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Abstract— Centimeter-sized BaTiO3-based crystals 
grown by top-seeded solution growth from the 
BaTiO3−CaTiO3−BaZrO3 system were used to process a 
high-frequency (HF) lead-free linear array. Piezoelectric 
plates with (110)pc cut within 1° accuracy were used to 

manufacture two 1-3 piezo-composites with thicknesses of 

270 and 78 m for resonant frequencies in air of 10 and 30 
MHz, respectively. The electromechanical characterization 
of the BCTZ crystal plates and the 10 MHz piezocomposite 
yielded thickness coupling factors of 40% and 50%, 
respectively. We quantified the electromechanical 
performance of the second piezocomposite (30 MHz) 
according to the reduction in the pillar sizes during the 
fabrication process. The dimensions of the piezocomposite 
at 30 MHz were sufficient for a 128-element array with a 70 

m element pitch and a 1.5 mm elevation aperture. The 
transducer stack (backing, matching layers, lens and 
electrical components) was tuned with the characteristics 
of the lead-free materials to deliver optimal bandwidth and 
sensitivity. The probe was connected to a real-time HF 128-
channel echographic system for acoustic characterization 
(electroacoustic response, radiation pattern) and to acquire 
high-resolution in vivo images of human skin. The center 
frequency of the experimental probe was 20 MHz, and the 
fractional bandwidth at -6 dB was 41%. Skin images were 
compared against those obtained with a lead-based 20-MHz 
commercial imaging probe. Despite significant differences 
in sensitivity between elements, in vivo images obtained 
with a BCTZ-based probe convincingly demonstrated the 
potential of integrating this piezoelectric material in an 
imaging probe. 

 

Index Terms— High-frequency ultrasonic transducer, 
lead-free material, linear array, piezoelectricity, ultrasonic 
imaging. 
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I. INTRODUCTION 

ince Saito's work on the development of new lead-free 

piezoelectric materials with very good electromechanical 

performance [1], the interest shown by the international 

scientific community has continued to grow. This impetus is 

driven in part by a series of directives regulating the use of lead 

in commercial products within the jurisdiction, in particular, of 

the European Union [2]. Confirmed by an increasing number 

of publications in this field [3], [4], research activity has also 

led to review articles and monographs over the last 6 years, with 

special attention given to the perspectives and applications of 

lead-free compositions [3]–[10]. Among these applications, 

ultrasonic transducers specifically for medical imaging 

applications [11]–[13] represent an important stake with regard 

to economic issues. 

Two of the most important material properties for these 

transducer applications are the effective electromechanical 

coupling coefficient (k) of the main vibration modes of the 

piezoelectric element and its acoustic impedance (Z) [14]. The 

k factor should be maximized and depends on the element’s 

geometry. The thickness coupling factor (kt) is considered for 

large plates or disks, while factor k33 is considered for pillars, 

and this factor is retained to evaluate the 1-3 piezocomposite 

[15], [16]. Similarly, Z should be as close as possible to that 

recorded on biological tissues (i.e., 1.5 MRayl). Additionally, 

the relative dielectric permittivity (33
S/0) plays a critical role 

in the electrical matching of the entire transducer to cables and 

electronics, although integrated electronics can currently limit 

the latter consideration. 

Compiled from previous specifications, two plots of kt and 

33
S/0 versus the acoustic impedance (Z) are shown in Fig. 1 

for lead-free compositions. Similar plots were previously 

published [14], [17] for lead-based compositions. While many 

material parameters can/are extracted from publications on 

lead-free compositions, we have deliberately limited ourselves 
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to materials used only for transducer fabrication (kt,  33
S/0, and 

Z values were available or easily deduced). Although this 

compilation is not exhaustive, we believe it is sufficiently 

representative. We have also chosen to divide these selected 

data into three main families that include certain variants such 

as composite or textured compositions: (K,Na)NbO3 (KNN)-

based in black, Bi1/2Na1/2TiO3 (BNT)-based in blue and BaTiO3 

(BT)-based in orange. LiNbO3 (LN) in purple and 

polymers/copolymers (PVDF/P(VDF-TrFE) in green) were 

also included. The main represented materials are ceramics 

(circled symbol) and single crystals (filled symbol). A central 

dot is added to the symbol to denote 1-3 piezocomposites (with 

ceramics or single crystals with inverted colors). Several 

commercial lead-free compositions are available with data 

sheets and denoted with a cross in the symbol. 

 

 
 

 
 

Fig. 1. (a) Thickness coupling factor (kt) and (b) dielectric permittivity at 

constant strain (33
S/0) as a function of the acoustic impedance (Z) for 

lead-free piezoelectric materials (organized by families) used for 
transducer fabrication. (c) Description of symbols used (colors and 
shapes for material families; marker filling for material types). 

 

Finally, only three commercial lead-based materials (two 

Pb(Zr,Ti)O3 (PZT) ceramics [18], [19] and one 

PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT) single crystal with mean 

properties [20]) were superimposed (in red) for comparison. 

These notations are summarized in Fig. 1c. 

A wide range of acoustic impedance is observed for KNN-

based ceramics, mainly due to the different porosity contents 

which make densification difficult for these compositions [21]–

[35]. The fabrication process also has an influence (bulk 

ceramic, thick film, sintering, etc.). Globally, kt tends to 

increase with increasing acoustic impedance (Z). For the 

dielectric permittivity at constant strain (33
S/0), a wide range 

of values is observed (until 1500) depending on the porosity 

content and dopants used. For KNN-based single crystals [36]–

[38], kt is improved between 60% and 70% and is accompanied 

by higher acoustic impedance values, mainly due to a higher 

longitudinal wave velocity than that in ceramics. Moreover, 1-

3 piezocomposites based on single crystals [39] and ceramics 

[33] provide a better trade-off between kt (70%, [40]) and Z, 

with performances that are comparable to those of soft PZT 

compositions. 

For BNT-based compositions in single-crystal form [41], 

[42], kt is significantly improved compared to ceramics at 

similar compositions [27], [43]–[45]. In the 1-3 configuration, 

good performance with a kt over 70% is specified [42]. 

Here, additional data from two European companies with 

KNN-(Pz61)[46] and BNT-based materials (PIC 700 and PIC 

701) [47] are mentioned. 

For BT-based ceramics, the range of kt is the same as that for 

previous compositions [48]–[50], and one ceramic composition 

with a high dielectric constant is identified [51]. Here, for the 

1-3 piezocomposite (ceramic-based), acoustic impedance 

decreases with the use of polymer, which is expected. 

However, kt is not significantly improved in this family, mainly 

due to the limited values of k33 [49], [50]. 

The lithium niobate crystal (LN) (36° rotated Y-cut) exhibits 

a good kt (49%) with a much lower dielectric constant 

(approximately 30) [11], [52]. Finally, piezoelectric polymers 

often have lower kt values (PVDF [52]), but they can still reach 

30% for copolymers (P(VDF-TrFE) [53], [54]). These 

materials have low acoustic impedances and thus good acoustic 

matching with the propagation medium, which suits our 

imaging applications. These materials are readily available as 

thin, flexible sheets (i.e., a few tens of micrometers) and are 

generally well suited for the fabrication of HF transducers [55]. 

Among all the data presented here, more than half of the 

manufactured transducers, including the lead-free piezoelectric 

materials, are for HF applications (>20 MHz) and mostly 

exhibit a single-element configuration (90%). Within the three 

families (KNN-, BNT-, and BT-based) in this classification, 

KNN-based compositions are mainly studied and used for 

transducer applications. 

The use of lead-free materials to manufacture multielement 

transducers is rare [26], [39], [42]. HF linear arrays with a large 

number of elements (typically 128) and a center frequency up 

to 40 MHz were fabricated [56]–[58]. Among these 

transducers, novel lead-free materials [36] were successfully 

integrated in this type of imaging probe. 

In the present work, we proposed to evaluate materials from 

the BT-based family integrated into a HF linear array. The (1-

x)BaTi0.8Zr0.2O3-xBa0.7Ca0.3TiO3 (BCTZ) solid solution 

showed a very high piezoelectric coefficient with a d33 up to 

620 pC/N [6], [59]–[61]. As shown in Fig. 1 for the different 

families, the electromechanical properties are improved for 

single crystals compared to ceramics with similar compositions 

and are even higher for 1-3 piezocomposites. Piezoelectric 

(a) 

(c) 

(b) 
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coefficients up to 1500-2000 pC/N are predicted [60] for BCTZ 

single crystals, making them interesting candidates for 

ultrasonic probes. 

In section II, BCTZ material synthesis is briefly described, 

with particular attention given to synthesizing cm-sized crystals 

for our application. The microstructural characterization and 

functional property evaluation of the piezoelectric plates appear 

in Section II. Sections III and IV are devoted to the linear array 

fabrication with the 1-3 piezocomposite and acoustic 

characterization. Finally, images of human forearm skin 

obtained with the new ultrasonic probes are evaluated and 

compared with images obtained with a commercial lead-based 

probe. 

II. MATERIAL SYNTHESIS AND CHARACTERIZATIONS 

A. Materials Synthesis 

In this section, the main steps and characteristics of the 

BCTZ crystal growth process are summarized. The synthesis 

details can be found in [62]. Briefly, raw powders of BaCO3, 

CaCO3, TiO2 and ZrO2 (Fox Chemical GmbH, Pfinztal, 

Germany) were used for the synthesis of initial loads. The 

corresponding normalized composition of the initial liquid 

solution, with respect to the segregation of Ca and Zr, was the 

following (mol. %): Ba (88.7), Ca (11.3), Ti (98.7) and Zr (1.3). 

These values were used to cross the vicinity of the BCTZ50 

composition given by Keeble et al. [59] and Liu et al. [60]. The 

solid-state reaction was first performed by thermal processing 

[63] in air using a platinum crucible. Then, top-seeded solution 

growth (TSSG) [64] was used to grow crystals in iridium 

crucibles (80*80 mm2) in an induction furnace operating under 

a controlled argon atmosphere. Crystallization was seeded 

using a 2 mm-diameter iridium rod at a rotational speed of 0.5 

rpm. Crystal growth occurred at a saturation temperature range 

of approximately [1485-1570]°C, and the bulk single crystal 

was cooled over a 48 h duration. These parameters were 

optimized to avoid unwanted shapes (typically spiral shapes) 

and to obtain a crystal with a cylindrical shape (diameter of 50 

mm and a weight of 330 g) [62][Fig. 2(a)]. This process 

resulted in the successful extraction of boule-oriented and 

centimeter-sized crystals. Crystals in the (110)pc direction were 

oriented and cut within 1° of accuracy [Fig. 2(b)]. The sample 

was poled in air with an increasing electric field up to 1 kV/mm 

at room temperature. 

 

B. Material characterization 

Electron probe microanalysis (EPMA, CAMECA SX-100, 

Gennevilliers, France) was used to characterize several samples 

at different positions in the bulk single crystal, and variations 

in Zr and Ca contents were determined. Specifically, the Zr 

content decreased while the Ca content increased as a function 

of the radius and height, with periodical fluctuations down to 

+/- 2 mol % and +/- 5 mol % for the Ca and Zr contents, 

respectively. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 2. Pictures of (a) the main piece of the as-grown crystal, partially 
fractured during extraction, with original cylindrical shape 
(approximately 50 mm in diameter) (b) centimeter-sized sample 
extracted from this bulk single crystal and oriented along the (110)pc 
direction (one square represents 1 mm²). 
 

These fluctuations were complementary, i.e., locally, a 

minimum content of Ca corresponded to a maximum content of 

Zr and vice versa. The presence of two solid solutions with 

extreme compositions in the entire boule explains these 

fluctuations [62]. For our selected samples, the measured 

average composition was (Ba
0.905

Ca
0.095

)(Ti
0.943

Zr
0.057

) over 50 

points, with 0.003 accuracy. The direct piezoelectric 

coefficient, d33, was measured at room temperature with a 

Berlincourt d33 meter (APC International Ltd., Mill Hall, PA, 

USA) and delivered a value of 208 pC/N. Measurement of the 

dielectric constant at 1 kHz of the poled sample as a function 

of the temperature gives a tetragonal-cubic transition (Curie 

temperature, Tc) at 106 °C in agreement with the chemical 

content and orthorhombic-tetragonal phase transition (T0-T) at 

approximately 0 °C. 
 

TABLE I 
FUNCTIONAL PROPERTIES OF THE PIEZOELECTRIC SAMPLES 

 
Plate 1-3 LF 1-3 HF 

t (m) 590 270 78 

A (mm2) 232 31 12.3 

vf (%) 100 60 65 

 (kg/m3) 5485 3700 3950 

kt (%) 42.8 50.6 35 

33
S/0 1190 810 530 

m (%) 8.9 19 14 

e (%) 1.5 1.5 4.8 

Z (MRayl) 37.3 19.0 22.7 

fo (MHz) 5.7 9.8 31.0 

t: thickness; A: area of the electrodes; vf: piezoelectric BCTZ volume fraction; 

: density; kt: thickness coupling factor; 33
S/0: dielectric permittivity at 

constant strain; m: mechanical loss factor; e: dielectric loss factor; Z: acoustic 

impedance; f0: resonant frequency in air. 
 

 

 
 

(a) 

(b) 
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For the electromechanical characterization, an HP4395A 

network analyzer (Agilent Technologies Inc., Palo Alto, CA) 

and the corresponding impedance test kit were used to measure 

electrical impedance as a function of the frequency of samples 

placed under free piezoelectric resonator conditions [Figs. 3(a) 

3(b) and 3(c)]. A KLM-equivalent electrical circuit [65], [66] 

was employed to compute the theoretical behavior of the 

electrical impedance. A fitting process led to the thickness-

mode parameters of the piezoelectric samples. The functional 

properties of the characterized BCTZ crystal plate with 

dimensions of 30.17.50.59 mm3 are summarized in Table I 

(column “plate”). A kt value of approximately 43% falls in the 

same range as those of other BT-based compositions (ceramics) 

[49]. 

 

 
 

 
Fig. 3. (a) Picture of the BCTZ crystal plate with a silver paste 

electrode in air. Real (Re(Z)) and imaginary (Im(Z)) parts (solid black 

lines: theoretical; gray dashed lines: experimental values) of the 

complex electrical impedance Z of (b) 1-3HF composite in air and (c) 

BCTZ crystal plate with electrode in air. 

 

III. HF LINEAR ARRAY FABRICATION 

A. 1-3 Piezocomposites 

The BCTZ crystal plate was first polished to slightly reduce 

the thickness while maintaining good flatness. Two 1-3 

piezocomposites were fabricated for electromechanical 

property measurements. The first was fabricated to evaluate the 

BCTZ material in this 1-3 configuration and had a resonant 

frequency of 10 MHz. This property allowed the use of 

relatively large pitches (90 m) considering the standard 

requirements for minimizing lateral modes of vibration (i.e., 

with an aspect ratio (AR) height/width of BCTZ pillars to be at 

least 3 in the ideal case) [67]–[69]. The second sample was 

fabricated and integrated in a linear array, which necessitated a 

thickness reduction to reach a resonance frequency in air of 

approximately 30 MHz. In this case, the pitch was also 

significantly reduced with a homothetic rule to maintain an AR 

of approximately 3 (pitch approximately 40 m). The dice-and-

fill method [70] was applied to fabricate 1-3 piezocomposites. 

BCTZ volume fractions for both samples were close [60% for 

1-3 low-frequency (1-3LF) and 65% for 1-3 high-frequency (1-

3HF) samples]. The Smith physical model [16] was used to 

simulate effective parameters, such as kt, 33
S/0 and Z, as a 

function of the piezoelectric phase volume fraction and to 

identify favorable trade-offs to deduce these volume fractions 

regarding the characteristics of the resin (Epo-Tek 301, Epoxy 

Technology, Billerica, MA, USA). Simulations were similarly 

undertaken before for the PMN-PT single crystal to define a 

real benchmark, and a similar composite structure was used for 

the BCTZ crystal. The corresponding mechanical properties 

differed from those of conventional lead-based single crystals, 

and the dicing conditions needed to be finely tuned due in 

particular to their rather greater fragility. The kerfs were filled 

with low viscosity epoxy resin (see Fig. 4 for the 1-3LF 

sample). After curing the hard epoxy resin, the samples were 

lapped to eliminate the excess polymer of the top face and the 

BCTZ substrate on the bottom face. This machining step 

allowed the sample to finally reach the desired thickness. Gold 

electrodes (100 nm) were sputtered on both faces of each 

sample, and they were poled again in air at room temperature. 

Electromechanical properties were determined using the same 

measurement procedures previously used for the BCTZ plate. 

Table I summarizes the results obtained. For the 1-3LF sample, 

kt significantly improved (from 42.8 to 50.6%) compared to 

that recorded for the initial plate. 

 

 
Fig. 4. SEM image of the BCTZ/epoxy 1-3 composite (1-3LF). 

 

For the second 1-3HF sample, the electromechanical properties 

recorded decreased (kt=35%). This decrease was mainly due to 

the machining process at the small scale with small pillar 

dimensions and the thickness size dependence of 

electromechanical properties [71]. We observed that both the 

dielectric permittivity and losses changed beyond a lower value 

of kt, which confirmed this hypothesis. Despite these new 

performances, the reduction of the acoustic impedance remains 

an asset for the manufacture of the probe. 

 

B. Fabrication 

Another sample comparable to 1-3HF was manufactured and 

used to fabricate a 128-element probe. This sample has the 

same thickness and adapted lateral dimensions to integrate the 

entire surface area of all 128 elements. The elements were 

appropriately separated on one side (partial cut - not made over 

the full thickness of the piezoelectric composite by a dicing step 

performed with a diamond disk) with a pitch of 70 micrometers. 

The electrical contacts on each of these elements relied on a 

flexible circuit positioned at the array’s pitch. A backing 

(a) 

5 mm 

(b) 

(c) 

200 m 
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material was then bonded on the flexible circuit to ensure 

structural rigidity. The acoustic head also consisted of two 

matching layers. The acoustic properties (quarter-wavelength 

thickness, acoustic impedance and low acoustic attenuation) of 

these two matching layers were deduced (in pulse mode [72]) 

using the Desilets relationship for the optimization of acoustic-

energy transfer to the propagation medium. These layers with 

thicknesses of approximately 25 microns were fabricated and 

glued to the front face of the piezoelectric composite. The two 

layers were fabricated with a polymer loaded with submicron 

size metallic powder, for which the corresponding volume 

fractions were chosen to achieve the desired acoustic 

impedances. A silicon lens was molded on the top of the 

acoustic stack, which focused the ultrasound beam at 

approximately 8 mm and ensured encapsulation (Fig. 5). 

 

 

 

 
 

Fig. 5. Scheme of the acoustic stack of the BCTZ probe head. 
 

This acoustic head was integrated into the probe housing and 

interconnected to a 2-meter coaxial cable with an electrical 

impedance of 80 Ohms. Finally, a HF interface connector 

dedicated to a Verasonic Vantage Platform (Verasonics, 

Redmond, WA, USA) was used (Fig. 6). 

 

 
Fig. 6. Photograph of the imaging probe. Inset shows the top view of the 
imaging probe. 

 

IV. LINEAR ARRAY CHARACTERIZATION 

We measured the pulse-echo response of a representative 

element (#75). A metallic plane target (aluminum) was placed 

6.3 mm in front of the probe in a water-filled tank. The 

normalized corresponding frequency response was deduced 

and is shown in Fig. 7(a). The input signal consisted of a half-

sinusoid cycle at 20 MHz frequency and a 25 V amplitude. 

These measurements were compared to simulation predictions 

from the KLM scheme [65] with the same electrical excitation 

signal, both for a single element in emission/reception with 

similar dimensions [Fig. 7(b)]. 

Our simulations considered all layers described in the stack Fig. 

5. For this 1-D model, the acoustical impedance of the lens was 

very close to that recorded for water and was assumed to 

propagate through the medium without significant behavioral 

change. For each inert layer, the density, longitudinal wave 

velocity, and acoustic attenuation at 20 MHz were employed, 

while (1-3 HF) data shown in Table 1 were used for HF 

piezoelectric element simulations. The connecting cable used 

with a length of 2 m was also considered as a transmission line 

(quadrupole in the KLM scheme) where losses are neglected. 

Its impact on the properties of the theoretical electroacoustic 

response is weak. For this element, the center frequency was 

slightly lower than 20 MHz (precisely 18 MHz), and the 

fractional bandwidth at -6 dB was 44%. Regarding the 

theoretical results, the center frequency was comparable at 21 

MHz, while a slight difference (2%) was observed for the 

fractional bandwidth at -6 dB (46%) with the KLM model. 

 

 
Fig. 7. (a) Normalized measured (element #75) and (b) simulated pulse 
echo response (black, solid lines) of one representative array element 
and its corresponding frequency responses (red, dashed lines). 

 

The significant resonant center frequency difference 

between the composite in air and one representative element of 

the probe primarily originates from the flexible circuit. This 

decrease is observed on the theoretical electroacoustic response 

calculated with the KLM scheme. Taking into account the flex 

with a polymer layer of 20 m and two copper electrodes of 4 

m thick (with an acoustic impedance higher than 40 MRayl), 

the center frequency decreases from 28 to 20 MHz. The 

Backing 

Lens 

2nd matching layer 

1st matching layer 

1-3 piezocomposite/ 
      elements 

Top 
electrode 

Flexible circuit 

z 

x 

y 

(a) 

(b) 

1 cm 
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addition of the backing and the two matching layer also 

contributes to this decrease of frequency, but this contribution 

is less important. 

Based on the electroacoustic response of this element (#75), 

the axial resolution was 170 μm (calculated from the width at 

half height of the signal envelope). All 128 elements were 

tested using the same procedure and yielded mean values of 20 

MHz and 41% for the center frequency and fractional 

bandwidth, respectively. Fig. 8 shows the relative sensitivity 

values of each element (normalized with the mean sensitivity 

value), as deduced from these measurements. Two (#69 and 

#112) of these elements were defective. The variation in 

sensitivity was relatively large, with a maximum difference of 

approximately 30 dB. Presumably, this difference was due to 

the nonuniformity of the electromechanical performance of the 

1-3HF composite for each element. Indeed, during the 

manufacturing process of the 1-3 piezocomposite, several 

pillars broke or cracked, as observed on several SEM images 

(Fig. 4). The number of rows of pillars on the width of the 

elements of the probe is low (around 3), which can lead to a 

rapid degradation of the performance of the element overall. 

Although the cutting parameters have already been modified 

from those used for lead-based compositions, additional 

studies, such as studies of the cutting speed or the choice of the 

diamond blade for the dice-and-fill method, remain necessary. 

 
Fig. 8. Measured relative sensitivity of all 128 elements (red dashed line 
is the mean value for normalization at 0 dB). 

 

Radiation patterns were evaluated in water using a capsule 

hydrophone (Onda, HGL-0085, Sunnyvale, CA, USA) with an 

aperture of 85 m. The test hydrophone was connected to a 

preamplifier with a 20 dB gain, and the corresponding signals 

were viewed on an oscilloscope (Teledyne Lecroy, 

HDO4034A, Chestnut Ridge, NY, USA). The input signal 

consisted of 5 cycles at the center frequency of the probe with 

an amplitude of 50 Vpp. Measurements involved scanning 

several (x-y) planes (see Fig. 5 for axis description) (each 100 

m in both directions) at depths (z-axis) between 0.1 and 13 

mm (each 200 m). The selected configuration used 49 

elements centered on element #40 and an f-number (f#=2.0). 

Variations in the sensitivity between elements had a 

nonnegligible effect on the radiation pattern, as shown in Figs. 

9(a) and 9(c). The measured focal distance was approximately 

7 mm, while the lateral width at -3 dB and 265 m was 

significantly modified compared to what one can compute with 

the standard relation (λ x f# = 165 µm). The MATLAB toolbox 

(Mathwork, Natik, MA, USA) discrete representation array 

modeling (DREAM) [73] was used to simulate this radiation 

pattern. To this end, the characteristics of the chosen input 

acceleration signals for each element were identical to those of 

the pulse echo response (Fig. 7(a) with the same center 

frequency and bandwidth) and set of measured relative 

sensitivities given in Fig. 8 considered for all 49 elements. All 

maximum amplitude accelerations were adjusted with an 

identical ratio for all elements to obtain similar pressure values 

at the focal point for the experimental results and simulation 

(115 kPa). These results are shown in Fig. 9(b) and exhibited 

similar behavior to that of the experimental material [Fig. 9(a)]. 

The lateral width at -3 dB was 335 µm. In both cases, the depth 

of field (-3 dB) was between 8 and 10 mm. Although these 

values are considered good, a cursory review of both figures 

shows that the spatial pressure distribution lacks localized 

concentration within the focal zone. This simulation highlights 

the major effects of the sensitivity variations. To confirm this 

finding, the DREAM MATLAB toolbox [73] was used to 

simulate the radiation pattern considering that all the elements 

had a sensitivity identical to that of element #75, as shown in 

Fig. 9(c). In this idealized case, both the deduced lateral width 

at -3 dB (140 µm) and sensitivity in the focal zone for a depth 

of field of 2.6 mm improved. Similarly, between the two 

simulations, a 5 dB gain was obtained at the focal point [Fig. 

9(b) and Fig. 9(c)]. 

 
Fig. 9. Radiation pattern (normalized pressure at the focal point at 0 dB) 
of the linear array: (a) experimental; (b) simulation taking into account 
the sensitivity variation between elements as given in Fig. 6; (c) 
simulation with the same sensitivity for all the elements (element #75 as 
reference). 

The transducer was subjected to additional experiments and 

images were acquired with a a 50-μm tungsten wire phantom. 

This wire was positioned at the focal distance (7 mm) in water 

and perpendicular to the acoustic beam of the transducer. The 

characteristics used to obtain the B-Mode image (Fig. 10) were 

the same as those described previously (49 element and 
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f#=2.0). Since the wire diameter is smaller than the wavelength, 

the lateral resolution (at −6 dB) could be measured [74] and 

was equal to 307 μm. 

 
Fig. 10. Image of a 50-μm tungsten wire positioned at the measured 
focal distance (normalized amplitude). 
 

V. IMAGING EVALUATION 

This lead-free probe interfaced with the HF commercial 

ultrasound research Verasonic Vantage Platform (Verasonics, 

Redmond, WA, USA) was used for imaging evaluation. Linear 

scanning was performed using 49 elements in transmission and 

all 128 elements in reception. Here, a fixed focus was used in 

transmission with f#=2.0. Real-time, in vivo images of human 

forearm skin were acquired [Fig. 11(a)]. These images were 

compared to those obtained in the same area with a commercial 

piezoelectric single-crystal probe (L22-14vX, Verasonics [75]) 

with 128 elements, a center frequency of 18 MHz, and a pitch 

with a higher value at 100 µm. When the number of elements 

used in transmission was adapted [Fig. 11(b)], an identical f-

number was used. 

Previously, acoustic pressure delivered by one element at the 

surface for the two probes was measured with the following 

values: 1.5 kPa/V (element #75) and 6 kPa/V for lead-free and 

lead-based probes, respectively. 

For both images, three main layers of the skin, namely, the 

epidermis, dermis and hypoechogenic hypodermis, were 

observed. Vessels and arteries with their inner wall were clearly 

distinguishable, confirming satisfactory spatial resolutions. 

However, the lead-based probe had better sensitivity than the 

lead-free probe. Here, 6 dB more was used on the TGC (time 

gain compensation) for the image with the BCTZ-based probe, 

allowing us to observe the structures below the artery and 

vessels (beyond 9 mm). The pressure measured in these 

configurations at the focal point for both probes showed a 

difference of 12 dB. The lead-based imaging probe integrated 

a piezoelectric lead-based single crystal with a high coupling 

factor, which exhibited very good sensitivity. Moreover, the 

area element was significantly higher for the lead-based 

imaging probe, where the pitch was 100 m (70 m for the 

lead-free imaging probe) and the elevation was 2 mm (1.5 mm 

for the lead-free probe). Improving the manufacture of the 1-3 

piezocomposite to obtain a more uniform structure should 

reduce the variation in the sensitivity between elements and 

thus to yield a radiation pattern more in line with the theoretical 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11. Ultrasound images of human forearm skin acquired with (a) the 

BCTZ-based probe (20 MHz) and (b) the commercial L22-14vX lead-

based probe (18 MHz). 

VI. CONCLUSION 

In the introductory section of this report, we reviewed the 

functional parameters of several lead-free piezoelectric 

materials commonly used to manufacture ultrasonic 

transducers. We observed that several HF transducers 

(typically between 20 and 50 MHz) have already been 

manufactured, at least on a laboratory scale. The KNN-based 

family of lead-free transducers is the most commonly used 

category for HF applications. Equally, substantial efforts were 

made in developing the lead-free barium titanate-based family, 

especially for ceramics, although BaTiO3 was the first 

polycrystalline ceramic material known to exhibit 

ferroelectricity. In the present study, BCTZ crystals were used 

and, for the first time, fabricated in a 1-3 composite 

configuration and later integrated into a HF linear array. The 

first objective was to deliver a centimeter-sized plate for our 

targeted application. The electromechanical properties for our 

fabricated 1-3 piezocomposite were satisfactory. We recorded 

a thickness coupling factor exceeding 50% at 10 MHz, which 

decreased at a higher frequency (30 MHz), suggesting room for 

improvement for both the microstructure homogeneity and the 

machining conditions. A 128-element, HF linear array (20 

MHz) was fabricated, characterized, and evaluated using a 

commercial ultrasound research platform. We set a reference 

based on in vivo image evaluations performed with a 

commercial lead-based single-crystal linear array with similar 

center frequency and similar numbers of elements. A difference 

in sensitivity, mainly due to a lower thickness coupling factor 

of the lead-free piezoelectric material and variation of this 

sensitivity between elements, was observed for the resulting 

images, but good spatial resolutions were retained. This lead-

free probe remains fully operational. From an engineering point 

of view, this study covers a complete set of challenges, starting 

from new piezoelectric material fabrication to ultrasound 

images. This study shows that the integration of new lead-free 
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materials in transducers for medical imaging at the industrial 

scale is generally achievable. Nevertheless, several challenges 

remain to be addressed, namely upscaling, reproducibility, 

reliability, and leveraging the cost of piezoelectric materials, 

because the desired performances for some compositions 

should be comparable to those typical of lead-based 

piezomaterials We anticipate that the various points mentioned 

and corresponding advances can and are achievable in close 

collaboration between academic institutions and end users. 
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