
HAL Id: hal-04136272
https://hal.science/hal-04136272

Submitted on 15 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The second neighborhood conjecture for oriented graphs
missing a c4, c4,s3, chair and chair-free graph

Darine Al-Mniny, Salman Ghazal

To cite this version:
Darine Al-Mniny, Salman Ghazal. The second neighborhood conjecture for oriented graphs missing a
c4, c4,s3, chair and chair-free graph. The Australasian Journal of Combinatorics, 2021, 81, pp.58-88.
�10.48550/arXiv.2010.10790�. �hal-04136272�

https://hal.science/hal-04136272
https://hal.archives-ouvertes.fr


The Second Neighborhood Conjecture for
Oriented Graphs Missing {C4, C4, S3, chair

and co-chair}-Free Graph

Darine AL MNINY 1, 2, Salman GHAZAL 3, 4

Abstract

Seymour’s Second Neighborhood Conjecture (SNC) asserts that every
oriented graph has a vertex whose first out-neighborhood is at most
as large as its second out-neighborhood. In this paper, we prove that
if G is a graph containing no induced C4, C4, S3, chair and chair,
then every oriented graph missing G satisfies this conjecture. As a
consequence, we deduce that the conjecture holds for every oriented
graph missing a threshold graph, a generalized comb or a star.

1 Introduction

Throughout this paper, all graphs are considered to be simple, that is, there
are no loops and no multiple edges. Given a graph G, the vertex set and
edge set of G are denoted by V (G) and E(G) respectively. Given an edge
xy of G, the vertices x and y are called the endpoints of xy and they are
said to be adjacent. Two edges of G are said to be adjacent if they have a
common endpoint. The neighborhood of a vertex v in G, denoted by NG(v),
is the set of all vertices adjacent to v. The degree dG(v) of v in G is defined
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to be dG(v) := |NG(v)|. Note that we may omit the subscript if the graph is
clear from the context. Given two sets of vertices U and W of G, we denote
by E[U,W ] the set of all edges in G that joins a vertex in U to a vertex
in W . For A ⊆ V (G), G[A] denotes the subgraph of G induced by A. If
G[A] is an empty graph, then A is called a stable set, that is, there is no
edge that joins any two distinct vertices of A. However, if G[A] is a complete
graph, then A is called a clique set, that is, any two distinct vertices of A are
adjacent. The complement graph G of G is defined as follows: V (G) = V (G)
and xy ∈ E(G) if and only if xy /∈ E(G). A graph H is called forbidden
subgraph of G if H is not (isomorphic to) an induced subgraph of G. In this
case, we say that G is H-free graph.

A digraph is an orientation of a graph so that it contains neither loops
nor parallel arcs. However, an oriented graph is a digraph without digons
(directed cycles of length 2). Given a digraph D, the vertex set and arc
set of D are denoted by V (D) and E(D) respectively. For (x, y) ∈ E(D)
with x, y ∈ V (D), we say that y is an out-neighbor of x, x is an in-neighbor
of y and x and y are adjacent. The (first) out-neighborhood (resp. in-
neighborhood) N+

D (v) (resp. N−D (v)) of a vertex v in D is the set of all out-
neighbors (resp. in-neighbors) of v. Moreover, the second out-neighborhood
N++
D (v) of v in D is the set of vertices that are at distance 2 from v, that

is, N++
D (v) := {x ∈ V (D) − N+

D (v); ∃ y ∈ N+
D (v)| (y, x) ∈ E(D)}. The

out-degree, the in-degree and the second out-degree of v in D are defined
as follows: d+D(v) := |N+

D (v)|, d−D(v) := |N−D (v)| and d++
D (v) := |N++

D (v)|,
respectively. Note that we omit the subscript if the digraph is clear from the
context. For short, we write x → y if the arc (x, y) ∈ E(D). Also, we write
x1 → x2 → ...→ xn, if xi → xi+1 for every 1 6 i 6 n− 1.

Let D be an oriented graph and let v ∈ V (D), we say that v has the
second neighborhood property SNP if d+(v) ≤ d++(v). In 1990, P. Seymour
[1] conjectured the following:

Conjecture 1. Every oriented graph has a vertex satisfying the SNP.

The above conjecture is called "The Second Neighborhood Conjecture",
and it is abbreviated by "SNC". The SNC on tournaments is called Dean’s
conjecture, where tournaments are orientations of complete graphs. In 1996,
Fisher [2] proved Dean’s Conjecture. In 2000, a shorter proof of Dean’s con-
jecture was given by Havet and Thomassé [8] using a tool called the median
order. In 2007, Fidler and Yuster [3] proved the SNC for tournaments missing
a matching, using local median orders and dependency digraphs. In 2012,
Ghazal [6] proved the weighted version of SNC for tournaments missing a
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generalized star. Then in 2013 Ghazal [4] proved the SNC for tournaments
missing a comb, cycle of length 4 or 5. In 2015, Ghazal [5] refined the result
of [3] and he showed in particular that every tournament missing a matching
has a certain "feed vertex" satisfying the SNP.

In this paper, we prove the SNC for any oriented graph missing a graph
G, where G contains no C4, C4, S3, chair and chair as induced subgraphs.
This generalizes the results of [6] and [4].

2 Definitions and Preliminaries

A chair is a graph G whose vertex set is V (G) = {x, y, z, t, v} and whose
edge set is E(G) = {xy, yz, zt, zv}. The co-chair or chair is defined to be
the complement of a chair. We denote by Cn = v1v2...vnv1 the cycle on n
vertices, by Pn = v1v2...vn the path on n vertices and by S3 the graph on 6
vertices indicated in Figure 1.

Figure 1: S3 Figure 2: Chair Figure 3: Co-chair

A graph G is a called a split graph if its vertex set is the disjoint union of
a stable set S and a clique set K. In this case, we write G is an {S, K}-split
graph. For an {S, K}-split graph G, if sx ∈ E(G) ∀ s ∈ S and ∀x ∈ K,
then G is called a complete split graph. Otherwise if E[S,K] forms a perfect
matching of G, then G is called a perfect split graph.

In [9] and [10], the notion of a threshold graph is introduced as follows:
Definition 1. A graph G is called a threshold graph if:

1) V (G) =
n+1⋃
i=1

(Xi ∪ Ai−1), where the Ai’s and the Xi’s are pairwisely dis-

joint sets.
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2) K :=
n+1⋃
i=1

Xi is a clique and the Xi’s are nonempty, except possibly Xn+1.

3) S :=
n⋃
i=0

Ai is a stable set and the Ai’s are nonempty, except possibly A0.

4) ∀ 1 ≤ j ≤ i ≤ n, G[Ai ∪Xj] is a complete split graph.

5) The only edges of G are the edges of the subgraphs mentioned above.

In this case, G is called an {S, K}-threshold graph.

On the structure of threshold graphs, Hammer and Chvàtal noticed the
following:

Theorem 2.1. (Hammer and Chvàtal [9], [10]) G is a threshold graph if and
only if C4, C4 and P4 are forbidden subgraphs of G.

As a generalization of threshold graphs, Ghazal introduced the notion of
generalized combs and he studied their structures and properties as follows:

Definition 2. (Ghazal [7]) A graph G is called a generalized comb if:

1) V (G) is disjoint union of sets A0, ..., An,M1, ...,Ml, X1, ...., Xn+1, Y2, ..., Yl+2

with Y1 = X1. These sets are called the sets of the generalized comb G.

2) S := A ∪M is a stable set, where M =
l⋃

i=1

Mi and A =
n⋃
i=0

Ai.

3) K := X ∪ Y is a clique, where X =
n+1⋃
i=1

Xi and Y =
l+2⋃
i=1

Yi.

4) ∀ 1 ≤ j ≤ i ≤ n, G[Ai ∪Xj] is a complete split graph.

5) G[A ∪ Y ] is a complete split graph.

6) ∀ 1 ≤ i ≤ l, G[Yi ∪Mi] is a perfect split graph or Mi = φ.

7) ∀ 1 ≤ i < j ≤ l + 1, G[Yj ∪Mi] is a complete split graph.

8) Xn+1, Yl+2, Yl+1 and A0 are the only possibly empty sets among the X ′is,
Y ′i s and A′is.
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9) The only edges of G are the edges of the subgraphs mentioned above.

In this case, we say that G is an {S, K}-generalized comb.

Theorem 2.2. (Ghazal [7]) G is a generalized comb if and only if C4, C4,
C5, S3, chair and co-chair are forbidden subgraphs of G.

Corollary 2.1. (Ghazal [7]) Every threshold graph is a generalized comb.

Proposition 2.1. Let G be a generalized comb defined as in Definition 2.
Then G′ = G−

⋃
1≤i≤lE[Yi,Mi] is a threshold graph.

Proof. It is clear that G′ contains no induced C4, C4 or P4. Consequently,
Theorem 2.1 implies that G′ is a threshold graph.

On the structure of graphs containing no C4, C4, S3, chair and co-chair
as induced subgraphs, Ghazal remarked the following:

Theorem 2.3. (Ghazal [7]) C4, C4, S3, chair and co-chair are forbidden
subgraphs of a graph G if and only if V (G) is disjoint union of three sets S,
K and C such that:

1) G[S ∪K] is an {S,K}-generalized comb.

2) G[C] is empty or isomorphic to the cycle C5.

3) Every vertex in C is adjacent to every vertex in K but to no vertex in S.

From now on, if G = C5, we set G = xyzuvx. If G is an {S,K}-
generalized comb, we follow the same notations as in Definition 2. Moreover,
if G is a {C4, C4, S3, chair and co-chair}-free graph, we use the notations in
Theorem 2.3. Note that if G is defined as in Theorem 2.3 and G[C] is empty,
then G is a generalized comb.

3 Characterization Using Dependency Digraphs

Let D be an oriented graph. For two vertices x and y of D, we say that
xy is a missing edge of D if (x, y) /∈ E(D) and (y, x) /∈ E(D). A vertex v
of D is called a whole vertex if it is not incident to any missing edge, i.e.,
N+(v) ∪ N−(v) = V (D) − {v}. Otherwise, we say that v is a non-whole
vertex. The missing graph G of D is defined to be the graph formed by the
missing edges ofD, formally, G is the graph whose edge set is the set of all the
missing edges of D and whose vertex set is the set of the non-whole vertices.
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In this case, we say that D is missing G. Given two missing edges x1y1 and
x2y2, we say that x1y1 loses to x2y2 if: x1 → x2 and y2 /∈ N+(x1)∪N++(x1),
y1 → y2 and x2 /∈ N+(y1) ∪N++(y1).

The dependency digraph ∆D (or simply ∆) of D is defined to be the
digraph whose vertex set consists of all the missing edges of D, and whose
arc set contains the arc (ab, cd) if and only if the missing edge ab loses to the
missing edge cd. Note that ∆ may contain digons. These digraphs were used
in [3, 4] to prove SNC for some oriented graphs.

Definition 3. (Ghazal [6]) A missing edge ab is called good if one of the
following holds:

(i) (∀v ∈ V \{a, b})[(v → a)⇒ (b ∈ N+(v) ∪N++(v))];

(ii) (∀v ∈ V \{a, b})[(v → b)⇒ (a ∈ N+(v) ∪N++(v))].

If ab satisfies (i) we say that (a, b) is a convenient orientation of ab. Else,
we say that (b, a) is a convenient orientation of ab.

Lemma 3.1. (Ghazal [4]) Let D be an oriented graph and let ∆ denote its
dependency digraph. A missing edge ab is good if and only if its in-degree in
∆ is zero.

In [6], threshold graphs are characterized using dependency digraphs as
follows:

Theorem 3.1. (Ghazal [6]) Let G be a graph. The following statements are
equivalent:

i) G is a threshold graph;

ii) Every missing edge of every oriented graph missing G is good;

iii) The dependency digraph of every oriented graph missing G is empty.

Problem 1. Let ~P be the family of all digraphs consisting of vertex disjoint
directed paths and let F( ~P) = {G is a graph; ∀ D missing G, ∆D ∈ ~P} .
Characterize F( ~P).

Proposition 3.1. G ∈ F( ~P) if and only if G′ ∈ F( ~P), for every G′ induced
subgraph of G.
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Proof. Sufficient Condition. Simply take G′ = G.

Necessary Condition. Assume first that G′ = G − v for some v ∈ V (G).
Let D′ be any oriented graph missing G′. Let α and β be 2 distinct extra
vertices neither in D′ nor in G. Define D as follows: The missing graph of
D is G, V (D) = V (D′) ∪ {v, α, β}, that is, D − {v, α, β} = D′. The arcs
(α, v), (v, β) and (α, β) are in D. For every x ∈ V (D′), if xv /∈ E(G), then
(x, v) ∈ E(D′). Finally, for every x ∈ V (D′), the arcs (x, α) and (β, x) are in
D. Then the addition of v, α and β to D′ in this way neither affects the losing
relations between the missing edges of D′ nor creates new ones. Hence, ∆D

is equal to ∆D′ plus isolated vertices (these isolated vertices are the edges of
G incident to v). Since D is missing G, then ∆D ∈ ~P . Whence, ∆D′ ∈ ~P .
Thus G′ ∈ F( ~P). Now, the proof follows by induction on the number of
vertices removed from G to obtain the induced subgraph.

It is easy to observe the following:

Proposition 3.2. C4, chair and co-chair are not in F( ~P).

Proof. Let D be the oriented graph with vertex set V (D) = {a, b, c, d} and
arc set E(D) = {(a, c), (b, d), (d, a), (c, b)}. Then D is missing C4, ab loses to
cd and cd loses to ba. Thus ∆D /∈ ~P .

Let D′ be the oriented graph with vertex set V (D′) = {a, b, c, d, x} and arc
set E(D′) = {(a, d), (b, c), (c, a), (b, x), (x, a), (x, c)}. Then D′ is missing a
chair, ab loses to both dc and dx. Thus ∆D′ /∈ ~P .

Let D′′ be the oriented graph with vertex set V (D′′) = {a, b, c, d, x} and arc
set E(D′′) = {(a, c), (b, d), (d, a), (a, x)}. Then D′′ is missing a co-chair, ab
loses to both dc and dx. Thus ∆D′′ /∈ ~P .

Proposition 3.3. (Ghazal [4]) C5 ∈ F( ~P).

Proof. Let D be an oriented graph missing C5 and let ∆ denote its depen-
dency digraph. Then we may check by cases that one of the following occurs
up to isomorphism:

(i) ∆ has no arcs.

(ii) ∆ has exactly one arc, say uv → xy.

(iii) ∆ has exactly two arcs, say uv → xy and xv → yz.
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(iv) ∆ has exactly two arcs, say uv → xy → zu.

(v) ∆ has exactly three arcs, say uv → xy → zu→ vx.

(vi) ∆ has exactly three arcs, say uv → xy → zu and xv → zy.

In all the cases above, ∆ consists of vertex disjoint directed paths of lengths
at most 3, that is, ∆ ∈ ~P . Thus the result holds.

Theorem 3.2. Let G be a graph having no induced C4, C5, nor S3. Then
G ∈ F( ~P) if and only if G is a generalized comb.

Proof. Necessary Condition. Since G ∈ F( ~P), then Proposition 3.1 together
with Proposition 3.2 imply that C4, chair and co-chair are not induced sub-
graphs of G. But C4, C5, S3 are not also induced subgraphs of G, thus due
to Theorem 2.2 G is a generalized comb.

Sufficient Condition. Let D be an oriented graph missing a generalized comb
G and let ∆ denote its dependency digraph. Using the definition of G, each
possible losing relation can occur between two edges in E[Yt,Mt], for some
t. For i = 1, 2, 3, suppose that aixi ∈ E[Yt,Mt] with ai ∈ Mt and xi ∈ Yt.
Assume that a1x1 loses to the two others. Then we have a1 → x3, x1 → a2,
a2 /∈ N+(a1)∪N++(a1) and x3 /∈ N+(x1)∪N++(x1). By definition of G, the
only edge of G[Yt∪Mt] incident to a2 is a2x2. Thus a2x3 is not a missing edge
and so either a2 → x3 or x3 → a2. Whence, either x3 ∈ N+(x1) ∪ N++(x1)
or a2 ∈ N+(a1) ∪N++(a1), a contradiction. Thus the maximum out-degree
in ∆ is 1. Similarly, we can prove that the maximum in-degree in ∆ is 1.
This implies that ∆ is composed of directed cycles and paths only.

Assume now that ∆ contains a directed cycle a1b1 → ...→ anbn → a1b1,
with ai ∈ Mt and bi ∈ Yt, for some t. Then by the losing relations we must
have ai+1 → ai ∀ i < n and a1 → an in D. We will show now by induction
on i that ∀ 1 ≤ i < n, ai → an. It is true for i = 1. Assume it is true for
i−1. Then ai−1 → an. Since ai−1bi−1 loses to aibi, then ai /∈ N++(ai−1). But
aian is not a missing edge of D, then we must have ai → an, since otherwise
ai−1 → an → ai in D, a contradiction. This proves that ∀ 1 ≤ i < n, ai → an.
In particular, an−1 → an, a contradiction. Thus ∆ has no directed cycles.
This shows that G ∈ F( ~P).

As a consequence, we deduce the following on the characterization of the
graphs of our interest:
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Corollary 3.1. Given a graph G, the following statements are equivalent:

i) C4 and S3 are forbidden subgraphs of G and G ∈ F( ~P);

ii) C4, C4, S3, chair and co-chair are forbidden subgraphs of a graph G;

iii) V (G) is disjoint union of three sets S, K and C such that:

1) G[S ∪K] is an {S,K}-generalized comb;

2) G[C] is empty or isomorphic to the cycle C5;

3) every vertex in C is adjacent to every vertex in K but to no vertex
in S.

Proof. Due to Theorem 2.3, ii) and iii) are equivalent. However, ii) follows
from i) due to Proposition 3.1 and Proposition 3.2. Now assume that iii)
holds and let D be an oriented graph missing G. Observe that every edge
in E(G) − E(C) is incident to a vertex in K. This implies that there is
no losing relation between an edge in E(C) and an edge in E(G) − E(C),
since otherwise there is an edge ab with a ∈ C, b ∈ K and ab /∈ E(G).
This contradicts the fact that every vertex in C is adjacent in G to every
vertex in K. In the same way, we can prove that there is no losing relations
between an edge in E(G[S ∪ K]) and an edge in E[K,C], or between two
edges in E[K,C]. Thus the only possible losing relations hold either between
two edges in G[S ∪ K] or between two edges in G[C]. However, G[S ∪ K]

is a generalized comb, then by Theorem 3.2 it is in F( ~P). Moreover, G[C]
is empty or isomorphic to the cycle C5, whence by Proposition 3.3 it is in
F( ~P). Therefore, G ∈ F( ~P) and so i) holds.

We will use the following lemma frequently in the proof of our main
theorem:

Lemma 3.2. Suppose that rs loses to ab and f → a in an oriented graph
D, namely with s→ b. If fs is not a missing edge of D, then f → s→ b in
D and thus b ∈ N+(f) ∪N++(f).

Proof. Since fs is not a missing edge, then either f → s or s → f in D. If
s→ f in D, then s→ f → a in D and thus a ∈ N++(s), which contradicts
the fact that rs loses to ab. Thus f → s. Whence, the result follows.
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4 Main Theorem

Let L = v1v2...vn be an ordering of the vertices of a digraph D. An arc
(vi, vj) ∈ E(D) is called forward with respect to L if i < j. Otherwise, it
is called backward with respect to L. L is called a local median order of
D if it maximizes the set of forward arcs of D w.r.t. L, that is, the set
{(vi, vj) ∈ E(D); i < j}. In this case, L satisfies the feedback property: For
all 1 ≤ i ≤ j ≤ n :

d+]i,j](vi) ≥ d−]i,j](vi);

and

d−[i,j[(vj) ≥ d+[i,j[(vj),

where ]i, j] := D[{vi+1, vi+2, ..., vj}] and [i, j[:= D[{vi, vi+1, ..., vj−1}].

In this case, the last vertex vn is called a feed vertex.

We will need the following proposition:

Proposition 4.1. Suppose that L = v1v2...vn is a local median order of a
digraph D and e = (vj, vi) ∈ E(D) with i < j. Then L is a local median
order of the digraph D′ obtained from D by reversing the orientation of e.

We will use the following theorem:

Theorem 4.1. (Havet et al. [8]) Every feed vertex of a tournament has the
SNP.

Now we are ready to prove our main theorem:

Theorem 4.2. Let D be an oriented graph missing a {C4, C4, S3, chair and
co-chair}-free graph G. Then D satisfies the SNC.

Proof. Let ∆ denote the dependency digraph of D, and let ∆[E(C)] denote
the subdigraph of ∆ induced by the set of vertices that correspond to the
edges pf C. Corollary 3.1 follows that ∆ consists of disjoint directed paths
only and each of its arcs occurs only between two edges in the same set
E[Yj,Mj] for some j or between two edges of C. Let P = m0y0 → ... →
miyi → ... → mkyk be a maximal directed path in ∆, with mi ∈ Mj and
yi ∈ Yj. Due to the maximality of P and due to Lemma 3.1, m0y0 is a good
missing edge and so it has a convenient orientation. If (m0, y0) is a convenient
orientation, we add the arcs (m2i, y2i) and the arcs (y2i+1,m2i+1) to D. Else,
we add the arcs (y2i,m2i) and the arcs (m2i+1, y2i+1). We do this for every
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maximal directed path in ∆ whose vertices are edges in E[Yj,Mj]. We have
many cases.

Case i: G[C] is empty or ∆[E(C)] is empty.

In this case, the obtained oriented graph D′ is missing G′ = G−∪E[Yj,Mj]
which is a threshold graph by Proposition 2.1. We assign to every missing
edge of D′ (which is good by Theorem 3.1) a convenient orientation and we
add it to D′. The obtained oriented graph T is a tournament. Let L be a
local median order of T and let f denote its feed vertex. Then by Theorem
4.1 f has the SNP in T . Reorient all the missing edges incident to f towards
f except those whose out-degree in ∆ is not zero. The same order L is a
local median order of the obtained tournament T ′, f is also feed vertex of L
and thus f has the SNP in T ′. We will prove that f has the SNP in D also.
For this aim, we consider many cases.

Case 1: f is a whole vertex. Clearly, f gains no new out-neighbor. We
will prove that f gains no new second out-neighbor. Assume that f → a→
b → f in T ′. Then f → a and b → f in D. If a → b in E(D) or (a, b) is a
convenient orientation w.r.t. D, then b ∈ N++

D (f). If a→ b in E(D′)−E(D)
and (a, b) is not a convenient orientation w.r.t. D, then there is rs → ab in
∆, namely s→ b and a /∈ N++

D (s). But f → a in D and fs is a non-missing
edge of D, then by Lemma 3.2 b ∈ N++

D (f). If a → b in E(T ′) − E(D′),
then (a, b) is a convenient orientation w.r.t D′. Hence b ∈ N++

D′ (f) and so
there is a′ such that f → a′ → b in D′. Since f → a′ in D′ and f is whole
vertex, then f → a′ inD. But this is already treated above, thus b ∈ N++

D (f).

Case 2: ∃ 1 ≤ t ≤ l such that f ∈Mt. There is a maximal directed path
P = m0y0 → ..→ miyi → ...→ mkyk in ∆ such that f = mi.

Case 2.1: Assume (yi,mi) ∈ E(D′). Clearly, f gains no new first out-
neighbor. We claim that f gains no new second out-neighbor. Assume
mi → a→ b→ mi in T ′. Then (mi, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase a: If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). There is j such that rs, ab ∈ E[Yj,Mj]. Assume
mi = r, then yi = s, a = yi+1 and b = mi+1. Since (yi,mi) ∈ E(D′), then
(mi+1, yi+1) ∈ E(D′), that is, (b, a) ∈ E(D′), a contradiction. So mi 6= r.
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Assume now that s = mi. Then a = mi+1. However (mi+1,mi) ∈ E(D),
then (a,mi) ∈ E(D), a contradiction. So s 6= mi. Now we prove that mis is
not a missing edge of D. If b ∈ Yj, then s ∈Mj and thus mis is not a missing
edge. Else b ∈ Mj, whence a ∈ Yj and s ∈ Yj. Since mia is not a missing
edge, then by definition of G, fs = mis is also not missing edge. But f → a
in E(D) and a /∈ N++

D (s), then due to Lemma 3.2 we get b ∈ N++
D (f).

Subcase c: If (a, b) ∈ E(T )− E(D′). Then (a, b) is a convenient orienta-
tion w.r.t D′. But f → a in E(D) and so in E(D′), then b ∈ N++

D′ (f). But
this is already treated above in Subcase i.2.1.a and Subcase i.2.1.b.

Case 2.2: Assume (mi, yi) ∈ E(D′). Here there are two cases to be con-
sider.

Case 2.2.1: Assume i = k, that is, f = mk. Clearly, f gains no new out-
neighbor. We will prove that f gains no new second out-neighbor. Suppose
f → a→ b→ f in T ′. Then (f, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase a: If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). There is j such that rs, uv ∈ E[Yj,Mj]. Since
f = mk, we have r 6= mk and s 6= mk. If b ∈ Yj, then s ∈ Mj. Then mks
is not a missing edge. Else b ∈ Mj. Whence, a ∈ Yj and s ∈ Yj. Since
mka is not a missing edge, then by definition of G, fs = mks is also not
missing edge. But f → a in D and a /∈ N++

D (s), then by Lemma 3.2 we get
b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T ) − E(D′), then (a, b) is a convenient orien-
tation w.r.t. D′ and so b ∈ N++

D′ (f). Then there is a vertex a′ such that
mk → a′ → b in D′. Since (mk, a) ∈ E(D), then a 6= yk and ∀ j > t, a /∈ Yj.
Assume a′ = yk. Then (yk, b) ∈ E(D′) and b 6= mk. Thus (yk, b) ∈ E(D).
This means that b /∈ A ∪ X ∪ Y ∪ C. Then either b is a whole vertex or
b ∈ M . If b is whole, then ab is not a missing edge, a contradiction. So
b ∈ M . Whence, ∃ α such that b ∈ Mα. If α < t, then by definition of
G, ykb ∈ E(G), that is, ykb is a missing edge, a contradiction. Thus α ≥ t.
Since b ∈ Mα with α ≥ t and ab is a missing edge of D′, then by definition
of G, a ∈ Yj for some j > α. Thus a ∈ Yj for some j > t, a contradiction.
So a′ 6= yk. Then (mk, a

′) ∈ E(D). But this is treated in Subcase i.2.2.1.a
and Subcase i.2.2.1.b.
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Case 2.2.2: Assume i < k. Then f gains only yi as an out-neighbor. We
will prove that f gains only mi+1 as a second out-neighbor.

Subcase a: Suppose that mi → yi → b in T ′ such that b 6= mi+1. Then
(yi, b) /∈ E(D′)− E(D) and (yi, b) ∈ E(T ).

Subcase a.1: If (yi, b) ∈ E(D). Since yi ∈ Yt, then yi+1 ∈ Yt. Since yib is
not a missing edge, then by definition of G, yi+1b is not a missing edge. Since
yi → b in E(D) and yi+1 /∈ N++

D (yi), then we must have yi+1 → b. Then
mi → yi+1 → b in D.

Subcase a.2: If (yi, b) ∈ E(T ) − E(D′). Then (yi, b) is a convenient ori-
entation w.r.t. D′. Then b ∈ N++

D′ (mi), that is, there is vertex a such that
mi → a→ b in D′.

Subcase a.2.1: If a = yi, then by definition of G, (yi, b) ∈ E(D), a contra-
diction to the fact that yib is a missing edge of D.

Subcase a.2.2: If a 6= yi, then (mi, a) in E(D). If (a, b) ∈ E(D), then
clearly b ∈ N++

D (f). Else (a, b) ∈ E(D′) − E(D), then either (a, b) is a con-
venient orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs → ab in
∆, namely s → b and a /∈ N++

D (s). Thus ∃ j such that rs, ab ∈ E[Yj,Mj].
Assume r = mi. Then yi = s, a = yi+1 and b = mi+1, a contradiction to the
fact that b 6= mi+1. So r 6= mi. Assume s = mi. Then a = mi+1. However
(mi+1,mi) ∈ E(D), then (a,mi) ∈ E(D), a contradiction. So s 6= mi. Now
we will prove that mis is not a missing edge. If b ∈ Yj, then s ∈ Mj and
thus mis is not a missing edge. Else b ∈ Mj. Whence, a ∈ Yj and s ∈ Yj.
Since mia is not a missing edge, then by definition of G, fs = mis is also
not missing edge. But f → a in D and a /∈ N++

D (s), then by Lemma 3.2 we
get b ∈ N++

D (f).

Subcase b: Suppose mi → a → b in T ′ with a 6= yi and b 6= mi+1. Then
(mi, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase b.1: If (a, b) ∈ E(D′). This is the same as Subcase i.2.2.2.a.2.2.

Subcase b.2: If (a, b) ∈ E(T ) − E(D′), then (a, b) is a convenient orien-
tation w.r.t. D′ and thus b ∈ N++

D′ (f). This means that there is a vertex a′
such that mi → a′ → b in D′. If a′ = yi, then (yi, b) ∈ E(D). This case is
already treated in Subcase i.2.2.2.a.1. Else, we proceed in the same method
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as in Subcase i.2.2.2.a.2.2.

Case 3: ∃ 1 ≤ t ≤ l such that f ∈ Yt and Mt 6= φ. There is a maximal
directed path P = m0y0 → ..→ miyi → ...→ mkyk in ∆ such that f = yi.

Case 3.1: Assume (mi, yi) ∈ E(D′). Clearly, f gains no new first out-
neighbor. We prove that f gains no new second out-neighbor. Assume
yi → a→ b→ yi in T ′. Then (yi, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase a: If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). Thus ∃ j such that rs, ab ∈ E[Yj,Mj]. Assume
r = yi. Then s = mi, a = mi+1 and b = yi+1. Since (mi, yi) ∈ E(D′),
then (yi+1,mi+1) ∈ E(D′), that is, (b, a) ∈ E(D′), a contradiction. Then
r 6= yi. Assume s = yi. Then a = yi+1. Hence yia = yiyi+1 is a missing edge,
contradiction. So s 6= yi. Now we prove that yis is not a missing edge. If
a ∈ Yj, then yia is a missing edge, a contradiction. So a ∈ Mj and hence
s ∈ Mj. Since yia is not a missing edge, then by definition of G, yis is also
not a missing edge. Since yi → a in D and a /∈ N++(s), then by Lemma 3.2
we get b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T ) − E(D′), then (a, b) is a convenient orienta-
tion w.r.t. D′. Whence, b ∈ N++

D′ (f). Then there is a vertex a′ such that
yi → a′ → b in D′. Thus (yi, a

′) ∈ D. This case is already treated in Subcase
i.3.1.a and Subcase i.3.1.b.

Case 3.2: Assume (yi,mi) ∈ E(D′).

Case 3.2.1: Assume i = k, that is, f = yk. Clearly, f gains no new
out-neighbor. We prove that f gains no new second out-neighbor. Suppose
that f → a→ b→ f in T ′. Then (f, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase a: If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs→ ab in ∆, namely
s→ b and a /∈ N++

D (s). Then ∃ j such that rs, ab ∈ E[Yj,Mj]. Since f = yk,
then r 6= yk and s 6= yk. Since (yk, a) ∈ E(D), then a /∈ Y . Whence, a ∈ M
and s ∈ M . Since yka is not a missing edge, then by definition of G, yks is

14



also not a missing edge. Since f → a in D and a /∈ N++
D (s), then by Lemma

3.2 we get b ∈ N++
D (f).

Subcase c: If (a, b) ∈ E(T ) − E(D′), then it is a convenient orientation
w.r.t. D′. But f → a in D and thus in D′, then b ∈ N++

D′ (f). So there is a
vertex a′ such that f → a′ → b in D′.

Subcase c.1: Suppose a′ = mk. Since yka is not a missing edge of D, then
a is a whole vertex of D or a ∈ M − {mk}. Since (a, b) ∈ E(T ) − E(D),
then a is not whole. Thus ∃ j such that a ∈ Mj − {mk}. The definition of
G together with the facts that f = yk ∈ Yt, a ∈ Mj − {mk} and yka is not
missing edge imply that j ≥ t. Since (a, b) /∈ E(D′) and a ∈ Mj, then ∃
α > j such that b ∈ Yα. Thus ba′ ∈ E[Yα, ,Mt] with α > t. So, by using
the definition of G, a′b is a missing edge of D and D′, a contradiction since
(a′, b) ∈ E(D′).

Subcase c.2: Suppose a′ 6= mk. Whence (yk, a
′) ∈ E(D). But (a′, b) ∈

E(D′), then this is already discussed in Subcase i.3.2.1.a and Subcase i.3.2.1.b.

Case 3.2.2: Assume i < k. Clearly, f = yi gains only mi as an out-
neighbor. We prove that f gains only yi+1 as a second out-neighbor.

Subcase a: Suppose that f → mi → b → f in T ′ with b 6= yi+1. Then
(yi,mi) ∈ E(D′) and (mi, b) ∈ E(T ).

Subcase a.1: If (mi, b) ∈ E(D). Since b 6= yi+1 and mib is not a missing
edge of D, then by definition of G, also mi+1b is not a missing edge. Since
mi → b in D and mi+1 /∈ N++(mi), then we must have mi+1 → b in D. Thus
yi → mi+1 → b in D.

Subcase a.2: If (mi, b) ∈ E(D′) − E(D). Then mib = miyi and hence
b = yi, a contradiction. So this case does not hold.

Subcase a.3: If (mi, b) ∈ E(T ) − E(D′). Then (mi, b) is a convenient
orientation w.r.t. to D′. Since yi → mi in D′, then b ∈ N++

D′ (yi). Then there
is a vertex a′ such that yi → a′ → b in D′. If a′ = mi, then (mi, b) ∈ E(D′),
a contradiction. Thus a′ 6= mi and so (yi, a

′) ∈ E(D) and (a′, b) ∈ E(D′).

Subcase a.3.1: If (a′, b) ∈ E(D), then yi → a′ → b in D.

Subcase a.3.2: If (a′, b) ∈ E(D′)−E(D), then either (a′, b) is a convenient
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orientation w.r.t. D and hence b ∈ N++
D (f) or there is rs→ a′b in ∆, namely

s → b and a′ /∈ N++
D (s). If rs = miyi, then a′b = mi+1yi+1. But b 6= yi+1,

then b = mi+1. Since (yi,mi) ∈ E(D′), then (mi+1, yi+1) ∈ E(D′), that is,
(b, a′) ∈ E(D′), a contradiction. Now we claim that yis is not a missing edge
of D. Since yia′ is not a missing edge, then a′ /∈ Y . Whence, a′ ∈ M and
s ∈ M . Therefore, using the definition of G and the fact that yia′ is not a
missing edge, we reach our claim. Since yi → a′ in D and a′ /∈ N++

D (s), then
by Lemma 3.2 we get b ∈ N++

D (f).

Subcase b: Assume yi → a → b → yi in T ′ with a 6= mi and b 6= yi+1.
Then (yi, a) ∈ E(D) and (a, b) ∈ E(T ). If (a, b) ∈ E(D′), then this is already
treated in Subcases a.3.1 and a.3.2. Else if (a, b) ∈ E(T ) − E(D′), then it
is a convenient orientation w.r.t. D′ and hence b ∈ N++

D′ (yi). Then there is
a vertex a′ such that yi → a′ → b in D′. If a′ = mi, this is already treated
in Subcase i.3.2.2.a.1 and Subcase i.3.2.2.a.2. Else if a′ 6= mi, this is already
treated in Subcase i.3.2.2.a.3.1 and Subcase i.3.2.2.a.3.2.

Case 4: ∃ 1 ≤ t ≤ l + 1 such that f ∈ Yt such that Mt = φ. Clearly, f
gains no new out-neighbor. We prove it gains no new second out-neighbor.
Suppose f → a → b → f in T ′. Then (f, a) ∈ E(D) and (a, b) ∈ E(T ). We
consider the following cases.

Subcase a: If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). Then ∃ j such that rs, ab ∈ E[Yj,Mj]. Since fa
is not a missing edge of D, then a /∈ Y . Hence a ∈ Mj and s ∈ Mj. Since
a, s ∈ Mj and fa is not a missing edge, then also fs is not a missing edge.
Since f → a in D and a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Subcase c: If (a, b) ∈ E(T )−E(D′), then (a, b) is a convenient orientation
w.r.t. D′. But f → a in D and D′, then b ∈ N++

D′ (f). So there is a vertex
a′ such that f → a′ → b in D′. Then (f, a′) ∈ E(D). But this is already
treated in Subcase i.4.a and Subcase i.4.b.

Case 5: f ∈ Yl+2. Exactly same as Case i.4, with only one difference in
Subcase b. The difference is that fs is not a missing edge in Subcase i.5.b,
because E[Yl+2,Mj] = φ by definition of G, while in Subcase i.4.b we had to
prove it.
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Case 6: f ∈ V (G)− (Y ∪M). Clearly, f gains no new out-neighbor. We
will prove that it gains no new second out-neighbor. Suppose f → a→ b→ f
in T ′. Then (f, a) ∈ E(D) and (a, b) ∈ E(T ). We consider the following sub-
cases.

Subcase a: If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). Thus ∃ j such that rs, ab ∈ E[Yj,Mj]. If a ∈ Yj,
then fa is a missing edge of D, a contradiction. So a ∈Mj and hence s ∈Mj.
Then fs is not a missing edge. Since f → a in D and a /∈ N++

D (s), then by
Lemma 3.2 we get b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T ) − E(D′). Then (a, b) is a convenient orien-
tation w.r.t. D′. But f → a in D and so D′, then b ∈ N++

D′ (f). Then
there is a vertex a′ such that f → a′ → b in D′. Then (f, a′) ∈ E(D) and
(a′, b) ∈ E(D′). But this is already discussed in Subcase i.6.a and Subcase
i.6.b.

Therefore, f has the SNP in D in all cases. This completes the proof of
Case i.

Case ii: ∆[E(C)] contains exactly one arc, say uv → xy.

Assume without loss of generality that (u, v) is a convenient orientation of
the good missing edge uv. We add to D the arcs (u, v) and (x, y), we
assign to the good missing edges xv, yz and zu a convenient orientation
and then we add them to D. The obtained oriented graph D′ is missing
G′ = G− (∪E[Yj,Mj]∪E(C)) which is a threshold graph. We assign to the
missing edges of D′ convenient orientations and we add them to D′ to get a
tournament T . Let L be a local median order of T and let f denote its feed
vertex. Reorient all the missing edges incident to f towards f , except those
whose out-degree in ∆ is not zero. The same order L is a local median order
of the obtained tournament T ′, f is also feed vertex of L and thus f has the
SNP in T ′. We will prove that f has the SNP in D also. For this purpose,
we consider the following cases.

Case 1: f is a whole vertex. This is the same as Case i.1.

Case 2: ∃ 1 ≤ t ≤ l such that f ∈ Mt. Exactly same as Case i.2, with
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only one difference in the subcases when f → a→ b with (f, a) ∈ E(D) and
(a, b) ∈ E(D′) − E(D) and it is not convenient w.r.t. D. Such subcase we
call it unsteady. As usual, since (a, b) is not convenient w.r.t. D, then there
is rs → ab in ∆, namely s → b and a /∈ N++

D (s). The difference is that in
the unsteady subcases of Case ii.2 either rs, ab ∈ E[Yj,Mj] for some j or
rs = uv, ab = xy. If rs, ab ∈ E[Yj,Mj] for some j, we proceed exactly in the
same way as in the unsteady subcases of Case i.2. Else if (r, s) = (u, v) and
(a, b) = (x, y), then fs is not a missing edge because E[M,C] = φ. Since
f → a in D and a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Case 3: ∃ 1 ≤ t ≤ l such that f ∈ Yt and Mt 6= φ. Exactly same as
Case i.3, with only one difference in the subcases when f → a → b with
(f, a) ∈ E(D) and (a, b) ∈ E(D′)− E(D) and it is not convenient w.r.t. D.
As usual, since (a, b) is not convenient w.r.t. D, then there is rs→ ab in ∆,
namely s → b and a /∈ N++

D (s). The difference is that in the unsteady sub-
cases of Case ii.3 there are two cases to be consider: Either rs, ab ∈ E[Yj,Mj]
for some j, or rs = uv and ab = xy. If rs, ab ∈ E[Yj,Mj] for some j, we
proceed exactly in the same way as in the unsteady subcases of Case i.3. Else
if (r, s) = (u, v) and (a, b) = (x, y), then fa = fx is a missing edge because
G[Y ∪ C] is a complete split graph, a contradiction.

Case 4: ∃ 1 ≤ t ≤ l + 1 such that f ∈ Yt such that Mt = φ. Exactly
same as Case i.4, with only one difference in Subcase b. The difference is
that in Subcase ii.4.b there are two possibilities for the edges rs, ab: Either
rs, ab ∈ E[Yj,Mj] for some j, or (r, s) = (u, v) and (a, b) = (x, y). The first
case is treated in Subcase i.4.b. However, the second case does not exist since
otherwise fa = fx is a missing edge because G[Y ∪ C] is a complete split
graph, which contradicts the fact that (f, a) ∈ E(D).

Case 5: f ∈ Yl+2. Exactly same as Case i.4, with two differences in Sub-
case b. The first difference is that in Subcase ii.5.b there are two possibilities
for the edges rs, ab: Either rs, ab ∈ E[Yj,Mj] for some j, or (r, s) = (u, v)
and (a, b) = (x, y). The first case is already treated in Subcase i.4.b. How-
ever, the second case does not exist since otherwise fa = fx is a missing
edge because G[Y ∪ C] is a complete split graph, which contradicts the fact
that (f, a) ∈ E(D). The second difference is that fs is not a missing edge in
Subcase ii.5.b, because E[Yl+2,Mj] = φ by definition of G, while in Subcase
i.4.b we had to prove it.

Case 6: f = u. Clearly, u gains only v as a new first out-neighbor. We
prove that it gains only y as a new second out-neighbor.
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Case 6.1: Suppose that u → v → b → u in T ′ with b 6= y. Then
(v, b) ∈ E(T ). Note that b 6= x because u→ x in D.

Subcase a: If (v, b) ∈ E(D), then either b = z, b ∈ S or b is a whole
vertex. Then by the losing relation uv → xy, we get b ∈ N++

D (u).

Subcase b: If (v, b) ∈ E(D′)−E(D), then b = x or b = u, a contradiction.
Thus this case does not exist.

Subcase c: If (v, b) ∈ E(T ) − E(D′), then b ∈ K and (v, b) is a conve-
nient orientation w.r.t. D′. Then there exists v′ such that u → v′ → b → u
in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since v′ /∈ C and
(f, v′) ∈ E(D′), then (f, v′) ∈ E(D).

Subcase c.1: If (v′, b) ∈ E(D), then b ∈ N++
D (f).

Subcase c.2: If (v′, b) ∈ E(D′)−E(D), then (v′, b) is a convenient orienta-
tion w.r.t D and hence b ∈ N++

D (f) or there is rs→ v′b in ∆, namely s→ b
and v′ /∈ N++

D (s). Since v′ /∈ C, then ∃ j such that rs, v′b ∈ E[Yj,Mj]. Since
b ∈ K, then b ∈ Yj. Whence, v′ ∈Mj and s ∈Mj. Thus fs is not a missing
edge of D by definition of G. But (f, v′) ∈ E(D) and v′ /∈ N++

D (s), then by
Lemma 3.2 we get b ∈ N++

D (f).

Case 6.2: Suppose that u → a → b → u in T ′ with a 6= v and b 6= y.
Then (u, a) ∈ E(D) and (a, b) ∈ E(T ). Note that a /∈ K ∪ {u, v, y, z} and
b /∈ {u, v, x, y}.

Subcase a: If (a, b) ∈ E(D), b ∈ N++
D (u).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either ab ∈ E(C) or ab ∈
E[Yj,Mj] for some j. If ab ∈ E(C), then (a, b) = (x, z) because a /∈
{u, v, y, z} and b /∈ {u, v, y, x}. Thus xz is a missing edge of D, a con-
tradiction. It follows that ab ∈ E[Yj,Mj] for some j. Then either (a, b) is a
convenient orientation w.r.t. D and hence b ∈ N++

D (u) or there is rs → ab
in ∆, namely s → b and a /∈ N++

D (s). Since a /∈ K, then a ∈ Mj and
thus s ∈ Mj. So by definition of G, us is not a missing edge of D. But
(u, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (u).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. Since (u, a) ∈ E(D) and so in D′, there exists v′ such
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that u→ v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since
v′ /∈ C and (u, v′) ∈ E(D′), then (u, v′) ∈ E(D). But this is already treated
in Subcase ii.6.1.c.1 and Subcase ii.6.1.c.2.

Case 7: f ∈ C − {u}. It is clear that f gains no new first out-neighbor.
We will prove that it gains no new second out-neighbor. Suppose that
f → a→ b→ f in T ′. Then (f, a) ∈ E(D), (a, b) ∈ E(T ) and a /∈ K.

Subcase a: If (a, b) ∈ E(D), b ∈ N++
D (u).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is there is rs → ab in
∆, namely s→ b and a /∈ N++

D (s). If (r, s) = (u, v) and (a, b) = (x, y), then
a = x and b = y and so f /∈ {x, y}. Note that f 6= v, since otherwise fa = vx
is a missing edge of D, a contradiction. Since f ∈ C−{u, v, x, y}, then f = z
and hence fs = zv is not a missing edge of D. Else if rs, ab ∈ E[Yj,Mj] for
some j, then r 6= f and s 6= f . Since a /∈ K, then a /∈ Yj and so a ∈ Mj.
Whence, s ∈ Mj. Thus fs is not missing edge of D by definition of G.
Therefore, by the losing relation rs→ ab in ∆, we get b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. So there is v′ such that f → v′ → b in D′. Since
(v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since v′ /∈ C and (f, v′) ∈ E(D′),
then (f, v′) ∈ E(D). But this is already treated in Subcase ii.6.1.c.1 and
Subcase ii.6.1.c.2.

Case 8: f ∈ V (G)−(Y ∪M∪C) = A∪(X−X1) = A∪(X−Y1). Exactly
same as Case i.6, with only one difference in Subcase b. The difference is
that in Subcase ii.8.b there are two possibilities for the edges rs, ab: Either
rs, ab ∈ E[Yj,Mj] for some j, or (r, s) = (u, v) and (a, b) = (x, y). The first
case is treated in Subcase i.6.b. However, for the case (r, s) = (u, v) and
(a, b) = (x, y), f must belong to A since otherwise fa = fx is a missing edge
because G[X ∪ C] is a complete split graph, which contradicts the fact that
(f, a) ∈ E(D). Thus fs = fv is not missing edge of D because E[A,C] = φ
by definition of G. Since f → a in D and a /∈ N++

D (s), then by Lemma 3.2
we get b ∈ N++

D (f).

Therefore, f has the SNP in D when ∆ has exactly one arc between the
edges of C.

Case iii: Suppose that ∆[E(C)] has exactly two arcs , say uv → xy and
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vx→ yz.

Then u→ x→ z → v → y in D and uv, vx, uz are good missing edges. As-
sume without loss of generality that (u, v) is a convenient orientation w.r.t.
D. Add the arcs (u, v) and (x, y) to D. If (v, x) is a convenient orientation
of vx, then add the arcs (v, x) and (y, z). Otherwise, add the arcs (x, v) and
(z, y). Assign to uz a convenient orientation and add it to D. The obtained
oriented graph D′ is missing G′ = G−(∪E[Yj,Mj]∪E(C)) which is a thresh-
old graph. So all the missing edges of D′ are good. We assign to them a
convenient orientation and we add them to get a tournament T . Let L be
a local median order of T and let f denote its feed vertex. Reorient all the
missing edges incident to f towards f except those whose out-degree in ∆
is not zero. The same order L is again a local median order of the obtained
tournament T ′ and f has the SNP in T ′. We will prove that f has the SNP
in D also. We have the following cases.

Case 1: f is a whole vertex. This is the same as Case i.1.

Case 2: ∃ 1 ≤ t ≤ l such that f ∈ Mt. Exactly same as Case i.2, with
only one difference in the unsteady subcases, that is, in the subcases where
f → a → b with (f, a) ∈ E(D) and (a, b) ∈ E(D′) − E(D) and it is not
convenient w.r.t. D. As usual, since (a, b) is not convenient w.r.t. D, then
there is rs → ab in ∆, namely s → b and a /∈ N++

D (s). The difference is
that in the unsteady subcases of Case iii.2 either rs, ab ∈ E[Yj,Mj] for some
j or rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed exactly in
the same way as in the unsteady subcases of Case i.2. Else if rs, ab ∈ E(C)
(the possible cases are: (r, s) = (u, v) and (a, b) = (x, y), (r, s) = (v, x) and
(a, b) = (y, z) if (v, x) is a convenient orientation of vx or (r, s) = (x, v) and
(a, b) = (z, y) if (x, v) is a convenient orientation of vx), then fs is not a
missing edge because E[M,C] = φ. Since f → a in D and a /∈ N++

D (s), then
by Lemma 3.2 we get b ∈ N++

D (f).

Case 3: ∃ 1 ≤ t ≤ l such that f ∈ Yt and Mt 6= φ. Exactly same as
Case i.3, with only one difference in the subcases when f → a → b with
(f, a) ∈ E(D) and (a, b) ∈ E(D′)− E(D) and it is not convenient w.r.t. D.
As usual, since (a, b) is not convenient w.r.t. D, then there is rs→ ab in ∆,
namely s → b and a /∈ N++

D (s). The difference is that in the unsteady sub-
cases of Case iii.3 there are two cases to be consider: Either rs, ab ∈ E[Yj,Mj]
for some j, or rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed
exactly in the same way as in the unsteady subcases of Case i.3. Else if
rs, ab ∈ E(C), then fa is a missing edge because G[Y ∪C] is a complete split
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graph, a contradiction. Thus this case does not exist.

Case 4: ∃ 1 ≤ t ≤ l + 1 such that f ∈ Yt such that Mt = φ. Exactly
same as Case i.4, with only one difference in Subcase b. The difference is
that in Subcase iii.4.b there are two possibilities for the edges rs, ab: Either
rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case is treated
in Subcase i.4.b. However, the second case does not exist since otherwise
fa is a missing edge because G[Y ∪C] is a complete split graph, which con-
tradicts the fact that (f, a) ∈ E(D). This means that this case does not exist.

Case 5: f ∈ Yl+2. Exactly same as Case i.4, with two differences in Sub-
case b. The first difference is that in Subcase iii.5.b there are two possibilities
for the edges rs, ab: Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C).
The first case is already treated in Subcase i.4.b. However, the second case
does not exist since otherwise fa is a missing edge because G[Y ∪ C] is a
complete split graph, which contradicts the fact that (f, a) ∈ E(D). The
second difference is that fs is not a missing edge in Subcase iii.5.b, because
E[Yl+2,Mj] = φ by definition of G, while in Subcase i.4.b we had to prove it.

Case 6: f = u. Clearly, f gains only v as a new first out-neighbor and
y as a new second out-neighbor. We prove it gains only y as a second out-
neighbor.

Case 6.1: Suppose that u → v → b → u in T ′ with b 6= y. Then
(v, b) ∈ E(T ). Since x and z are first and second out-neighbors of u in D re-
spectively, then we may assume that b /∈ C and hence (v, b) /∈ E(D′)−E(D).

Subcase a: If (v, b) ∈ E(D), then either b ∈ S or b is a whole vertex.
Then by the losing relation uv → xy, we get b ∈ N++

D (u).

Subcase b: If (v, b) ∈ E(T )−E(D′), then b ∈ K and (v, b) is a convenient
orientation w.r.t. D′. But this is exactly the same as Subcase ii.6.1.c.

Case 6.2 : Suppose that u → a → b → u in T ′ with a 6= v and b 6= y.
Thus (a, b) ∈ E(T ). Since a 6= v, then (u, a) ∈ E(D) and hence a /∈ K. Since
x and z are first and second out-neighbors of u in D and u → v in T ′, then
we may assume b /∈ C.

Subcase a: If (a, b) ∈ E(D), b ∈ N++
D (u).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either ab ∈ E(C) or ab ∈
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E[Yj,Mj] for some j. If ab ∈ E(C), then b ∈ C, a contradiction. Thus
ab ∈ E[Yj,Mj] for some j. It follows that either (a, b) is a convenient ori-
entation w.r.t. D and hence b ∈ N++

D (u) or there is rs → ab in ∆, namely
s → b and a /∈ N++

D (s). Since a /∈ K, then a ∈ Mj and thus s ∈ Mj. So
by definition of G, us is not a missing edge of D. But (u, a) ∈ E(D) and
a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (u).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. Since (u, a) ∈ E(D) and so in D′, there exists v′ such
that u→ v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since
v′ /∈ C and (u, v′) ∈ E(D′), then (u, v′) ∈ E(D). But this is already treated
in Subcase iii.6.2.a and Subcase iii.6.2.b.

Case 7: f = v. Here there are two cases to be consider.

Case 7.1: Assume (v, x) ∈ E(D′). Then v gains x as first out-neighbor
and z as a second out-neighbor. This case is similar to Case iii.6.

Case 7.2: Assume (x, v) ∈ E(D′). Then (z, y) ∈ E(D′). Clearly, v gains
no new first out-neighbor. We prove that it gains no new second out-neighbor.
Suppose f → a→ b→ f in T ′. Then (f, a) ∈ E(D) and hence a /∈ K.

Subcase a: If (a, b) ∈ E(D), b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (v) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). So either rs, ab ∈ E(C) or rs, ab ∈ E[Yj,Mj]
for some j. If ab ∈ E(C), then (a, b) = (x, y) or (a, b) = (z, y) and hence
b = y, which is impossible because b → f in T ′ while f → y in D. Thus
rs, ab ∈ E[Yj,Mj] for some j. Since a /∈ K, then a ∈ Mj and thus s ∈ Mj.
So by definition of G, fs is not a missing edge of D. But (f, a) ∈ E(D) and
a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. Since (f, a) ∈ E(D) and so in D′, there exists v′ such
that f → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since
v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But this is already treated
in Subcase iii.7.2.a and Subcase iii.7.2.b.

Case 8: f = x. Here there are two cases to be consider.
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Case 8.1: Assume (v, x) ∈ E(D′). Clearly, x gains no new first out-
neighbor. We prove it gains no new second out-neighbor. Suppose x→ a→
b → x in T ′. Then (x, a) ∈ E(D), (a, b) ∈ E(T ) and a /∈ K. Note that
a /∈ {x, y, u, v} and we may assume b /∈ {x, z, v}.

Subcase a: If (a, b) ∈ E(D), b ∈ N++
D (x).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (x) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). So either rs, ab ∈ E(C) or rs, ab ∈ E[Yj,Mj]
for some j. If ab ∈ E(C), then (a, b) = (x, y) or (a, b) = (y, z) and hence
a ∈ {x, y}, a contradiction. Thus rs, ab ∈ E[Yj,Mj] for some j. Since a /∈ K,
then a ∈ Mj and thus s ∈ Mj. So by definition of G, fs is not a missing
edge of D. But (x, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 3.2 we get
b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. Since (x, a) ∈ E(D) and so in D′, there exists v′ such
that x→ v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since
v′ /∈ C and (x, v′) ∈ E(D′), then (x, v′) ∈ E(D). But this is already treated
in Subcase iii.8.1.a and Subcase iii.8.1.b.

Case 8.2: Assume (x, v) ∈ E(D′). Clearly, x gains only v as a first out-
neighbor and y as a second out-neighbor. We prove it gains only y as a
second out-neighbor. Note that z and v are first and second out-neighbors
of x in D, (v, u) /∈ E(T ) and (x, u) /∈ E(T ).

Subcase a: Suppose that x → v → b → x in T ′ with b 6= y. Then
(v, b) ∈ E(T ). By the previous note, we may assume that b /∈ C and hence
(v, b) /∈ E(D′)− E(D).

Subcase a.1: If (v, b) ∈ E(D), then either b ∈ S or b is a whole vertex.
Then by the losing relation xv → zy, we get b ∈ N++

D (x).

Subcase a.2: If (v, b) ∈ E(T ) − E(D′), then b ∈ K and (v, b) is a conve-
nient orientation w.r.t. D′. But this exactly the same as Subcase ii.6.a.3.

Subcase b: Suppose x → a → b → x in T ′ with b 6= y and a 6= v.
Then (x, a) ∈ E(D) and thus a /∈ K ∪ {x, y, v, u}. Note that suppose
b /∈ {x, y, v, z}. We argue exactly as in Subcase iii.7.2.
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Case 9: f = y. Clearly, f gains no new first out-neighbor. We prove
that it gains no new second out-neighbor. Note that (z, y) ∈ E(T ′) and u
and x are first and second out-neighbors of y, respectively. Suppose that
f → a→ b→ f in T ′. Then (f, a) ∈ E(D) and a /∈ K ∪ {x, y, v, z}.

Subcase a: If (a, b) ∈ E(D), then b ∈ N++
D (f).

Subcase b: If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation w.r.t. D and hence b ∈ N++

D (f) or there is rs→ ab in ∆, namely
s → b and a /∈ N++

D (s). So either rs, ab ∈ E(C) or rs, ab ∈ E[Yj,Mj] for
some j. If ab ∈ E(C), then (a, b) = (x, y) or (a, b) = (y, z) or (a, b) = (z, y)
and hence a ∈ {x, y, z}, a contradiction. Thus rs, ab ∈ E[Yj,Mj] for some j.
Since a /∈ K, then a ∈Mj and thus s ∈Mj. So by definition of G, fs is not
a missing edge of D. But (f, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma
3.2 we get b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. Since (f, a) ∈ E(D) and so in D′, there exists v′ such
that f → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since
v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But this is already treated
in Subcase iii.9.a and Subcase iii.9.b.

Case 10: f = z. Exactly same as Case iii.9 with difference that yz is
reoriented so that (y, z) ∈ E(T ′).

Case 11: f ∈ V (G) − (Y ∪M ∪ C) = A ∪ (X − X1) = A ∪ (X − Y1).
Exactly same as Case i.6, with only one difference in Subcase b. The dif-
ference is that in Subcase iii.11.b there are two possibilities for the edges
rs, ab: Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case
is treated in Subcase i.6.b. However, for the second case, f must belong to
A since otherwise fa is a missing edge because G[X ∪ C] is a complete split
graph, which contradicts the fact that (f, a) ∈ E(D). Thus fs is not missing
edge of D because E[A,C] = φ by definition of G. Since f → a in D and
a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Therefore, due to all above discussions, f has the SNP in D.

Case iv: Suppose that ∆[E(C)] has exactly two arcs, say uv → xy → zu.

Then v → y → u→ x→ z in D and uv, yz, vx are good missing edges. As-
sume without loss of generality that (u, v) is a convenient orientation w.r.t.
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D. Add the arcs (u, v), (x, y) and (z, u)to D. Assign to the good missing
edges vx and zy a convenient orientation and add them to D. The obtained
oriented graph D′ is missing G′ = G−(∪E[Yj,Mj]∪E(C)) which is a thresh-
old graph. So all the missing edges of D′ are good. We assign to them a
convenient orientation and we add them to get a tournament T . Let L be
a local median order of T and let f denote its feed vertex. Reorient all the
missing edges incident to f towards f except those whose out-degree in ∆
is not zero. The same order L is again a local median order of the obtained
tournament T ′ and f has the SNP in T ′. We will prove that f has the SNP
in D. We have the following cases.

Case 1: f is a whole vertex. This is the same as Case i.1.

Case 2: ∃ 1 ≤ t ≤ l such that f ∈ Mt. Exactly same as Case i.2, with
only one difference in the unsteady subcases, that is, in the subcases where
f → a → b with (f, a) ∈ E(D) and (a, b) ∈ E(D′) − E(D) and it is not
convenient w.r.t. D. As usual, since (a, b) is not convenient w.r.t. D, then
there is rs→ ab in ∆, namely s→ b and a /∈ N++

D (s). The difference is that
in the unsteady subcases of Case iv.2 either rs, ab ∈ E[Yj,Mj] for some j or
rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed exactly in the
same way as in the unsteady subcases of Case i.2. Else if rs, ab ∈ E(C) (the
possible cases are: (r, s) = (u, v) and (a, b) = (x, y) or (r, s) = (x, y) and
(a, b) = (z, u)), then fs is not a missing edge because E[M,C] = φ. Since
f → a in D and a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Case 3: ∃ 1 ≤ t ≤ l such that f ∈ Yt and Mt 6= φ. Exactly same as
Case i.3, with only one difference in the subcases when f → a → b with
(f, a) ∈ E(D) and (a, b) ∈ E(D′)− E(D) and it is not convenient w.r.t. D.
As usual, since (a, b) is not convenient w.r.t. D, then there is rs→ ab in ∆,
namely s → b and a /∈ N++

D (s). The difference is that in the unsteady sub-
cases of Case iv.3 there are two cases to be consider: Either rs, ab ∈ E[Yj,Mj]
for some j, or rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed
exactly in the same way as in the unsteady subcases of Case i.3. Else if
rs, ab ∈ E(C), then fa is a missing edge because G[Y ∪C] is a complete split
graph, a contradiction. Thus this case does not exist.

Case 4: ∃ 1 ≤ t ≤ l + 1 such that f ∈ Yt such that Mt = φ. Exactly
same as Case i.4, with only one difference in Subcase b. The difference is
that in Subcase iv.4.b there are two possibilities for the edges rs, ab: Either
rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case is treated
in Subcase i.4.b. However, the second case does not exist since otherwise
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fa is a missing edge because G[Y ∪C] is a complete split graph, which con-
tradicts the fact that (f, a) ∈ E(D). This means that this case does not exist.

Case 5: f ∈ Yl+2. Exactly same as Case i.4, with two differences in Sub-
case b. The first difference is that in Subcase iv.5.b there are two possibilities
for the edges rs, ab: Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C).
The first case is already treated in Subcase i.4.b. However, the second case
does not exist since otherwise fa is a missing edge because G[Y ∪ C] is a
complete split graph, which contradicts the fact that (f, a) ∈ E(D). The
second difference is that fs is not a missing edge in Subcase iv.5.b, because
E[Yl+2,Mj] = φ by definition of G, while in Subcase i.4.b we had to prove it.

Case 6: f = u. Clearly, u gains only v as a first out-neighbor and gains
y as a second out-neighbor. We prove that u gains only y as a second out-
neighbor. But this is exactly same as Case iii.6.

Case 7: f = v. It is clear that v gains no new first out-neighbor. We
prove that it gains no new second out-neighbor. Suppose that v → a→ b→ v
in T ′. Then (v, a) ∈ E(D) and a /∈ K ∪ {x, v, u}. Since v → y → u in D, we
may assume that b /∈ {u, v, y} and a 6= y.

Subcase a: If (a, b) ∈ E(D) or is a convenient orientation w.r.t. D, then
b ∈ N++

D (f).

Subcase b: If (a, b) ∈ E(D)−E(D′) and it is not convenient w.r.t. D, then
there is rs→ ab in ∆, namely s→ b and a /∈ N++

D (s). So either rs, ab ∈ E(C)
or rs, ab ∈ E[Yj,Mj] for some j. If ab ∈ E(C), then (a, b) = (x, y) or
(a, b) = (z, u) and hence b ∈ {u, y}, a contradiction. Thus rs, ab ∈ E[Yj,Mj]
for some j. Since a /∈ K, then a ∈ Mj and thus s ∈ Mj. So by definition of
G, fs is not a missing edge of D. But (f, a) ∈ E(D) and a /∈ N++

D (s), then
by Lemma 3.2 we get b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. Since (f, a) ∈ E(D) and so in D′, there exists v′ such
that f → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C ∪ k.
Since v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But this is already
treated in Subcase iv.7.a and Subcase iv.7.b.

Case 8: f = x. Then x gains only y as a first out-neighbor and gains
u as a second out-neighbor. We prove that it gains only u as a new second
out-neighbor.
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Subcase a: Suppose that x → y → b → x in T ′ with b 6= u. Then
(y, b) ∈ E(T ). Since x → z and v → y in D, then we may assume b /∈ C
and hence (y, b) /∈ E(D′)− E(D). If (y, b) ∈ E(D), then b is a whole vertex
or b ∈ S. Thus by the losing relation xy → zu, we get b ∈ N++

D (x). Else
if (y, b) ∈ E(T ) − E(D′), then b ∈ K and (y, b) is a convenient orientation
w.r.t. D′. So there is v′ such that x → v′ → b in D′. Since (v′, b) ∈ E(D′)
and b ∈ K, then v′ /∈ C ∪ K. Since v′ /∈ C and (f, v′) ∈ E(D′), then
(f, v′) ∈ E(D). As usual we can prove that b ∈ N++

D (x) in D.

Subcase b: Suppose that x → a → b → x in T ′ with a 6= y and b 6= u.
Then (x, a) ∈ D and thus a /∈ K. Since x → z in D and x → y in T , then
b /∈ {x, y, u, z}. We proceed exactly as in Case iv.7.

Case 9: f = y. Clearly, y gains no new first out-neighbor. We prove
that it gains no new second out-neighbor. Suppose that y → a → b → y in
T ′. Then (y, a) ∈ E(D) and a /∈ K. Since y → u → x in D, then we may
assume b /∈ {x, y, u}. We continue exactly as in Case iv.7.

Case 10: f = z. It is clear that z gains no new vertex as a first out-
neighbor. We prove that it gains no new vertex as a second out-neighbor.
Suppose that z → a → b → z in T ′. Then (z, a) ∈ E(D) and a /∈ K. Since
x→ z in D, we may assume that a /∈ K ∪ {x, z}.

Subcase a: If (a, b) ∈ E(D) or it is a convenient orientation w.r.t. D,
then b ∈ N++

D (z).

Subcase b: If (a, b) ∈ E(D)−E(D′) and it is not convenient w.r.t. D, then
there is rs→ ab in ∆, namely s→ b and a /∈ N++

D (s). So either rs, ab ∈ E(C)
or rs, ab ∈ E[Yj,Mj] for some j. If ab ∈ E(C), then (a, b) = (x, y) or
(a, b) = (z, u) and hence a ∈ {x, z}, a contradiction. Thus rs, ab ∈ E[Yj,Mj]
for some j. Since a /∈ K, then a ∈ Mj and thus s ∈ Mj. So by definition of
G, fs is not a missing edge of D. But (f, a) ∈ E(D) and a /∈ N++

D (s), then
by Lemma 3.2 we get b ∈ N++

D (f).

Subcase c: If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation w.r.t. D′. Since (f, a) ∈ E(D) and so in D′, there exists v′ such
that f → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C ∪ k.
Since v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But this is already
treated in Subcase iv.10.a and Subcase iv.10.b.

28



Case 11: f ∈ V (G) − (Y ∪M ∪ C) = A ∪ (X − X1) = A ∪ (X − Y1).
Exactly same as Case i.6, with only one difference in Subcase b. The differ-
ence is that in Subcase iv.11.b there are two possibilities for the edges rs, ab:
Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case is
treated in Subcase i.6.b. However, for the second case, f must belong to A
since otherwise fa is a missing edge because G[X ∪ C] is a complete split
graph, which contradicts the fact that (f, a) ∈ E(D). Thus fs is not missing
edge of D because E[A,C] = φ by definition of G. Since f → a in D and
a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Therefore, f satisfies the SNP in D.

Case v: Suppose that ∆[E(C)] has exactly three arcs, say uv → xy → zu→
vx.

Then u→ x→ z → v → y in D and uv, yz are good missing edges. Assume
without loss of generality that (u, v) is a convenient orientation w.r.t. D.
Add the arcs (u, v), (x, y), (z, u) and (v, x) to D. Assign to yz a convenient
orientation and add it to D. The obtained oriented graph D′ is missing
G′ = G− (∪E[Yj,Mj]∪E(C)) which is a threshold graph. So all the missing
edges of D′ are good. We assign to them a convenient orientation and we
add them to get a tournament T . Let L be a local median order of T and let
f denote its feed vertex. Reorient all the missing edges incident to f towards
f except those whose out-degree in ∆ is not zero. The same order L is again
a local median order of the obtained tournament T ′ and f has the SNP in
T ′. We will prove that f has the SNP in D. We have the following cases.

Case 1: f is a whole vertex. This is the same as Case i.1.

Case 2: ∃ 1 ≤ t ≤ l such that f ∈ Mt. Exactly same as Case i.2, with
only one difference in the unsteady subcases, that is, in the subcases where
f → a → b with (f, a) ∈ E(D) and (a, b) ∈ E(D′) − E(D) and it is not
convenient w.r.t. D. As usual, since (a, b) is not convenient w.r.t. D, then
there is rs→ ab in ∆, namely s→ b and a /∈ N++

D (s). The difference is that
in the unsteady subcases of Case v.2 either rs, ab ∈ E[Yj,Mj] for some j or
rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed exactly in the
same way as in the unsteady subcases of Case i.2. Else if rs, ab ∈ E(C) (the
possible cases are: (r, s) = (u, v) and (a, b) = (x, y) or (r, s) = (x, y) and
(a, b) = (z, u) or (r, s) = (z, u) and (a, b) = (v, x)), then fs is not a missing
edge because E[M,C] = φ. Since f → a in D and a /∈ N++

D (s), then by
Lemma 3.2 we get b ∈ N++

D (f).
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Case 3: ∃ 1 ≤ t ≤ l such that f ∈ Yt and Mt 6= φ. Exactly same as
Case i.3, with only one difference in the subcases when f → a → b with
(f, a) ∈ E(D) and (a, b) ∈ E(D′)− E(D) and it is not convenient w.r.t. D.
As usual, since (a, b) is not convenient w.r.t. D, then there is rs→ ab in ∆,
namely s → b and a /∈ N++

D (s). The difference is that in the unsteady sub-
cases of Case v.3 there are two cases to be consider: Either rs, ab ∈ E[Yj,Mj]
for some j, or rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed
exactly in the same way as in the unsteady subcases of Case i.3. Else if
rs, ab ∈ E(C), then fa is a missing edge because G[Y ∪C] is a complete split
graph, a contradiction. Thus this case does not exist.

Case 4: ∃ 1 ≤ t ≤ l + 1 such that f ∈ Yt such that Mt = φ. Exactly
same as Case i.4, with only one difference in Subcase b. The difference is
that in Subcase v.4.b there are two possibilities for the edges rs, ab: Either
rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case is treated
in Subcase i.4.b. However, the second case does not exist since otherwise
fa is a missing edge because G[Y ∪C] is a complete split graph, which con-
tradicts the fact that (f, a) ∈ E(D). This means that this case does not exist.

Case 5: f ∈ Yl+2. Exactly same as Case i.4, with two differences in Sub-
case b. The first difference is that in Subcase v.5.b there are two possibilities
for the edges rs, ab: Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C).
The first case is already treated in Subcase i.4.b. However, the second case
does not exist since otherwise fa is a missing edge because G[Y ∪ C] is a
complete split graph, which contradicts the fact that (f, a) ∈ E(D). The
second difference is that fs is not a missing edge in Subcase v.5.b, because
E[Yl+2,Mj] = φ by definition of G, while in Subcase i.4.b we had to prove it.

Case 6: f = u. Exactly same as Case iv.6.

Case 7: f ∈ {x, z}. Similar to the case f = u, that is to Case v.6.

Case 8: f = y. Exactly same as Case iii.9 with only one difference in
Subcase b. The difference is that in Subcase v.8.b when ab ∈ E(C) then (a, b)
can be either (x, y) or (z, u) or (v, x) and so a ∈ {x, z, v}, a contradiction.

Case 9: f = v. Similar to the case f = y, that is to Case v.8.

Case 10: f ∈ V (G) − (Y ∪M ∪ C) = A ∪ (X − X1) = A ∪ (X − Y1).
Exactly same as Case i.6, with only one difference in Subcase b. The differ-
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ence is that in Subcase v.10.b there are two possibilities for the edges rs, ab:
Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case is
treated in Subcase i.6.b. However, for the second case, f must belong to A
since otherwise fa is a missing edge because G[X ∪ C] is a complete split
graph, which contradicts the fact that (f, a) ∈ E(D). Thus fs is not missing
edge of D because E[A,C] = φ by definition of G. Since f → a in D and
a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Therefore, in view of all above observations, f satisfies the SNP in D.

Case vi: Suppose that ∆[E(C)] has exactly three arcs, say uv → xy → zu
and xv → zy.

Then u→ x→ z → v → y → u in D and uv and xv are good missing edges.
Assume without loss of generality that (u, v) is a convenient orientation of
uv. Add (u, v), (x, y) and (z, u) to D. If (x, v) is a convenient orientation,
then add (x, v) and (z, y) to D, otherwise add (v, x) and (y, z) to D. The
obtained oriented graph D′ is missing G′ = G− (∪E[Yj,Mj] ∪ E(C)) which
is a threshold graph. So all the missing edges of D′ are good. We assign to
them a convenient orientation and we add them to get a tournament T . Let
L be a local median order of T and let f denote its feed vertex. Reorient all
the missing edges incident to f towards f except those whose out-degree in
∆ is not zero. The same order L is again a local median order of the obtained
tournament T ′ and f has the SNP in T ′. We will prove that f has the SNP
in D. We have the following cases.

Case 1: f is a whole vertex. This is the same as Case i.1.

Case 2: ∃ 1 ≤ t ≤ l such that f ∈ Mt. Exactly same as Case i.2, with
only one difference in the unsteady subcases, that is, in the subcases where
f → a → b with (f, a) ∈ E(D) and (a, b) ∈ E(D′) − E(D) and it is not
convenient w.r.t. D. As usual, since (a, b) is not convenient w.r.t. D, then
there is rs → ab in ∆, namely s → b and a /∈ N++

D (s). The difference is
that in the unsteady subcases of Case vi.2 either rs, ab ∈ E[Yj,Mj] for some
j or rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed exactly in
the same way as in the unsteady subcases of Case i.2. Else if rs, ab ∈ E(C)
(the possible cases are: (r, s) = (u, v) and (a, b) = (x, y), (r, s) = (x, y) and
(a, b) = (z, u), (r, s) = (v, x) and (a, b) = (y, z) if (v, x) is a convenient ori-
entation of vx or (r, s) = (x, v) and (a, b) = (z, y) if (x, v) is a convenient
orientation of vx), then fs is not a missing edge because E[M,C] = φ. Since
f → a in D and a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).
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Case 3: ∃ 1 ≤ t ≤ l such that f ∈ Yt and Mt 6= φ. Exactly same as
Case i.3, with only one difference in the subcases when f → a → b with
(f, a) ∈ E(D) and (a, b) ∈ E(D′)− E(D) and it is not convenient w.r.t. D.
As usual, since (a, b) is not convenient w.r.t. D, then there is rs→ ab in ∆,
namely s → b and a /∈ N++

D (s). The difference is that in the unsteady sub-
cases of Case vi.3 there are two cases to be consider: Either rs, ab ∈ E[Yj,Mj]
for some j, or rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj] for some j, we proceed
exactly in the same way as in the unsteady subcases of Case i.3. Else if
rs, ab ∈ E(C), then fa is a missing edge because G[Y ∪C] is a complete split
graph, a contradiction. Thus this case does not exist.

Case 4: ∃ 1 ≤ t ≤ l + 1 such that f ∈ Yt such that Mt = φ. Exactly
same as Case i.4, with only one difference in Subcase b. The difference is
that in Subcase vi.4.b there are two possibilities for the edges rs, ab: Either
rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case is treated
in Subcase i.4.b. However, the second case does not exist since otherwise
fa is a missing edge because G[Y ∪C] is a complete split graph, which con-
tradicts the fact that (f, a) ∈ E(D). This means that this case does not exist.

Case 5: f ∈ Yl+2. Exactly same as Case i.4, with two differences in Sub-
case b. The first difference is that in Subcase vi.5.b there are two possibilities
for the edges rs, ab: Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C).
The first case is already treated in Subcase i.4.b. However, the second case
does not exist since otherwise fa is a missing edge because G[Y ∪ C] is a
complete split graph, which contradicts the fact that (f, a) ∈ E(D). The
second difference is that fs is not a missing edge in Subcase vi.5.b, because
E[Yl+2,Mj] = φ by definition of G, while in Subcase i.4.b we had to prove it.

Case 6: f = u. Exactly same as Case iv.6.

Case 7: f = y. Exactly same as Case iii.9 with only one difference in
Subcase b. The difference is that in Subcase vi.7.b if ab ∈ E(C) then (a, b)
can be either (x, y), (z, u) (y, z) or (z, y) and so a ∈ {x, y, z}, a contradiction.

Case 8: f = z. Exactly same as Case vi.7 with difference that yz and
uz are reoriented so that (y, z) ∈ E(T ′) and (u, z) ∈ E(T ′), respectively.

Case 9: f = v. Exactly same as Case iii.7, with only one difference: In
Subcase vi.9.2.b if ab ∈ E(C) then (a, b) can be either (x, y), (z, u) or (z, y)
and so a ∈ {x, z}, a contradiction because z → v in D and x→ v in D′ while
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v → a in D.

Case 10: f = x. Here we consider two main cases:

Case 10.1: Assume (x, v) ∈ E(D′). Clearly, x gains only v and y as new
first out-neighbors. However, x loses v as a second out-neighbor and gains u
as a new second out-neighbor. We prove that x gains only u as a new second
out-neighbor.

Subcase a: Suppose that x → a → b → x in T ′, with a 6= y, a 6= v and
b 6= u. Then (a, b) ∈ E(T ), (x, a) ∈ E(D) and thus a /∈ K. Since x→ z → v
in D and x→ y in T , then we may assume that b /∈ C.

Subcase a.1: If (a, b) ∈ E(D), b ∈ N++
D (x).

Subcase a.2: If (a, b) ∈ E(D′) − E(D), then either ab ∈ E(C) or ab ∈
E[Yj,Mj] for some j. If ab ∈ E(C), then b ∈ C, a contradiction. Thus
ab ∈ E[Yj,Mj] for some j. It follows that either (a, b) is a convenient ori-
entation w.r.t. D and hence b ∈ N++

D (x) or there is rs → ab in ∆, namely
s → b and a /∈ N++

D (s). Since a /∈ K, then a ∈ Mj and thus s ∈ Mj. So
by definition of G, xs is not a missing edge of D. But (x, a) ∈ E(D) and
a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (x).

Subcase a.3: If (a, b) ∈ E(T ) − E(D′), then b ∈ K and (a, b) is a conve-
nient orientation w.r.t. D′. Since x → a in D and so in D′, there exists v′
such that x → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C.
Since v′ /∈ C and (x, v′) ∈ E(D′), then (x, v′) ∈ E(D). But this is already
treated in Subcase vi.10.1.a.1 and Subcase vi.10.1.a.2.

Subcase b: Suppose that x → y → b → x in T ′, with b 6= u. Since x →
z → v inD, then we may assume that b /∈ C and hence (y, b) /∈ E(D′)−E(D).

Subcase b.1: If (y, b) ∈ E(D), then either b ∈ S or b is a whole vertex.
Then by the losing relation xy → zu, we get b ∈ N++

D (x).

Subcase b.2: If (y, b) ∈ E(T )−E(D′), then b ∈ K and (y, b) is a convenient
orientation w.r.t. D′. But this is exactly the same as Subcase vi.10.1.a.1 and
Subcase vi.10.1.a.2.

Subcase c: Suppose that x → v → b → x in T ′, with b 6= u. Since
x→ z → v in D and x→ y in T , then we may assume that b /∈ C. We pro-
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ceed similarly to Subcase vi.10.1.b by replacing the losing relation xy → zu
in Subcase vi.10.1.b by the losing relation xv → zy in Subcase vi.10.1.c.1.

Case 10.2: Assume (v, x) ∈ E(D′). Clearly, x gains only y as a new first
out-neighbor and u as a new second out-neighbor. We prove it gains only u
as a new second out-neighbor.

Subcase a: Suppose that x → y → b → x in T ′ with b 6= u. Then
(y, b) ∈ E(T ). Since x→ z → V in D, then we may assume b /∈ C and hence
(y, b) /∈ E(D′)− E(D). This is exactly as Subcase vi.10.1.b.

Subcase b: Suppose that x → a → b → x in T ′ with a 6= y and b 6= u.
Then (a, b) ∈ E(T ), (x, a) ∈ E(D) and thus a /∈ K. Since x → z → v in D
and x→ y in T , then b /∈ C. We proceed exactly as in Case vi.10.1.a.

Case 11: f ∈ V (G) − (Y ∪M ∪ C) = A ∪ (X − X1) = A ∪ (X − Y1).
Exactly same as Case i.6, with only one difference in Subcase b. The differ-
ence is that in Subcase vi.11.b there are two possibilities for the edges rs, ab:
Either rs, ab ∈ E[Yj,Mj] for some j, or rs, ab ∈ E(C). The first case is
treated in Subcase i.6.b. However, for the second case, f must belong to A
since otherwise fa is a missing edge because G[X ∪ C] is a complete split
graph, which contradicts the fact that (f, a) ∈ E(D). Thus fs is not missing
edge of D because E[A,C] = φ by definition of G. Since f → a in D and
a /∈ N++

D (s), then by Lemma 3.2 we get b ∈ N++
D (f).

Therefore, all what precede prove that f has the SNP in D. This com-
pletes the proof.

As immediate consequences of the previous theorem, we may conclude
the following:

Corollary 4.1. Every oriented graph missing a generalized comb satisfies
the SNC.

Corollary 4.2. (Ghazal [4] ) Every oriented graph missing a comb satisfies
the SNC.

Corollary 4.3. (Ghazal [6]) Every oriented graph missing a threshold graph
satisfies the SNC.
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Since threshold graphs, C5, generalized combs and {C4, C4, S3, chair and
co-chair}-free graphs are in F( ~P) and any oriented graph missing one of the
graphs mentioned before satisfies the SNC, we end this article by wondering
the following:

Problem 2. Does every oriented graph missing a graph in F( ~P) satisfies
SNC?
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