
HAL Id: hal-04136362
https://hal.science/hal-04136362

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining multi-spectral data with statistical and
deep-learning models for improved exoplanet detection

in direct imaging at high contrast
Olivier Flasseur, Théo Bodrito, Julien Mairal, Jean Ponce, Maud Langlois,

Anne-Marie Lagrange

To cite this version:
Olivier Flasseur, Théo Bodrito, Julien Mairal, Jean Ponce, Maud Langlois, et al.. Combining multi-
spectral data with statistical and deep-learning models for improved exoplanet detection in direct imag-
ing at high contrast. EUSIPCO 2023 - European Signal Processing Conference, Sep 2023, Helsinki,
Finland. pp.1-5. �hal-04136362�

https://hal.science/hal-04136362
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Combining multi-spectral data with statistical and
deep-learning models for improved exoplanet
detection in direct imaging at high contrast
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Abstract—Exoplanet detection by direct imaging is a difficult
task: the faint signals from the objects of interest are buried
under a spatially structured nuisance component induced by the
host star. The exoplanet signals can only be identified when com-
bining several observations with dedicated detection algorithms.
In contrast to most of existing methods, we propose to learn
a model of the spatial, temporal and spectral characteristics of
the nuisance, directly from the observations. In a pre-processing
step, a statistical model of their correlations is built locally,
and the data are centered and whitened to improve both their
stationarity and signal-to-noise ratio (SNR). A convolutional
neural network (CNN) is then trained in a supervised fashion
to detect the residual signature of synthetic sources in the pre-
processed images. Our method leads to a better trade-off between
precision and recall than standard approaches in the field. It
also outperforms a state-of-the-art algorithm based solely on a
statistical framework. Besides, the exploitation of the spectral
diversity improves the performance compared to a similar model
built solely from spatio-temporal data.

Index Terms—detection, supervised deep learning, matched
filter, multi-variate data, correlated data

I. INTRODUCTION

Alongside indirect methods for detecting exoplanets (e.g.,
based on the monitoring of transits or of the radial velocities),
direct imaging [1] from Earth is a method of choice to detect
and characterize the physical properties (e.g., orbit, atmo-
spheric composition) of exoplanets. This characterization is
carried out by comparing the estimated astrometry and spectral
energy distribution (SED) with physical models. However, the
low number of exoplanets detected and characterized with this
technique (a dozen over the last twelve years) testifies to the
difficulty of this long-term goal. This is explained by the very
large difference in contrast, typically greater than five orders
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Fig. 1. Illustration of a dataset form the SPHERE-IFS instrument. Left:
images at different wavelengths. Right: images at different times (at λ25 =
1.4µm). Red circles represent the locations of three known exoplanets whose
signatures are too faint to be detected without additional processing. Bottom:
spatio-spectral and spatio-temporal slice cuts along the white dashed line.

of magnitude in the infrared, between the exoplanets and
their host star. Beyond extreme adaptive optics compensating
wavefront distortions and the coronagraph partly masking out
the star, which are implemented in cutting-edge observational
facilities, the detection of faint sources requires a dedicated
processing of the data.

We recall in Section II the key principles of high-contrast
imaging (HCI) and of the state-of-the-art processing methods.
We describe in Section III the proposed method, which is
an extension to multi-spectral data of our very recent work
dedicated to the processing of spatio-temporal observations
[2]. We compare in Section IV the detection performance of
the proposed method to state-of-the-art algorithms of the field
on data from the SPHERE instrument currently operating at
the Very Large Telescope (VLT, Chile).

II. PRINCIPLE OF DIRECT IMAGING AT HIGH CONTRAST

A classical observation technique in HCI is angular differen-
tial imaging (ADI) that consists in recording a 3-D dataset (2-
D + time) over a series of short exposures during a few hours
of observation. During the acquisition, all the off-axis point-
like sources follow an apparent circular motion (typically,



about a few tens of degrees) around the optical axis due
to the Earth’s rotation. Since the pupil of the telescope is
kept fixed, the other structures of the background remain
temporally quasi-static. Due to the diffraction and to residual
optical aberrations, stellar leakages take the form of spatially
correlated speckles. Speckles and other additive sources of
noise (thermal background, detector readout, photon noise)
form a nuisance component that strongly contaminates the
images formed downstream of the coronagraph. Besides, there
is a significant variability in the amplitude and in the structure
of the spatial correlations of the nuisance, which is stronger
near the star than farther away. Spectral differential imaging
(SDI) is a complementary observation technique allowing to
capture images in several spectral channels simultaneously
with an integral field spectrograph (IFS). With SDI, the speckle
pattern scales approximately linearly with the wavelength due
to the diffraction. The temporal and spectral diversity induced
by ADI and SDI can be combined advantageously. This hybrid
technique, called angular and spectral differential imaging
(ASDI), produces 4-D datasets (2-D + time + spectral). In this
paper, we consider ASDI. As an example, the SPHERE-IFS
instrument produces series of T ≃ 100 temporal exposures
with N = 290 × 290 pixels each in L = 39 spectral bands
(between λ1 = 0.9µm and λ39 = 1.6µm), see Fig. 1.

To unmix the exoplanet signals from the nuisance, state-of-
the-art methods combine the different temporal and spectral
images [3]. A simple solution consists in subtracting the
temporal mean to each frame of a given spectral channel to
attenuate speckles. The residual images are then rotated and
scaled to compensate for the (predictable) motion of the off-
axis sources, so that their signals are spatially co-localized.
The resulting stack is finally combined, e.g., by taking the
median, as in the cADI method. Other methods resort to a
principal component analysis (PCA) to build an empirical
model of the nuisance. These two baseline algorithms [3]
are used routinely in HCI. Approaches based on detection
theory are more efficient because they model explicitly the
attenuation of the sough objects induced by image subtraction.
In particular, the PACO algorithm [4] and its extension PACO
ASDI [5] to multi-spectral data build a statistical model
of the nuisance by capturing their spatial correlations and
fluctuations at the scale of small patches of a few tens of
patches. However, it remains room for improvement due to the
approximate fidelity of this statistical model to the observa-
tions. In this context, we proposed very recently deep PACO
[2], a data-driven algorithm for ADI observations combining
the statistical model of PACO with supervised deep learning.
deep PACO performs better than existing methods, including
approaches based on deep learning that remain limited by a
high false alarm rate. In this paper, we present deep PACO
ASDI, extending deep PACO to multi-spectral data.

III. PROPOSED ALGORITHM

A. Direct Model of the Observed Intensity

An ASDI dataset r in RN×T×L is formed by N -pixels
images, recorded at different times t in J1;T K and in different

spectral channels ℓ in J1;LK. The contribution rℓ in RN×T is:

rℓ = fℓ +

P∑
p=1

αp,ℓ hℓ(ϕp) , (1)

where fℓ in RN×T and hℓ in RN×T are respectively the
contribution of the nuisance and of any point-like source taking
the form of the off-axis point-spread function (PSF), at spectral
channel ℓ. The contribution of a source p ∈ J1;P K is centered
at location Ft,ℓ(ϕp) in the t-th image of the ℓ-th channel,
where ϕp is its initial location on an image at a time tref
and spectral channel λref of reference. Ft,ℓ is a deterministic
geometrical transform (a composition of a rotation and of
a radial translation with respect to the star) to account for
the apparent rotation induced by ADI and to the translation
induced by spatial scaling of factor λref/λℓ applied beforehand
to spatially co-align the nuisance’s structures, see Fig. 1.

B. Step 1: Pre-processing by Statistical Modeling
Based on our previous work [5], we model the random

fluctuations of the nuisance component f by a statistical model
whose parameters are self-calibrated on the observations. The
model is local, i.e., it is built at the scale of patches of a
few tens of pixels to account for the high non-stationarity of
the nuisance component. We consider non-overlapping square
patches of K pixels, and we note P the set of locations paving
the whole field of view. We model the distribution of a patch
fn,t,ℓ centered at pixel n, at time t, and channel ℓ by a scaled
multi-variate Gaussian: N (mn,ℓ, σ

2
n,t,ℓCn). The sample esti-

mators {m̂n,ℓ , σ̂
2
n,t,ℓ , Ŝn} of {mn,ℓ , σ

2
n,t,ℓ ,Cn} are obtained

from the T L patches rn in RK×T×L in the maximum-
likelihood sense with a fixed-point iterative scheme:

m̂n,ℓ =
(∑

t

σ̂−2
n,t,ℓ

)−1 ∑
t

σ̂−2
n,t,ℓ rn,t,ℓ ,

Ŝn = 1
T L

∑
t,ℓ

σ̂−2
n,t,ℓ(rn,t,ℓ − m̂n,ℓ)(rn,t,ℓ − m̂n,ℓ)

⊤ ,

σ̂2
n,t,ℓ = K−1(rn,t,ℓ − m̂n,ℓ)

⊤ Ŝ−1
n (rn,t,ℓ − m̂n,ℓ) ,

(2)

where the scaling factors {σ̂2
n,t,ℓ}t=1:T,ℓ=1:L are the empirical

variances of the (whitened) residuals, that allow to neutralize
patches with outliers. The total number of samples involved
in the computation of Ŝn being lower than the number K
of pixels in a patch, the sample covariance Ŝn is very noisy
and can be rank deficient. As in our previous work [5], we
regularize it by shrinkage [6], i.e. the resulting estimator is
a convex combination between the low bias/high variance
estimator Ŝn and a high bias/low variance estimator F̂n:

Ĉn = (1− ρ̂n) Ŝn + ρ̂n F̂n , (3)

where F̂n is a diagonal matrix with only the sample variances,
and the hyper-parameter ρ̂n setting a bias-variance trade-off.
The latter is estimated [2] for each patch location n through:

ρ̂n =
tr
(
Ŝ2
n

)
+ tr2

(
Ŝn

)
− 2

∑K
k=1

[
Ŝn

]2
kk

(Q+ 1)
(
tr
(
Ŝ2
n

)
−
∑K

k=1

[
Ŝn

]2
kk

) , (4)

with Q =
(∑

t,ℓ σ̂
−2
n,t,ℓ

)2
/
(∑

t,ℓ σ̂
−4
n,t,ℓ

)
the equivalent number

of patches involve in the computation of Ĉn in the presence



of the scaling factors {σ̂2
n,t,ℓ}t=1:T,ℓ=1:L. Given the statistics

of the nuisance, the pre-processed images r̃ in RN×T×L (i.e.,
after centering and whitening) are obtained by:

r̃n,t,ℓ = Wn,t,ℓ rn,t,ℓ = σ̂−1
n,t,ℓ L̂

⊤
n (rn,t,ℓ − m̂n,ℓ) , (5)

with L̂n the Cholesky’s factorization of Ĉ−1
n (i.e., L̂nL̂

⊤
n =

Ĉ−1
n ). Most of the spatial structures of r are removed in r̃.

C. Step 2: Exoplanet Detection by Supervised Deep Learning
1) Training basis: Starting from a temporo-spectral series

of pre-processed images, we aim to infer a detection map
ŷ in [0; 1]

M , where each pixel-value represents the pseudo-
probability that a source is centered at that location at time
tref. Obtaining real ground truth data is challenging in HCI:
a few real sources have been detected and undiscovered
sources might still be present in the data. We thus opt for a
synthetic training strategy: the training set consists of S pairs
{ (

r [s];y[s]}s=1:S of samples/ground truths, resulting from the
massive injection of point-like sources. Besides, we train a
different model for each ASDI dataset due to the high vari-
ability of the nuisance component from one observation to the
other. This data-dependence prevents generalizing the learned
detector to a new set of pre-processed data. These peculiarities
imply the design of a data-augmentation strategy to prevent
over-fitting and to deal with the absence of knowledge about
real sources. We thus apply a random permutation of the T
images of each spectral channel for each training sample s.
This allows (i) to create artificially different datasets, and (ii)
to break the temporal consistency of real sources. Synthetic
sources are then injected inside the temporally permuted
data following the direct model (1) to form the intermediate
datasets {sr ∈ RN×T×L}s=1:S such that:

sr
[s]
ℓ = P[s] fℓ +

P [s]∑
p=1

α
[s]
p,ℓ hℓ(ϕ

[s]
p ) , (6)

where operator P performs the random temporal permutation.
For each synthetic source p, we select randomly a synthetic
SED αp in RL from a custom library of 10,000 sub-stellar
spectra generated with ExoREM [7], a physics-based model
accounting for chemistry and for the presence of clouds in the
exoplanet’s atmosphere. The number P of injected sources
is drawn uniformly in J1; 10K, since we expect few sources
in the field of view. The initial source locations {ϕp}p=1:P

are drawn uniformly per angular separation, and their mean
fluxes (integrated over the SED) are drawn uniformly in[
3σ̂PACO

ϕp
; 12σ̂PACO

ϕp

]
, where σ̂PACO

ϕp
is the 1-sigma detection limit

reached by PACO at location ϕp. We thus cover both sources
that are detectable and unseen at the classical 5σ detection
confidence using PACO. As pre-processing is computationally
demanding, we opt for a local update strategy. Prior to the
injection of synthetic sources, the dataset r is pre-processed
to form r̃, see Section III-B. After injections, the set S[s] of
locations impacted by the signal of the P [s] sources is de-
termined. Outside S[s], the pre-processed images are obtained
from the temporal permutation of r̃. Inside S[s], the statistics

of the nuisance and the pre-processed images are updated
given the contamination of the P [s] injected sources to form
{qr ∈ RN×T×L}s=1:S such that:

qr
[s]
n,t,ℓ =

{
Wn,t,ℓ sr

[s]
n,t,ℓ, for n ∈ S[s] ∩ P ,

P[s] r̃n,t,ℓ, for n ∈ P− S[s] ∩ P .
(7)

Finally, the apparent motion (rotation and translation with
respect to the star) of the sough objects are compensated to
co-align spatially the signals of the injected sources along the
temporal and spectral axis. It results { (

r ∈ RN×T×L}s=1:S .
2) Loss function and metrics: The design of the training

loss is driven by three criteria: (i) dealing with the strong
class-imbalance, (ii) being computationally efficient, and (iii)
representing a measure close to a detection accuracy score. We
compared classical losses for pixel-wise classification, and we
selected the Dice2 similarity score that was introduced first
for biomedical image segmentation [8]. This loss satisfies the
targeted criteria, in particular it penalizes equally errors in the
source and background areas:

L[s] = 1−

∑
m

y
[s]
m ŷ

[s]
m + ϵ∑

m

y
[s]
m + ŷ

[s]
m + ϵ︸ ︷︷ ︸

source error

−

∑
m

(1− y
[s]
m )(1− ŷ

[s]
m + ϵ)∑

m

2− y
[s]
m − ŷ

[s]
m + ϵ︸ ︷︷ ︸

background error

, (8)

where {y[s]; ŷ[s]} is a set of ground truth and predicted
detection maps, and ϵ is a small stability parameter whose
setting has very limited impact on the detection performance.
At validation time, we aim to obtain a model obeying a
precision-recall trade-off. For a predicted detection map ŷ[s]

in [0; 1]
M thresholded at τ in [0; 1], we derive the true positive

rate (TPR) and the false discovery rate (FDR). From TPR and
FDR, receiver operating curves (ROCs) are built by varying
the detection threshold τ . The area under ROCs (AUC) is used
as an overall performance score. We observed experimentally
that the loss (8) is well anti-correlated to this accuracy metric.

3) Architecture and implementation: We select a U-Net
with a ResNet18 as encoder backbone (≃11 millions of
weights); an architecture widely used for image segmentation.
Its implementation is based on the SMP package1. The encoder
and decoder parts have four blocks: each one containing a
series of convolution, batch normalization, activation (ReLU),
and max pooling layers. The network ends with a sigmoid
activation to produce a detection map ŷ in [0; 1]

M . At each
training step s, the full stack (

r [s] of temporo-spectral pre-
processed images with synthetic sources is fed as input of the
CNN. Pairs of samples { (

r [s];y[s]} are generated on the fly,
and each realization s is unique to prevent over-fitting. The
notion of epoch is used only as a way to evaluate regularly
the performance and to schedule the learning rate. The number
of samples S per epoch is respectively set to 1,000 and to 100
at training and evaluation time. The batch size is equal to
1. The network is trained from scratch with AMSGrad. The
parameters of the optimizer and of the scheduler have been

1https://github.com/qubvel/segmentation models.pytorch

https://github.com/qubvel/segmentation_models.pytorch


TABLE I
MEAN AUC FOR ROCS GIVING THE TPR AS A FUNCTION OF THE FDR

FOR REAL AND MASSIVELY INJECTED SYNTHETIC SOURCES FOR
SPHERE-IFS DATASETS. BEST RESULTS ARE IN BOLD FONT.

source type sep. (”) cADI PCA PACO ASDI proposed

real [0.0; 1.0] 0.13 0.65 0.80 0.96
synthetic [0.0; 0.5] 0.24 0.36 0.68 0.76
synthetic [0.5; 1.0] 0.24 0.52 0.79 0.85

fine tuned on a few datasets (weight decay: 10−5, learning
rate: 10−3 with 10% decrease every 10 epochs).

IV. RESULTS

A. Datasets Description and Tested Algorithms

The proposed algorithm is compared to the spectral version
of baseline methods (cADI and PCA) as implemented in VIP
[9], an open source package for HCI. Details about the setting
of these methods can be found in [2]. We also used the unsu-
pervised PACO ASDI [5] algorithm to ground the benefits of
the deep learning stage embedded in the proposed algorithm.
To evaluate the benefits of a joint spectral processing, we
also compare the proposed method against PACO and deep
PACO, that do not take benefits of the spectral diversity. The
detection threshold is set to τ = 5 for cADI, PCA, PACO
(ASDI), which yields a SNR map as detection scores. We
set τ = 0.5 for deep PACO and the proposed algorithm,
that produce a pseudo-probability map. We selected three
datasets obtained with the SPHERE-IFS instrument (L = 39)
by the observation of the following stars: β Pictoris (observed
in 2018-09-17, dataset 1), β Pictoris (2018-12-15, dataset
2), and HR 8799 (2015-07-04, dataset 3). We also selected
the eleven datasets from the SPHERE-IRDIS instrument we
considered in our recent work on deep PACO [2]. SPHERE-
IRDIS produces ASDI datasets but in dual band only (i.e.,
L = 2). In [2], we processed the first spectral channel solely. In
this paper, we revisit these datasets with the proposed method
and we compare our results with deep PACO. We exemplify
detailed results for three of these eleven datasets: HIP 88399
(2015-05-10, dataset 4), HD 95086 (2021-03-11, dataset 5),
and HD 95086 (2015-05-05, dataset 6).

B. Qualitative and Quantitative Performance

Figure 2 compares detection maps produced by the four
multi-spectral algorithms we consider on the three datasets
of SPHERE-IFS. The proposed algorithm, PCA and PACO
ASDI are able to detect the five known exoplanets without
any false alarm at the prescribed detection threshold. First
line of Table I complements these results with AUC under
ROCs built by varying the detection threshold. Even when
the number of real sources is limited, these results emphasize
that the proposed approach leads to a better trade-off between
precision and recall than the other methods. We also resort to
massive injection of simulated synthetic sources (considered in
small batches) with various fluxes and positions to ground in
more detail the performance of the proposed method. Second
and third lines of Table I report the resulting AUC under ROCs

Fig. 2. Detection maps obtained with the proposed approach on considered
SPHERE-IFS datasets comparatively to three state-of-the-art methods in the
field. Sources are classified as true, missed and false detections based on
the prescribed detection threshold. Due to the apparent rotation of the field
induced by ASDI, the detection can be performed on a larger field of view
(dashed blue line) than the spatial extent of the sensor (light blue line).
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Fig. 3. Detection maps obtained with the proposed algorithm on dataset 3.
Left: injected training sources have a flat SED. Right: SED of injected sources
is based on atmospheric models. The detection threshold is set to τ = 0.5,
and sources are classified as true, missed and false detections.

for two regimes of angular separations (i.e., distance to the
star and associated noise regimes). The proposed approach
outperforms the other methods in both cases.

Figure 3 completes this study by comparing detection maps
produced by the proposed algorithm using synthetic training
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Fig. 4. ROCs showing the TPR as a function of the FDR averaged over eleven
SPHERE-IRDIS datasets. Straight lines are for a joint multi-spectral analysis
(two channels), while dashed line stands for a monochromatic analysis.
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Fig. 5. Comparison of SPHERE-IRDIS detection maps obtained by the
proposed algorithm (right) and its monochromatic version [2].

sources having either a flat SED or realistic SEDs based on
physical ExoREM models, see Section III-C1. It emphasizes
the importance of using reliable exoplanet SEDs since a flat
SED (in contrast unit, i.e., same spectrum than the star) leads
to additional detection peaks that we identified as false alarms
based on the visual inspection of the detection maps and of the
data themselves (i.e., the detection peaks are not static along
the spectral axis or correspond to bright speckles).

Finally, we briefly discuss the benefits of joint processing

of multi-spectral data. Figure 4 gives ROCs averaged over the
eleven SPHERE-IRDIS datasets (i.e., L = 2) containing 59
off-axis real known point-like sources in total. These datasets
were processed with the four considered multi-spectral algo-
rithms. Our results are also compared to a monochromatic
analysis (on the first spectral channel) with PACO and deep
PACO, as done in our recent work [2]. The detection maps
from the datasets with the largest differences between mono-
and multi-spectral processing are shown in Fig. 5. These
results illustrate the benefits of a joint multi-spectral analysis
since it allows to avoid some false alarms, especially near
the star where the nuisance component and its fluctuations
are the strongest, as well as far from the star where border
effects occur with mono-spectral processing (the two spectral
channels having a slightly different field of view). Besides,
the point-like source marked by a black arrow on dataset 5
corresponds to a new faint source (likely a background star
seen in the projected field of view) that we have consistently
identified on two datasets of the same star (including dataset 6)
with deep PACO in [2]. It is now consistently detected on a
third (worse) observation (dataset 5) by the proposed approach
while it was not with its monochromatic version [2].

V. CONCLUSION

We have proposed in this paper a new algorithm for ex-
oplanet detection by the joint processing of spatio-temporal-
spectral series of images. The algorithm includes a statistical
modeling capturing most of the correlations of the data in
a pre-processing step. A CNN is then trained to detect the
residual signatures of injected synthetic sources. Our results
show a better trade-off between precision and recall than
state-of-the art methods. The joint exploitation of the spectral
diversity improves the performance of our recent work based
on a similar framework for spatio-temporal data. The control
of the uncertainty and the construction of a model from
multiple datasets jointly will be addressed in future work.
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