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Figure 1. L1BSR produces a 5m high-resolution (HR) output with all bands correctly registered from a single 10m low-resolution (LR) Sentinel-2 L1B image with misaligned bands. Note that our method is trained on real data with self-supervision, i.e. without any ground truth HR targets.

Introduction

Earth observation (EO) satellites play a crucial role in our understanding of the Earth systems including climate, natural resources, ecosystems, and natural and humaninduced disasters. The Sentinel-2 mission, which is a part of the Copernicus Programme by the European Space Agency (ESA), is considered a significant EO effort alongside other missions such as Landsat. Sentinel-2 provides optical images of Earth's surface in 13 spectral bands, 4 bands at 10m resolution, 6 bands at 20m, and 3 bands at 60m. The blue (B), green (G), red (R), and near-infrared (N) bands at a ground sample distance (GSD) of 10m/pixel are particularly useful for a variety of applications, including land cover classification, vegetation monitoring, and urban mapping [START_REF] Drusch | Sentinel-2: Esa's optical high-resolution mission for gmes operational services[END_REF]. However, for certain tasks, such as identifying small objects or analyzing fine-scale features, this spatial resolution is still inadequate. To address this limitation, super-resolution (SR) techniques can be used to achieve a GSD better than 10m for the RGBN bands.

SR approaches can be broadly classified into multiimage super-resolution (MISR) and single-image superresolution (SISR). MISR aims at reconstructing a highresolution (HR) image from a set of low-resolution (LR) images, typically captured with different viewpoints [START_REF] Anger | Fast and accurate multi-frame superresolution of satellite images[END_REF][START_REF] Lafenetre | Handheld burst super-resolution meets multi-exposure satellite imagery[END_REF]29,[START_REF] Long Nguyen | Self-supervised super-resolution for multi-exposure push-frame satellites[END_REF] or at different satellite passes [3,27]. If the LR images contain alias and sub-pixel misalignment, they present a perfect scenario for MISR to leverage complementary information in different frames and to recover the true details in the HR output [29]. SISR, on the other hand, is often considered an ill-posed problem due to the potential loss or corruption of high-frequency information caused by factors such as noise, blur, or compression. Nonetheless, a recent study [31] demonstrates the possibility of SISR for Sentinel-2 10m bands thanks to its unique sensor specifications, namely the inter-band shift and aliasing. The misaligned bands sample the ground at different positions. Since they are correlated each band obtains complementary information from the other bands, in a situation similar to a demosaicing problem.

Deep learning (DL) SISR methods currently outperform traditional model-based approaches by a large margin [42].

To date, all learning-based methods for SISR of Sentinel-2 10m bands have used supervised training, which penalizes a loss between the HR image predicted by the network and a ground truth HR image. Some studies attempt to train a SISR model on a simulated dataset where LR images are generated using a pre-defined degradation model [34]. However, the performance may drop substantially if the real low-resolution input deviates from the simulated degradation model. Other works use real HR images acquired by other satellites to directly supervise the SR of Sentinel-2 [START_REF] Galar | Super-resolution of sentinel-2 images using convolutional neural networks and real ground truth data[END_REF]31]. However, obtaining the HR ground truth images can be costly. In addition, the use of HR images from different satellites introduces challenges such as spectral response discrepancies, and acquisition viewpoint and time differences, which complicate the process of dataset creation and negatively impact performance.

A promising direction is to use self-supervised learning techniques, which have been applied to multi-image restoration tasks such as video/burst denoising and demosaicing [8,10,[START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF][START_REF] Michel Deudon | Highres-net: Recursive fusion for multi-frame superresolution of satellite imagery[END_REF][START_REF] Cai | Toward real-world single image super-resolution: A new benchmark and a new model[END_REF], and recently to MISR in the context of push-frame satellites [29,[START_REF] Long Nguyen | Self-supervised super-resolution for multi-exposure push-frame satellites[END_REF] that acquire bursts of images at high frame rate. These techniques exploit redundant information from multiple observations: one of the degraded frames in the input sequence is withheld from the network and used as label instead of the ground truth. As a consequence they require at least two degraded observations from the same HR signal.

In this work we leverage a unique feature of the Sentinel- 2 hardware design that enables self-supervised training of single-image super-resolution (Fig. 1). Sentinel-2 is equipped with a MultiSpectral Instrument (MSI) that has 12 detectors capturing information in the visible and near infrared (VNIR) wavelength range.These detectors operate in a push-broom fashion, scanning the image line-by-line as the satellite moves over the ground (as illustrated in Fig. 2). Of note, adjacent detectors share a 2 km overlap area across the track (120 to 200 pixels), which offers opportunities for self-supervised image restoration techniques. These overlapping regions are only available in early products in the Sentinel-2 processing pipeline, such as the level-1B (L1B) products, which present a significant interband parallax due to the hardware design of the detectors. This parallax, while beneficial for the super-resolution task, is undesirable for human interpreters, which is why it is removed later in the pipeline (e.g. L1C products) using camera calibration information to align the different bands.

Contributions.

In this work we propose L1BSR, a novel self-supervised method for SISR and band alignment of Sentinel-2 L1B RGBN bands. The method is trained directly on real L1B data using image crops contained in the detector overlap regions. One of the overlapping L1B crops is given as input to our network, and the other is used as target in the loss. The network is tasked to generate a superresolved image such that, when properly aligned and downsampled, matches the target 10m LR crop [29,[START_REF] Long Nguyen | Self-supervised super-resolution for multi-exposure push-frame satellites[END_REF]. It should be noted that once trained, as a SISR method, our network has the capability to produce 5m HR images throughout the image domain, rather than just at the overlapping regions.

Our self-supervised loss is designed to enforce the superresolution network to output an HR image with the bands correctly aligned. This is achieved by aligning all bands of the target image with the green channel of the superresolved output.

To that aim, as a second contribution of our work, we present a novel cross-spectral registration (CSR) method which allows to compute an optical flow between images of different spectral bands. To train the CSR network we propose Anchor-Consistency, a simple yet effective selfsupervised loss for cross-spectral registration. Our selfsupervised cross-spectral registration simultaneously learns to handle all possible band combinations. We use our CSR network only during training of the SR network as part of the self-supervised loss. Once the reconstruction network is trained, the cross-spectral registration network is no longer required. The reconstruction network can directly generate high-quality HR images with correctly registered bands (as shown in Fig. 1) without requiring an explicit alignment step, nor calibration information.

We validate our contributions with an empirical study on a synthetic dataset obtained from L1C products (Sec. 4), designed to model the main characteristics of Sentinel-2 L1B data. We show that our L1BSR network as well as our crossspectral registration module trained with the proposed selfsupervision strategy attain performance on par with those obtained with supervised training.

We train our self-supervised method on a dataset of 3740 pairs of L1B RGBN overlapping crops (Sec. 4.4) and compare with a supervised method designed for Sentinel-2 L1C [31] in Sec. 4.5. It is worth noting that our training dataset, which can find applications in various image restoration and cross-spectral registration tasks, will be soon available on our project website.

Related Work

SISR for Sentinel-2 Early research on SISR of Sentinel-2 images primarily focused on pan-sharpening the lowerresolution (20m and 60m) bands to create a uniform 10m GSD data cube [START_REF] Gargiulo | Fast superresolution of 20 m sentinel-2 bands using convolutional neural networks[END_REF][START_REF] Lanaras | Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network[END_REF]. Recent years have seen an increased interest in enhancing the resolution of the Sentinel-2 10m bands. Some studies [34] generated synthetic LR-HR pairs to train SISR models, but these models tend to suffer from generalization issues [5]. Another trending approach is to directly supervise the SISR of Sentinel-2 using another high-resolution satellite such as PlanetScope [START_REF] Galar | Super-resolution of sentinel-2 images using convolutional neural networks and real ground truth data[END_REF]31,47], VENµS [28], or WorldView [36]. However, creating the training dataset for these approaches requires significant engineering work due to the radiometric and geometric differences between the two constellations.

Self-supervised SR Self-supervised and unsupervised learning are promising approaches to avoid the need for large labeled datasets in SR tasks. ZSSR [38] and MZSR [39] have been proposed to model image-specific LR-HR relations during the testing phase using example pairs generated from the LR test image and its degraded version. Although the idea is interesting, it may not be practical to train on each test image. Another approach is to use cycle-consistency and adversarial losses [19,26,41,46] to train a neural network without requiring pairs of LR-HR images. However, these GAN-based models are prone to producing hallucinations, which may not be acceptable for certain applications.

Our SISR method is both fully self-supervised and free from hallucinations. We drew inspiration from the Noise2Noise framework [24], which introduced a pioneering approach to train a neural network for image denoising task using pairs of noisy images instead of pairs of noisyclean images. The key idea behind Noise2Noise is that when comparing pairs of noisy images with independent noise realizations, the network learns to identify the underlying patterns in the noise and removes them accordingly. Similarly by comparing pairs of overlapping L1B images, our network can learn to recognize the aliasing patterns in each LR image and leverage them to recover the highfrequency details in the HR. The closest work to ours is the DSA method [29], which addresses MISR for SkySat imagery. During training, DSA hides the LR reference image and asks the network to produce a HR image from the other n-1 images such that after downsampling, it coincides with the reference image. Our work can be seen as the SISR version of DSA. However, our network also learns to perform implicit cross-spectral registration at inference time, which is a challenging and compelling task by itself.

Cross-spectral registration Cross-spectral registration refers to the process of aligning two or more images that are captured using different sensors or imaging modalities. Cross-spectral registration has become increasingly important in various fields such as remote sensing [START_REF] Rifat Arefin | Multi-image super-resolution for remote sensing using deep recurrent networks[END_REF]44], medical imaging [23], and computer vision [START_REF] Arar | Unsupervised multi-modal image registration via geometry preserving image-to-image translation[END_REF] as it allows for the integration of information from different spectral bands, thereby yielding richer scene representations. While increasing efforts have been made in the past few years to improve the performance of cross-spectral registration, this still remains an open problem [18]. Feature-based methods [START_REF] Liu | A novel affine and contrast invariant descriptor for infrared and visible image registration[END_REF]44] involve identifying distinctive features, such as edges or corners, in both images and then matching them to establish correspondences. Intensity-based methods [6, 48] rely on the similarity of the pixel values in both images. Examples of intensity-based methods include normalized cross-correlation, mutual information, and phase correlation. In recent years, deep learning-based methods have also been explored and achieved state-of-the-art (SOTA) performance. Most DL studies including [START_REF] Arar | Unsupervised multi-modal image registration via geometry preserving image-to-image translation[END_REF][START_REF] Rifat Arefin | Multi-image super-resolution for remote sensing using deep recurrent networks[END_REF][START_REF] Walters | There and back again: Self-supervised multispectral correspondence estimation[END_REF]43] have employed image-to-image translation [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] techniques to map two images to the same image space and then register them accordingly. However, these methods require extensive work in designing models and sophisticated training losses. In contrast, we propose Anchor-Consistency a novel and straightforward loss for training a cross-modal registration network. Notwithstanding its simplicity, our method provides a strong baseline for the task. In addition, our loss can also be easily integrated into existing frameworks to improve consistency or used as a quantitative metric for evaluating cross-modal registration quality.

Proposed Method

Our primary aim is to leverage detector overlaps in Sentinel-2 L1B images to learn to recover high-frequency details hidden in its misaligned bands. Note that the maximum attainable resolution is capped by the spectral decay of the blur kernel resulting from the sensor's pixel integration and the camera optics, which imposes a frequency cutoff beyond which there is no usable high frequency information [4]. For this reason, our aim in this work is to increase the resolution by a factor 2. In this section, we first present an overview of our proposed L1BSR framework (Sec. 3.1). Then, we describe our self-supervised losses in Sec. 3.2 and provide details about the training in Sec. 3.3.

Throughout the text, we denote by I t , t ∈ {0, 1} the two 4-channel overlapping images. We refer to I 0 as the input (or reference image) for the SR task and I 1 as the target for our self-supervised losses, which are explained in more detail in Sec. 3.2. I t,i is the grayscale image extracted from the channel i of I t , where i ∈ {b, g, r, n} and b, g, r, and n stand for the blue, green, red, and near-infrared channels, respectively.

Architecture

Our proposed L1BSR framework (Fig. 3) consists of two main components: a cross-spectral registration network (CSR) and a reconstruction network (REC). The CSR module computes dense correspondences between I 0,g and all the bands of I 1 . By utilizing these motion fields during training, the REC network learns to produce a HR output I HR 0 with all four channels aligned with I 0,g . Of note, the CSR module is not used at test time. Instead, the REC network performs cross-channel registration implicitly.

Reconstruction Network Our REC network is built on the Residual Channel Attention Networks (RCAN) architecture [49], which has been shown to achieve state-of-theart performance on many image restoration tasks. We chose this architecture mainly due to its channel attention mechanism, which can be viewed as a weighting function that enables REC to selectively focus on informative channels in the feature space and disregard irrelevant ones.

The reconstruction network takes a LR image I 0 ∈ R H×W ×4 with misaligned bands as input and produces a super-resolved output by a factor of two I HR 0 with all four bands aligned with the green channel of the input image where Θ REC denotes the network parameters. We opt for the default RCAN configuration to strike a balance between computational efficiency and performance. Overall, the REC network contains 10 residual groups, each with 20 residual channel attention blocks (RCAB), and a global skip connection. Each RCAB is a combination of a residual block and a channel attention layer implemented using a "squeeze-and-excitation" technique [START_REF] Hu | Squeeze-and-excitation networks[END_REF]. The number of feature channels is fixed to 64 across all layers.

I HR 0 = REC(I 0 ; Θ REC ) ∈ R 2H×2W ×4 , (1) 
It is important to highlight that the task our REC network must accomplish is particularly challenging, as it involves both super-resolution and cross-spectral registration at the same time. To tackle this problem, we incorporate a dedicated CSR module into the training process, which enables the REC network to learn efficiently the task in a self-supervised way.

Cross-Spectral Registration Network

The CSR module is instrumental during training. We use it to train the REC network to produce an HR output where all bands are aligned to the green one (as justified in Sec. 4.2). By having to align the channels, it becomes easier for the REC network to learn inter-band correlations, and thereby to leverage the complementary information in each band.

The cross-spectral registration network takes any two spectral bands of Sentinel-2 L1B images I •,i and I •,j , with i, j ∈ {b, r, g, n} as input and produces a dense correspondence between them

F I•,j →I•,i = CSR( Ī•,i , Ī•,j ; Θ CSR ) ∈ [-R, R] H×W ×2 , (2)
where Θ CSR denotes the parameters of CSR, and Ī is the normalization of image I according to its mean and stan- dard deviation. The network is trained with a maximum motion range of [-R, R] 2 (with R = 10 pixels). Note that I •,i and I •,j should represent the same scene and be extracted either from the same image or from two overlapping images. The CSR follows a simple U-Net architecture [START_REF] Ronneberger | Unet: Convolutional networks for biomedical image segmentation[END_REF] with 4 scales to increase the receptive field of the convolutions.

Self-supervised learning

Our framework is trained in a fully self-supervised manner, i.e. without requiring ground truth. In this section, we describe our self-supervised losses that are used to train the REC and the CSR modules.

Self-SR Loss By utilizing the motion fields between the green band of I 0 and all bands of I 1 computed by CSR, REC can produce a HR output I HR 0 with all bands correctly registered to I 0,g . We achieve this by minimizing the Self-SR loss:

ℓ Self-SR = ∥Π 2 ω 2 ( I HR 0 , F I1→I0,g ) -I 1 ∥ 1 , (3) 
where Π 2 denotes the subsampling operator and ω 2 (-, F ) computes a bicubic sampling (Pullback) in the HR domain using the LR flow F . F denotes actually 4 optical flows, one for each band in I 1 . The operator ω 2 is equivalent to a backward warping with an upscaled version of the flow 2F . The Self-SR loss forces ω 2 ( I HR 0 , F I1→I0,g ) to be aligned to I 1 , resulting in the requirement that all bands of the output I HR 0 be registered with I 0,g . Following the work of [29], we can also incorporate a blur kernel k into the Self-SR loss to directly produce a sharp HR image

ℓ * Self-SR = ∥Π 2 ω 2 ( I HR 0 * k, F I1→I0,g ) -I 1 ∥ 1 . (4) 
During training, we randomly choose the reference and the target between the two overlapping images. At inference time, we only need one single LR input and the REC network to obtain a high-quality HR output.

Anchor-Consistency Loss

The CSR network is trained with self-supervision. Fig. 4 illustrates our training setup for the CSR. For that we need 3 images I 0,i , I t,j , and I 1,i . The image I t,j serves as an anchor image extracted from either the I 0 or I 1 (i.e. t ∈ {0, 1}) but may come from different spectral band than the two other images (i.e. j ̸ = i). We compute the motion fields between these 3 images in two steps:

F It,j →I0,i = CSR( Ī0,i , Īt,j ), F I1,i→It,j = CSR( Īt,j , Ī1,i ).

(5)

These two motion fields should be consistent in such a way that their composition enables alignment between I 0,i and I 1,i :

F I1,i→I0,i = F I1,i→It,j • F It,j →I0,i . (6) 
The Anchor-Consistency loss constrains that the motion from I 0,i to I 1,i via the anchor should represent the direct motion between them.

ℓ Anchor-Consistency = ∥ω(I 0,i , F I1,i→I0,i ) -I 1,i ∥ 1 , (7) 
where ω is the classic pullback operator.

During training, we randomly choose the reference and the target between the two overlapping images. The spectra i and j are also picked arbitrarily in {b, r, g, n}. It is important to note that the case where i and j are identical is also considered for CSR to learn to register images of the same band.

Training details

We train first the CSR network, as it is important to ensure that the CSR output can be effectively utilized by the REC network. We employ the Anchor-Consistency loss (7) to train the network, with weights initialized using Xavier's initialization [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. We set the batch size to 64 and used Adam [20] with the default PyTorch parameters and a learning rate of 5e -5 to optimize the loss. The training converged after 200k iterations and took approximately 24 hours on a single NVIDIA V100 GPU.

The second phase consists of training the REC network using the Self-SR loss (3) and the trained CSR. We train REC on LR crops of size 96 × 96 × 4 pixels and validate on LR images of size 256 × 256 × 4 pixels. We set the batch size to 16 and optimize the loss using the Adam optimizer with default parameters. Our learning rate is initialized to 5e -5 and decayed by a factor of 0.6 every 12k iterations. The training converges after 60k iterations and takes about 20 hours to complete on a single NVIDIA V100 GPU. We apply data augmentation (DA) techniques such as flips and rotations. The CSR network is fixed during the training of the REC network.

Experiments

In this section, we present experimental results that demonstrate the effectiveness of our fully self-supervised approach for Sentinel-2 SISR. To this aim, we conduct experiments on both real Sentinel-2 L1B data and a simulated dataset that we generated from Sentinel-2 L1C products. Through extensive ablation studies and quantitative analyses, we aim to demonstrate the efficacy of our method in addressing the challenges posed by the cross-spectral registration and SISR tasks in Sentinel-2 imagery. Additionally, we compare our self-supervised approach to a state-of-theart supervised SISR method.

Simulated dataset

The simulated dataset used in our experiments was generated from 20 Sentinel-2 L1C products, with 18 used for training and 2 for testing. The products were extracted from 5 different continents in both summer and winter seasons to ensure geographic and radiometric diversity. For the training set, we selected 6,998 crops, each with a size of 512 × 512 × 4 pixels. For the testing set, we selected 184 crops of the same size. Provided that Sentinel-2 imagery contains significant alias [31] which is unsuitable to use as ground truth HR, we first applied a Gaussian kernel with σ = 0.7 to each crop to remove some aliasing, approximating the effect of an optical blur. The ground truth images I HR 0 and I HR 1 were then generated by applying 2 random homography transformations H 0 and H 1 to the blurred HR image (denoted as B HR ). These ground truth HR should be aligned to I 0,g and I 1,g , respectively. We also simulated band-misalignment in the LR by applying a small homography transformation, where the translation component is dominant. Additionally, a little Gaussian noise (0.1%) was added to the LR to match the Sentinel-2 noise level. Overall, the simulation process can be summarized as follows:

I HR t = H t (B HR ), t ∈ {0, 1} I t,g = Π 2 (I HR t,g ) + n g , I t,i = Π 2 (H t,i • H t )(B HR i ) + n i , i ̸ = g, (8) 
where H t,i (i ∈ {b, r, n}) is a translation-dominant homography modeling the band-misalignment between I t,g and I t,i . n i models the noise in the Sentinel-2 L1B. The largest distortion between 2 bands of 2 images can be up to 10 pixels. To enable diverse ablation studies for both the CSR and the REC networks, the homographies are stored as ground truth flows.

The Sentinel-2 L1C products are derived from the L1B products by the Ground Segment. During this process, the bands are aligned and resampled using camera altitude and geometric models. However, due to imperfect parameter 

Cross-spectral registration

Table 1 reports the mean absolute pixel error of the selfsupervised and supervised CSR networks on our test set when aligning the reference bands I 0,i to the target bands I 1,j with i, j ∈ {b, g, r, n}. The first half of the table shows the performance of the self-supervised CSR network, where the diagonal entries correspond to the same-band registration. The self-supervised CSR network performs exceptionally well for the RGB bands, in particular for the green band, exhibiting low mis-registration (less than 0.04 pixel), indicating a high correlation between the RGB bands. However, the registration between NIR and RGB is much more challenging, with an error around 0.1 pixel, which is twice as large as that of the RGB bands, suggesting a much lower correlation between NIR and RGB bands.

To validate the effectiveness of our self-supervised approach, we also performed supervised training of CSR on the same training set, where we penalized the error between the output flows and the ground truth flows obtained from the homographies. The second half of Table 1 presents the results of the supervised model over the test set. The table shows a small gap between the performance of the two models, with a maximum mean error of 0.03 pixels for RGB and 0.09 pixels for NIR in the supervised setting, compared to 0.04 pixels and 0.11 pixels for self-supervision. Overall, the self-supervised CSR approach performs well for many applications, without requiring any ground truth flows, knowledge of the optical instrument or scene modeling.

Multi-band super-resolution

We conducted ablation experiments using the proposed synthetic L1C dataset to evaluate the performance of our self-supervised reconstruction network. We found that the residual misalignment in the L1C product affects PSNR measurements: a super-resolved result with well-aligned bands will be slightly misaligned with respect to the ground truth. To avoid this, we align each band of the ground truth to the corresponding band of the super-resolved output before computing the PSNR (note that this alignment is between images of the same band). We use a classical TV-L1 optical flow [START_REF] Sánchez Pérez | Tv-l1 optical flow estimation[END_REF], setting the weight of the data attachment term to 0.3. The PSNRs shown in Tables 2 and3 were computed in this way.

First, we studied the impact of the number of input bands on the reconstruction quality. Table 2 shows the PSNR results for four different networks trained with different input bands. We observed a significant improvement in performance as we increased the number of bands provided to the REC network, consistent with previous findings [31].

Furthermore, Fig. 5 illustrates the performance improvements in restoring the G band by providing different bands as input. As more bands are used, the network is able to restore aliased patterns into the true pattern and reach higher signal-to-noise ratio.

Secondly, we compared the performance of our selfsupervised framework against a supervised training approach using the synthetic L1C dataset. The supervised training minimized an L 1 loss between the restoration and the ground truth HR image. Table 3 shows the per-band mean PSNRs over the test set. We observe a significant PSNR gap in favour of the proposed self-supervised L1BSR method (0.7dB for the visible bands and 0.3 for the nearinfrared). This is rather unexpected. Self-supervised training is at best equivalent to supervised training [8,[START_REF] Ehret | Model-blind video denoising via frame-to-frame training[END_REF]24,29]. The worse performance of the supervised method can be explained by the residual misalignment of the L1C images (see Sec. 4.1) used as ground truth during training, resulting in blurry super-resolved images. The self-supervised method does not suffer from this problem: during training each band of the target image is aligned to the green band of the super-resolved image by the CSR module. It should be possible to compensate the misalignment of the ground truth in a supervised setting by aligning the ground truth bands to the super-resolved prediction (see for example [7]). We did not explore this approach here as our interest lies mainly in the self-supervised training.

Real L1B dataset

The Sentinel-2 MSI includes 12 detectors for the VNIR bands arranged on a focal plane. The L1B product is composed of individual rasters, one per detector and per band. By design, two successive detectors acquire the scene with significant overlap, i.e. 120-200 pixels for the RGBN bands, which allows us to train our model on real L1B data.

However, due to the sensor layout, there is a noticeable vertical offset between consecutive detectors. To prepare the training and testing datasets, we pre-register the bands from different detectors using an integer translation. This process involves estimating a coarse translation between detectors using a SIFT-based matching method, refining the offset for each crop using an optical flow method, and regressing an integer translation. Since the bands of a given detector are acquired almost simultaneously, it is possible to ensure a registration precision up to a few pixels. For overlaps, registration is less precise due to the time delay, induced parallax and viewpoint changes, but typically remains less than 10 pixels. Overall, a refined registration is not required for our framework since the CSR network accurately captures residual shifts. We used only two Sentinel-2 L1B products in this paper due to their current scarcity, and extracted training data around overlaps, consisting of 3740 pairs of height 400 pixels and width depending on the overlap width between detectors for RGBN bands. 1 For testing we extracted crops outside of the overlapping regions, typically near the center of the detectors.

Qualitative analysis

We train the CSR and REC networks sequentially as described in Sec. 3 on the L1B dataset. For REC, the ℓ * Self-SR loss is used. The reconstruction results over the images of the test set are shown in Fig. 1. The REC network is able to successfully restore a high-quality HR image with aligned bands and fine details recovered. To evaluate our self-supervised method, we compare it against another ×2 SISR method [31]. The method in [31] relies on ground truth data obtained from PlanetScope imagery. It is trained with a L 1 loss, and is designed to work with Sentinel-2 L1C products. For comparison, we identified the L1C products from the same acquisition as the L1B samples and extracted the corresponding crops. Fig. 6 shows the SR results of the proposed methods on L1B, and of [31] on L1C. We found that the recovered details are very similar, yet our approach does not suffer from the gap between Sentinel-2 and PlanetScope images, which results in radiometric and geometric degradation by the network.

Conclusion

To conclude, this paper presents a novel self-supervised method, L1BSR, for single-image super-resolution of Sentinel-2 L1B 10m bands. Leveraging the unique hardware design of Sentinel-2, the proposed method achieves remarkable performance without the need for HR ground truth images. By training a cross-spectral registration module using an innovative self-supervised loss, Anchor-Consistency, L1BSR is capable of reconstructing highresolution outputs with all bands correctly registered. To the best of our knowledge, our work is the first to explore the overlapping regions between detectors of Sentinel-2 and their potential for self-supervised SISR. Through an ablation study on a synthetic dataset and comparison with other supervised SISR methods for Sentinel-2 L1C images, we have demonstrated that L1BSR achieves performance on par with that of supervised training. The availability of our training dataset on the project website makes it a valuable resource for various image restoration and cross-spectral registration tasks. 2

Figure 2 .

 2 Figure 2. Sensor layout of the Sentinel-2 MSI (figure adapted from [14]). The push-broom acquisition is done in the vertical direction. The overlap between detectors provides two nearsimultaneous observations of the scene.

Figure 3 .

 3 Figure 3. Overview of our proposed self-supervised L1BSR framework for Sentinel-2 L1B at training time. The depicted loss represents the self-supervision term ℓSelf-SR (3). Note that at inference time, only one input and the reconstruction module are required.

Figure 4 .

 4 Figure 4. Training setup of our proposed cross-spectral registration (CSR) module. The motion from I0,i to I1,i via the anchor It,j should represent the direct motion between them. The depicted loss represents the Anchor-Consistency loss (7).

Figure 5 .

 5 Figure 5. SR reconstruction of the green band when trained jointly with different input spectral bands. We observe that the other bands (B, R, N) provide valuable information for improving the reconstruction of the green band.

  Figure 6. SR (x2) reconstruction by our proposed method (b) using L1B and the method in [31] (d) using L1C imagery. (a) and (c) are from the same acquisition.

Table 1 .

 1 Cross-spectral registration error (in pixel) of our selfsupervised and supervised CSR networks over the synthetic test set (184 × 256 × 256 × 4 pixels). The score of same-band registration is highlighted in bold.

				Target bands
		Ref. bands	B	G	R	N
	Self-supervised	B G R N	0.026 0.035 0.039 0.106 0.034 0.026 0.038 0.092 0.035 0.037 0.026 0.104 0.100 0.086 0.098 0.027
	Supervised	B G R N	0.016 0.028 0.029 0.088 0.027 0.014 0.027 0.076 0.029 0.027 0.017 0.090 0.083 0.072 0.081 0.017
	estimation, there may be residual shifts between the bands.
	These shifts are typically less than 0.3 pixels [14].

Table 2 .

 2 Multi-band super-resolution with the Green band being the reference. PSNRs obtained after aligning GT bands to SR bands. Best PSNR in bold.

			Testing bands	
	Training bands	B	G	R	N
	G		46.39		
	BG	50.87 49.77		
	BGR	51.62 51.09 48.51	
	BGRN	51.80 51.67 48.82 41.34

Table 3 .

 3 Comparison with supervised training. PSNRs obtained after aligning GT bands to SR bands. Best PSNR in bold.

			Testing bands	
	Methods	B	G	R	N
	Supervised 50.90 51.04 48.14 40.98
	L1BSR	51.80 51.67 48.82 41.34

Note that L1B products will be systematically available through the Copernicus Data Space Ecosystem starting October

https://centreborelli.github.io/L1BSR/
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