ap-
plications based on satellite imagery. In this work, we adapt
a state-of-the-art kernel regression technique for smart-
phone camera burst super-resolution to satellites. This
technique leverages the local structure of the image to opti-
mally steer the fusion kernels, limiting blur in the final high-
resolution prediction, denoising the image, and recovering
details up to a zoom factor of 2. We extend this approach
to the multi-exposure case to predict from a sequence of
multi-exposure low-resolution frames a high-resolution and
noise-free one. Experiments on both single and multi-
exposure scenarios show the merits of the approach. Since
the fusion is learning-free, the proposed method is ensured
to not hallucinate details, which is crucial for many remote
sensing applications.

1. Introduction
Remote sensing is an important research field on which

are based practical applications such as natural disaster de-
tection or ecological evaluations. For each application, im-
age resolution and the signal-to-noise ratio (SNR) are two
important criteria in practice for visual inspection, with fur-
ther consequences on downstream tasks, e.g. object detec-
tion [19]. However, the resolution is limited by the aperture
of the telescope, and additional noise further reduces the
image quality, resulting in low-resolution (LR) and noisy
frames. To circumvent these issues, multi-image super-
resolution (SR) algorithms reconstruct the underlying high-
frequencies spanned in the aliasing artifacts [21]. Further-
more, combining multiple images leverages both spatial and
temporal denoising [6].

Nowadays, the best visual accuracy is achieved by deep
learning algorithms [17, 18]. They significantly outperform
traditional image fusion strategies based on classical ker-
nel regression [1] or inverse problem solvers [10] in both
speed and visual accuracy. Notwithstanding, they are not
silver-bullet solutions. First, efficient training of neural

networks (NNs) requires very large amounts of carefully
collected supervisory data. For image processing tasks, it
translates to perfectly-aligned LR burst/HR noise-free target
pairs, whose collection is extremely challenging, especially
in remote sensing. Self-supervised learning (SSL) [18] have
recently circumvented this issue, but NNs are known to un-
derperform when they are deployed on tasks not seen during
training. Since synthetic data are limited (hard to model par-
allax or occlusions for instance), networks that perform well
on the evaluation data may fall in practice because of im-
perceptible details in the images of the real-world scenario.
Second, NNs are notorious for hallucinating details in the
HR prediction. Such details that may sneak from the train-
ing data during evaluation are for many applications out-of-
question artifacts, which limit the domains where NNs can
be safely deployed.

In this work, we follow a different trend by adapting to
remote sensing the recent learning-free burst SR approach
of [24], proposed for personal photography. It consists first
in aligning the raw frames of a burst to a reference one with
block-matching and Lucas-Kanade iterations [16], and sec-
ond in merging the frames into a HR and denoised image us-
ing kernel regression. The kernels are steered with respect
to a structure tensor [20] that retains the details next to the
edges and corners and denoises the flat regions. Structure-
adeptness of the structure tensor is particularly suited for
remote sensing since many objects such as buildings have
regular details such as salient edges that must be restored
differently from flat areas such as fields or the sea.

However, since the sequences taken by satellites like
Planet’s SkySat may have various exposures, with jitter in
the exposure coefficients [18], we cannot expect the ap-
proach of [24] to be a drop-in replacement of the existing art
for remote sensing SR. First, multi-exposure frame registra-
tion is an especially challenging problem [15,23], for which
the motion model of [24] designed for single-exposure is
not adapted. Second, the jitter in the exposure measure-
ments leads to artifacts in classical kernel regression if no
correction is applied [18].

We address these issues with two fixes: (i) we plug the
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NN of [18] to estimate the optical flow from variously-
exposed frames and show it is accurate enough when com-
bined with the robustness weight of [24], and (ii) we follow
the base-detail (BD) decomposition strategy of [18] and ap-
ply the kernel regression strategy of [24] on the detail layers
of the LR frames, handling the jitter to the bases. We show
that the fusion technique is flexible enough to incorporate
such decomposition. Note that with this approach, the final
reconstruction is achieved by a learning-free module, ensur-
ing that possible hallucinations in the predicted optical flow
barely have consequences in the HR and noise-free predic-
tion. The proposed method combines the advantages of
learned robust alignment for both single and multi-exposure
cases, and hallucination-free high-quality reconstruction of
an HR image, all with GPU-accelerated implementations.
This practical hybrid technique is suitable for a wide range
of remote sensing applications.

Our contributions are summarized as follows:

• We present and adapt the handheld burst SR algorithm
of [24] to satellite SR imagery for zoom factors be-
tween 1 and 2 and possibly important noise levels.

• We include the flow estimators and base-detail strategy
of [18], and add a new weight penalizing exposure to
adapt the technique to the multi-exposure case.

• We evaluate the method on both synthetic and real data
to illustrate its flexibility and merits. In particular, it
copes with the NN-based technique from [18] and ex-
ceed the performance of the kernel regression of [1].

2. Related work
Most approaches for multi-frame SR focus on the single-

exposure case. The idea behind combining multiple frames
is to detect and leverage the aliasing caused by the inte-
gration on the sensor that contains fragments of the orig-
inal high-frequency content [21]. This has been histori-
cally solved by accumulating frames in a shift-and-add (SA)
strategy [10, 13], by solving inverse problems [2, 9], or via
kernel regression [1,5,14,20,24]. These approaches recon-
struct a signal with a higher pixel density, and thus con-
taining details beyond the Nyquist rate of the sensor. How-
ever, they are blurry due to the blurring inherent to interpo-
lators, and the reconstruction of the lens point-spread func-
tion (PSF) [2]. As a result, a subsequent deblurring [1,9] or
sharpening [8] is performed to predict the final image.

Despite being successful in many applied fields, includ-
ing remote sensing, the state-of-the-art is nowadays domi-
nated by deep learning, e.g. [4]. These approaches are no-
torious for the large amounts of high-quality supervisory
data they require for training, yet such high-quality LR/HR
image pairs are hardly obtainable in the context of satel-
lites. To overcome this issue, Nguyen et al. [17] train a

CNN with a self-supervised loss. However, and despite im-
proved visual accuracy over the handcrafted counterparts,
these methods may hallucinate details, which is not compat-
ible with many remote sensing applications. In contrast, we
propose to adapt the kernel regression technique from [24],
which is: efficiently parallelized on a GPU, signal-adaptive,
robust to motion and noise, and learning-free, thus ensuring
no hallucination while providing high-quality results.

Multi-exposure imagery is another important family of
multi-image methods that are highly relevant for remote
sensing. In high-dynamic range (HDR) imagery, taking se-
quences of images at different exposures with limited dy-
namic range, and fusing them together results in a new HDR
one [7]. Neural networks may be trained on bursts of brack-
eted LR frames to jointly address HDR and SR reconstruc-
tion [15]. Nguyen et al. [18] propose such an approach for
remote sensing, again trained in a self-supervised manner.
In particular, they train a CNN to predict the optical flow
between two frames differently exposed, a very challeng-
ing problem in the HDR literature [23, 25]. In this work,
we adapt the kernel regression approach of [24] to satellite
bracketed bursts by plugging the optical flow CNN of [18]
to align the bracketed frame, and incorporate classic HDR
weights [11, 22] to these kernels to reconstruct high-quality
HDR and SR satellite images.

3. Approach
3.1. Multi-Exposure Kernel Regression

The data of the problem are the N LR raw frames Jn
and corresponding exposures tn (n = 1, . . . , N ). Our goal
is to predict a single HR frame I aligned with a reference
in the LR sequence. In the single-exposure case, any frame
is equally valid. However, in the multi-exposure case, each
frame may have a different SNR depending on the expo-
sure [12], and there may be saturated areas that are impos-
sible to align. We consider the frames for which the pixel
saturation rate is below a hand-fixed threshold (such as 5%),
and chose the most exposed among them. If no frame is be-
low the threshold, then the least exposed frame is chosen.

The proposed approach is shown in Figure 1. It illus-
trates the several stages that we describe in this section.
First, we normalize the raw LR images by the exposure co-
efficients, for all n:

Hn = Jn/tn, (1)

and compute the corresponding saturation masks via a
threshold arbitrary set to 0.99 as in [15]:

Mn = Jn > 0.99. (2)

From these normalized images, we first compute the optical
flows between the frames H2, . . . ,Hn and H1 that will be
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Figure 1. Our pipeline generates one HR image from a burst of LR images. Our method first aligns and identifies outliers using robustness
maps, then it estimates local geometric structures using kernel regression. The pipeline further decomposes the burst into base and detail
components, where the details are accumulated using Eq. (6). The bases are merged, upscaled to HR space, and combined with the HR
detail to produce the HR output.

used during the fusion. In theory any method may work, but
in Sec. 4 we show that the FNet model of [18] is the most
reliable one for remote sensing, significantly outperforming
the patchwise inverse compositional algorithm (ICA) itera-
tions [3] used in [14], which is more suited to the personal
photography. Let us name FNet f . The n (n = 1, . . . , N)
optical flows obtained as:

Fn = f(H1, Hn), (3)

with the convention that F1 is 0 (no motion). The “Align-
ment” module in Fig. 1 thus returns N flows F1, . . . , FN .
Following Nguyen et al. [18], we proceed by decomposing
the n LR frames Hn into base and detail layers to be robust
to exposure jitter:

Bn = Hn ∗Gσ, (4a)
Dn = Hn −Bn, (4b)

with Gσ a Gaussian filter of variance σ2 (σ is set to 1 in
our experiments). The HR estimated base is simply the ac-
cumulation of the LR base images upsampled by bilinear
interpolation, and registered to the reference as:

B = b

(
1

N

N∑
n=1

W (Hn, Fn)

)
, (5)

where W is the warp function that pulls back the frame Hn

according to the flow Fn, and b is the bilinear upscaling op-
eration by a factor s. This is valid because the base images
only contain the low-frequencies up to the cut-off of the
Gaussian filter Gσ . Equation (5) corresponds to the “Base
Merge” module in Fig. 1.

More attention is given to recovering the HR details that
contain frequencies beyond the Nyquist rate. It is achieved
with the kernel regression strategy of [24]:

D(x, y) =

∑
n

∑
(p,q)∈N kn(p, q)Dn(p, q)∑
n

∑
(p,q)∈N kn(p, q)

, (6)

where N is the 3 × 3 neighborhood of pixels in each LR
frame that are the closest to the location (x, y) on the HR
grid (details in [14]). Equation (6) is accounted for by the
module “Detail Accumulation” in Fig. 1. The kn’s are com-
puted as the multiplication of three weights:

kn(p, q) = wn(p, q)rn(p, q)hn(p, q), (7)

where wn is a geometric weight, rn is a robustness weight
that rejects mobile objects and artifacts, and hn is an HDR
weight that gives more importance to frames with better ex-
posure. The first two weights come from [24] and are those
corresponding to burst SR. The latter, dubbed hn, is a con-
tribution of this work to handle the multi-exposed frames.
The final image is the summation of the HR predicted base
and detail layers:

I = B +D. (8)

In what follows we explain all the intermediate results to
obtain the predicted detail HR layers.

3.2. Description of the weights

An overview of these weights is presented in [24], and
implementation details are disclosed in [14].
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Geometric weight The geometric weight barely differs
from the original paper. It corresponds to the “kernel re-
gression” module in Fig. 1. It consists in steerable kernels
adapted to the local geometry, e.g. corners or edges. It reads

wn(p, q) = exp

(
−1

2

[
x− p
y − q

]⊤
Ω−1

[
x− p
y − q

])
, (9)

where Ω is the locally adaptive covariance matrix. Ω is
shaped by the hyperparameters kdetail and kdenoise, and
D ∈ [0, 1], measuring the amount of details (presence of
noise and/or textures). It is estimated using the local struc-
ture tensor [20, 24]. We build Ω in the eigen basis P of the
local structure tensor as follows:

Ω = P

[
k21 0
0 k22

]
P⊤. (10)

In the case where both direction have equal energy in the
structure tensor like on a corner or a flat region, i.e. isotropic
behavior, k1 is equal to k2, and reads:

k1 = (1−D)kdetail +Dkdenoise. (11)

Conversely, when on an edge, where a direction has much
more energy than the other one, k1 and k2 are different and
stretch the kernel along the edge:

k1 = (1−D)[0.5kdetail] +Dkdenoise, (12a)
k2 = (1−D)[4kdetail] +Dkdenoise. (12b)

In this anisotropic case, kdetail is made smaller for the nor-
mal direction to the edge to avoid collecting pixels across
it, thus reducing blur, and is enlarged along the edge direc-
tion to increase denoising without blurring. This is a unique
feature of the steerable kernels, not implemented in [1].

In both cases, following the value of D, the kernel wn

is made larger to denoise, or smaller to prevent blurring
of the corners and edges. The amount of spatial denoising
and detail conservation is controlled by kdenoise and kdetail
that are two hyper-parameters automatically set by the esti-
mated SNR score. More details on k1 and k2 can be found
in [14, 24]. Overall, this approach is a data-adaptive way
to combine images, a merit of CNNs but in a learning-free
manner. We show examples of steered kernels for a flat area,
an edge and a corner in a real image in Figure 2.

Robustness weight Robustness is tailored to make plau-
sible natural images from everyday life scenes with de-
formable objects and numerous occlusions. This is far more
challenging than the satellite imagery case where the com-
mon assumption is to assume static scenes. In this para-
graph, all the quantities are pixelwise but we omit this de-
pendency for the sake of conciseness. Robustness is based

Figure 2. Illustration of the adaptive kernels of our method. A
large isotropic kernel is used for areas without details, and a nar-
row isotropic kernel is used for areas such as corners. A stretched
kernel is used for edges.

on the ratio d/σ at a LR pixel location (p, q), where d
measures the difference between a pixel and its matching
position on the reference frame, and σ represents the lo-
cal variance [24]. Let p1 and pn be two corresponding
patches in the images H1 and W (Hn, Fn). A prelimi-
nary step consists of computing the mean color difference
dn = ∥µ(p1)− µ(pn)∥2 with µ the mean function, and the
standard deviation of p1, dubbed σ1. Since these statistics
are computed from few pixels in 3× 3 neighborhoods, they
might be too noisy to be used directly. Instead, they are
corrected with the simulated values ds and σs as:

d =
d2

d2 + d2s
d and σ = max(σs, σ1). (13)

Wronski et al. [24] simulate the expected values σs, ds by
performing Monte-Carlo on the clipped Poisson-Gaussian
noise model, for every ISO and binned brightness levels,
since p1 and pn have the same brightness in their frame-
work. After this correction, higher values of the ratio in-
dicate that an area may be prone to artifacts, whereas low
ratios characterize safe to merge pixels: the aliased details
necessary for SR, and the noisy flat areas important for ef-
ficient temporal denoising. In the single-exposure setting,
the robustness coefficient is then obtained using the ratio of
the corrected values:

rn(p, q) = clip
(
s exp

(
− d2

σ2

)
− t, 0, 1

)
. (14)

The scaling factor s is a function of the magnitude of the
local optical flow. If the flow is too large, the risk of mis-
alignment artifacts is more important. Therefore the patch
is deemed unreliable, and s is set to 2, otherwise to the much
larger value of 12. The threshold t is set to 0.12 as in [14].

4



SE ME-0% ME-5% ME-20%

ICA-P 52.24 52.46 52.29 50.87
ICA-G 53.78 53.58 53.34 51.76
FNet 53.57 53.41 53.40 53.34

Table 1. Comparison of different registration techniques plugged
to the steerable kernel regression module. We report the average
PSNR for 200 synthetic bursts of 15 256 × 256 LR frames in the
single-exposure (SE) and multi-exposure (ME) settings. For the
latter, we follow [18] and inject jitter in {0, 5, 20}% to the expo-
sures to measure robustness of flow estimation to such practical
artifacts. For ME, we use BD decomposition for the merge, in or-
der to restrain the effect of jitter to the flow estimation.

In our case, it also prevents to aggregate patches for which
FNet may have returned a false prediction, e.g. hallucina-
tion. Lastly, the robustness weights in (14) are pooled on a
5×5 local neighborhood to share the worst-case confidence.
This pessimistic strategy further prevents the accumulation
of possible artifact-prone patches.

However, in the multi-exposure case the normalized im-
ages H1 and Hn, and thus the patches p1 and pn may have
roughly the same brightness but their SNRs remain differ-
ent. This penalizes the ratio d/σ even if the two patches
are visually similar, thus unnecessarily discarding important
frames for denoising and SR. Therefore, we would need to
simulate ds and σs for every exposure ratio, every ISO and
every binned brightness. However, we do not need to adapt
to many camera settings as in [24], and can therefore simu-
late the curves for the single ISO gain of the satellite, thus
making this approach tractable. If we had access to the ex-
act noise characteristics of the SkySat satellite, we could
also include in the simulation of ds and σs the dependency
on the exposure of the noise profile [11,12]. This would fur-
ther improve the quality of the robustness. An example of
robustness map detecting mobile objects in a real sequence
is shown in Fig. 5, in the experiments section.

HDR weight The additional HDR weight compared to
[24], gives more importance to the well-exposed frames,
and filters out the saturated areas and the darker regions
with the lowest SNRs. This weight differs from the ro-
bustness weight in many ways. First, it relies only on a
single frame, whereas the robustness is defined for image
pairs via d. Second, the HDR weight may discard the ref-
erence if better-exposed frames are available, especially on
saturated areas in the reference. We use the weight of [22],
since a reliable estimate of the noise standard deviation σs

has already been computed for the robustness weight. This
weight reads

hn(p, q) =
tn

σs(p, q)
Mn(p, q), (15)

where σs(p, s) is the noise standard deviation estimated for
the mean brightness of the pixel located in (p, q). Ideally,
it should be obtained using the noise curve specifically es-
timated for the exposure tn, but we use the same curve for
all frames since from the available data only a single noise
profile could be determined. Note that we could have also
used the local statistics of the robustness stage to compute
HDR weights based on local estimates of the SNR [11, 12],
a common practice in the HDR community. We have noted
in our experiments that those of (15) were enough to achieve
satisfactory results.

4. Experiments

We base our implementation on the official codes from
[14] and [18]. Quantitative metrics are computed over a
synthetic dataset generated from a set of Skysat L1B satel-
lite images, which has a dynamic range spanning 4096DN.

4.1. Alignment

We first evaluate the quality of the output image us-
ing three different registration methods. We compare the
patchwise ICA algorithm shipped with the code of [14] and
adapted for personal photography, the global ICA algorithm
used in [1], adapted to satellite imagery since most motions
across images are that of the satellite itself, and the CNN
dubbed FNet from [18] trained in an end-to-end manner via
self-supervised learning on multi-exposure synthetic bursts.

We report in Table 1 the average PSNR estimated on 200
simulated bursts of size 15 × 256 × 256 for both single-
exposure (SE) and multi-exposure (ME) with 3 jitter rates
as in [18]. The patchwise ICA (dubbed ICA-P) can suf-
fer from instabilities and does not perform as well as ICA
global (ICA-G) and FNet. For low jitter rates, global ICA
performs better since the synthetic dataset was generated
using a global translation model. Yet, FNet falls shortly be-
hind, and performs consistently as the jitter rate rises, con-
trary to both ICA method for which the PSNR drops. Note a
drop of about 2dB for ICA-G compared to FNet for the most
severe jitter on the exposure ratios. This suggets that FNet is
more robust for general ME scenarios. However, in the case
of SE, the three methods are in the same ballpark but we
note that FNet and ICA-P better handle mobile objects than
ICA-G in practice. Because the kernel regression methods
are compatible with most registration techniques, we show
that the choice of the alignment is problem-dependent.

4.2. Impact of noise

Raw measurements are degraded by noise coming from
both the nature of light and the electronics [12]. A super-
resolution method should thus be robust to several signal-to-
noise (SNR) ratios to deliver high-quality results. In [24],
the parameters kdetail and kdenoise are automatically set
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(a) Reference. (b) Low. (c) High.

Figure 3. Illustration of the difference between narrow and wide
kernels for noisy bursts (standard deviation of 50 DN). Wide ker-
nels allow for a better denoising while narrow kernels allow for a
better recovery of high frequencies.

Noise std. 8 DN 16 DN 32 DN 50 DN

Low 51.69 51.66 50.57 48.73
Medium 53.08 52.82 50.68 47.98
High 55.07 53.78 49.08 45.35

Table 2. Comparison of the mean PSNR estimated for 200
bursts of 15 256 × 256 LR frames in the single-exposure (SE)
setting, for different noise std. Three sets of kernel parame-
ters (kdetail, kdenoise) are considered : Low (0.33px, 1.65px),
Medium (0.24px, 0.96px) and High (0.15px, 0.45px). Each pa-
rameter set outperforms the 2 others for at least one noise level.

from the measured SNR: the lower the SNR, the larger the
kernels, yielding better spatial denoising.

We show in Table 2 the performance of the SR approach
for single-exposure for 4 sets of 200 synthetic bursts of size
15×256×256, each degraded with white Gaussian noise of
standard deviation in {8, 16, 32, 50}DN. For the sake of il-
lustration we test three sets of (kdetail, kdenoise) to monitor
their efficiency on satellite images: Low (0.33px, 1.65px)
(the default parameters in [14]), Medium (0.24px, 0.96px)
and High (0.15px, 0.45px). Each set of parameters is par-
ticularly adapted to certain SNRs. Medium is an all-purpose
setting to handle both small and important noise instances
whereas the default parameter Low is only adapted to the
least favorable case, as expected. We illustrate in Figure 3
the impact of choosing between the “Low” and “High” sets
of parameters. The one specialized for low SNRs tends
to overblur the image, whereas that for higher SNRs may
reconstruct correlated noise when achieving SR. Notwith-
standing, note that the method may retrieve very fine details
such as the stripes on the building with the “High” setting.

We show in Table 3 a comparison with an implemen-
tation of shift-and-add (SA), and two state-of-the-art ap-
proaches: ACT-spline (dubbed ACTS) [1] and DSP, the
CNN from [18]. We set the Gaussian noise level to 50
DN, leading to low SNR. Our approach, which therefore

PSNR SSIM

SA 46.81 0.995
ACTS [1] 45.46 0.993
DSP [18] 42.52 0.985
Ours 48.73 0.996

Table 3. Single-exposure SR ×2 with stack size N = 15. Average
PSNR on 200 bursts with 50 DN Gaussian noise.

automatically runs with the “Low” setting after leveraging
the noise model, better handles such instances of noise.
Note that the CNN was not retrained, and may therefore
underperform. However, this illustrates the flexibility of
our method, which automatically adapts to a broad range
of noise levels, contrary to a deepnet that generally excels
for one specific noise level. Figure 4 shows a qualitative
comparison of the same panel of methods for a sequence
with low SNR. ACTS [1] is not designed to jointly address
denoising and SR, and thus correlates the noise. DSP [18]
also correlates the noise but restores sharp details. Our ap-
proach, on the other hand, may efficiently remove important
noise while recovering a lot of details.

4.3. Handling mobile objects

In this section, we illustrate the robustness of our method
for mobile objects. Since there are no method to generate
synthetic bursts with mobile object, we focus on qualitative
results. We show in Figure 5 a crop from a real sequence
featuring moving cars on a road. The prediction of DSP [18]
splatters the car along the road , whereas our result retains
the car. This is crucial for several applications of remote
sensing such as surveillance. This difference is explained
by the fact that our method includes a robustness mask that
attributes a map of confidence to each frame: when every
frame but the reference is rejected, our method is a mere
upsampling technique. Yet, it retains the moving details in
contrast to the CNN. We also show in Figure 5 the accu-
mulation of the confidence score that we call “robustness
mask”. This image gives hints on the mobile objects and
misalignments, and can be used in practice to explain the
behavior of our approach, whereas the black-box CNN can-
not be diagnosed in case of failure.

4.4. Single-exposure validation

We quantitatively evaluate our approach with the panel
composed of SA, ACTS [1], and DSP [18]. We gener-
ate 200 bursts of size 15 × 256 × 256 from HR crops of
the Skysat L1B satellite dataset with the protocol detailed
in [17]: we blur the image with a Gaussian filter with stan-
dard deviation of 0.3, translate the other frames than the
reference with a subpixel shift in the Fourier domain, dec-
imate by 2 with nearest neighbor interpolation, and lastly
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(a) Reference. (b) SA. (c) ACT [1]. (d) DSP [18]. (e) Ours.

Figure 4. Joint denoising and SR for N = 15 simulated frames and 50 DN Gaussian noise. Our approach automatically steers the kernels
to produce a HR noise-free image. In contrast, DSP [18] returns a HR image with correlated noise. Better seen on a computer screen.

(a) Reference. (b) DSP [18].

(c) Ours. (d) Robustness mask.

Figure 5. Illustration of the robustness mask of our model on a
set of real images. The white dot is a car moving forward on a
road, and partially occluded by trees. The dark points on the accu-
mulated robustness mask are areas where frames are rejected due
to scene motion, and where the accumulation mostly relies on the
reference frame.

add Gaussian noise of standard deviation of 16 DN. Since
the noise level of this test set is low, we select the “High”
set of values for (kdetail, kdenoise) as previously discussed.

Table 4 shows the average PSNR scores for the panel
of methods we consider, and so for three burst size: N=5,
10, and 15. It can be seen that for N = 5 images, we fall
short by less than 1dB to DSP [18]. We rank second for this
burst size, and above the other kernel regression technique

N = 5 N = 10 N = 15

SA 49.14 51.83 53.11
ACTS [1] 48.88 51.64 52.93
DSP [18] 51.21 52.61 53.49
Ours 50.79 52.74 53.78

Table 4. Single-exposure SR ×2 with varying stack size N . Av-
erage PSNR on 200 bursts of size N varying in {5, 10, 15}, and
noise of standard deviation of 16 DN.

Time (ms/burst) Peak mem. (GB)

SA 49.5± 2.7 3.1
DSP [18] 548.3± 22.8 10.8
Ours (ICA) 129.7± 14.4 2.0
Ours (FNet) 118.6± 10.1 2.4

Table 5. Execution time per burst (s/burst) of size 15× 256× 256
pixels on a single NVIDIA RTX 3090 graphic card. We bench-
mark our method for the patchwise ICA alignment, since an effi-
cient GPU implementation had already been designed for [14], as
well as with FNet flows.

ACTS [1] by a margin of 1.6dB. However for larger burst
sizes, we rank first with margins of 0.13dB and 0.29dB over
DSP. We are thus in the same ballpark as deep learning for
these more practical values of N , validating our approach.
We also keep important margins of about 1dB over ACTS.
Our adaptive kernels better preserve the details such as the
edges and corners whereas ACTS is equivalent to kernel re-
gression with isotropic kernels [5], thus blurring details. We
have also noted during our experiments that our method is
mostly as good as the deepnet to handle instances of par-
allax next to skyscrapers in real-world images. This shows
the merits of our method to urban scenes.
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Lastly, we report in Table 5 the average running time for
200 bursts of size 15 × 256 × 256. Our approach, while
relying on a non-official reimplementation of the hand-
held method [14], is faster than the CNN from [18], and
much more memory-efficient, showcasing its practicality.
This showcases that the bulk of the computations in [18]
are attributed to the fusion stage, that is as accurate with
our learning-free, but for a much smaller computational
cost. Since Wronski et al. [24] claim to process in 100ms
on a 2018’s smartphones a dozen of 12 Megapixel raw
photographs with their own non-released implementation,
speed improvements are expected with a better engineered
implementation than the non-official one of [14]. Note that
the original method merges the frames sequentially in or-
der to fit a low memory device; the runtime could therefore
be improved further at the cost of a heavier memory usage
by merging frames simultaneously. We do not report the
running time for ACTS [1] as only a CPU code was avail-
able; It is slower by several order of magnitudes compared
to the other methods. We remark that SA has a larger peak
memory usage despite being much simpler than the steer-
able kernel strategy. This is because the code from [18]
parallelizes image processing whereas we proceed sequen-
tially, yielding lower memory usage.

4.5. Multi-exposure validation

We compare the performance of the proposed approach
for SR of multi-exposed sequences by following the proto-
col of [18]. The protocol is similar to the single exposure
one, but with randomized exposure ratios and heteroscedas-
tic noise. To model real-world imprecision in the ratios, we
introduce additional noise jitter ranging from 0% to 20%.

Table 6 shows the performance of different algorithms,
evaluated on the synthetic dataset. We evaluated in our
panel the kernel regression based techniques, i.e. [1] and
ours, with and without the BD decomposition proposed in
[18]. DSP is run with the BD decomposition. We observe
that the BD decomposition is mostly beneficial for high jit-
ter rates, but ensures a consistent PSNR over a wide range
of jitter values. Our method ranks second behind DSP, with
the advantage of a smaller memory footprint and compu-
tational cost. It is consistently better than ACTS, confirm-
ing that data-adaptivity leads to better accuracy. Note that
this evaluation setting is the most favorable for DSP since
the network was trained for this exact noise profile. It was
shown in Section 4.2 that our method remains competitive
for varying noise levels, and can therefore outperform NNs
on images with different SNRs.

4.6. Limitations

We have observed during evaluation on certain real im-
ages that some details are not as well restored as ACTS [1]
and DSP [18]. When switching to structure tensor-

Exp. 0% Exp. 5% Exp. 20%

ACTS [1] 53.19 51.35 44.78
ACTS (B.D) [18] 52.79 52.71 50.97
SA 53.42 53.00 49.60
DSP [18] 55.54 55.54 55.49
Ours 54.53 52.98 46.07
Ours (B.D) 53.41 53.40 53.34

Table 6. Multi-exposure SR ×2. Average PSNR on 200 bursts of
N = 15 frames and exposure ratio jitter in {0, 5, 20}%.

independent narrow isotropic kernels, these pixel-thin de-
tails are restored. We posit it comes from the computation
of the gradients since [24] average the gradients of several
neighboring pixels to be robust to noise. We have observed
in practice that for these small details, the dominant eigen-
value of the tensor was not as high as expected, thus favor-
ing too-large kernels where details should be retained in-
stead. This is acceptable in [24] because of the image reso-
lution, whereas the details in our LR frames may be tiny and
lead to incorrect gradients, resulting in overblurring of cer-
tain details. Better tuning of the hyper-parameters or task-
specific image gradients should alleviate this issue.

5. Conclusion

We embedded the fast and efficient steerable kernel re-
gression approach from [24] for single-exposure burst SR
into a hybrid scheme for multi-exposure SR in the remote
sensing context. We combined this image-fusion module
with two modules from [18]: the neural network for opti-
cal flow, trained on real images to handle the challenging
problem of varying exposures, and the base-detail decom-
position strategy to handle jitter in the exposure coefficient.
This combination is a fast and interpretable blend of learn-
able flow and handcrafted image fusion, taking the best of
the two worlds for estimating robust complex motions, and
merging the frames with the guarantee to never hallucinate
details. The latter is a key criterion for many practical re-
mote sensing applications, and we thus believe that the pro-
posed approach is perfectly suited for both academia and
industry. Experiments for both single-exposure and multi-
exposure frames empirically validate our approach.
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