
HAL Id: hal-04136056
https://hal.science/hal-04136056v1

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aeneas: Rust Verification by Functional Translation
Son Ho, Jonathan Protzenko, Aymeric Fromherz

To cite this version:
Son Ho, Jonathan Protzenko, Aymeric Fromherz. Aeneas: Rust Verification by Functional Translation.
Inria Paris. 2023. �hal-04136056�

https://hal.science/hal-04136056v1
https://hal.archives-ouvertes.fr

Aeneas: Rust Verification by Functional Translation

Son Ho
Inria

son.ho@inria.fr

Jonathan Protzenko
Microsoft Research

protz@microsoft.com

Aymeric Fromherz
Inria

aymeric.fromherz@inria.fr

1 Introduction
We present the latest additions to the Aeneas framework, a verification pipeline for Rust programs
based on a lightweight functional translation. Aeneas leverages Rust’s rich region-based type system
to eliminate memory reasoning for a large class of Rust programs, as long as they do not rely on
interior mutability or unsafe code, by compiling Rust programs to pure, executable models. Doing so,
we relieve the proof engineer of the burden of memory-based reasoning, allowing them to instead focus
on functional properties of their code. Aeneas supports a limited but expressive subset of Rust, with
shared and mutable borrows, recursive functions and data-structures, and non-nested loops; it currently
has backends for F∗ and Coq. In a 30-min talk, after a quick overview of the core concepts of Aeneas,
we propose to present the most recent additions to the framework, namely its support for loops and
verification using Coq, as well as ongoing work on extending the supported Rust subset to traits.

2 Background
The key idea behind Aeneas’ compilation is that, under the proper restrictions, a Rust function is
fully characterized by a forward function, which computes its return value at call site, and a set of
backward functions (one per lifetime), which propagate changes back into the environment upon ending
lifetimes, thus accounting for side effects. Such forward and backward functions behave similarly to
lenses. Relying on theorem provers to state and prove lemmas about those models, it is then possible to
enforce guarantees about the original programs, such as panic freedom and functional correctness.

We first consider an example that, albeit small, showcases many of Rust’s features. The choose
function receives two mutable borrows x and y of lifetime ’a, and returns one of the two depending on
the value of the boolean b. test_choose then demonstrates a usage of choose.

1 fn choose<'a, T>(b: bool, x: &'a mut T, y: &'a mut T) -> &'a mut T {
2 if b { return x; } else { return y; } }
3

4 fn test_choose() {
5 let mut x = 0i32; let mut y = 0i32;
6 let z = choose(true, &mut x, &mut y);
7 *z = *z + 1;
8 assert!(*z == 1);
9 assert!(x == 1); assert!(y == 0); }

Properly modeling this program poses several challenges. Inside the function test_choose, we must
compute a value for z where choose gets called (line 6). The in-place update (line 7) then indirectly
modifies x and y, whose updated values we finally observe at line 9. We show the code generated by
Aeneas in the snippet below, which uses F∗ syntax where let* stands for the monadic bind.

1 let choose_fwd (t : Type) (b : bool) (x : t) (y : t) : result t = if b then Return x else Return y
2

3 let choose_back (t : Type) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) =
4 if b then Return (ret, y) else Return (x, ret)
5

This work received funding from the France 2030 program managed by the French National Research Agency under
grant agreement No. ANR-22-PECY-0006.

1

6 let test_choose_fwd : result unit =
7 let* z = choose_fwd i32 true 0 0 in (* call to choose *)
8 let* z0 = i32_add z 1 in
9 massert (z0 = 1); (* monadic assert *)

10 let* (x0, y0) = choose_back i32 true 0 0 z0 in (* 'a terminates *)
11 massert (x0 = 1); massert (y0 = 0); Return ()
12 let _ = assert (test_choose_fwd = Return ()) (* unit test *)

Our solution is to use what we call forward and backward functions. We use a forward function to
compute the value returned by a function at call site, i.e., the value z returned by choose at line 6 in the
Rust code, which we translate to a call to choose_fwd at line 7 in the F∗ model. This function follows the
normal computation flow from inputs to outputs, hence the name forward. We then notice that because
x and y are borrowed for as long as z lives, they are only accessible through z until the ’a lifetime ends.
This allows us to temporarily pretend that only z gets incremented at line 7 in the Rust code, meaning
we can limit ourselves to computing a new value for z in the pure model (z0 introduced at line 8 in
the F∗ snippet). Then, upon terminating ’a (beginning of line 9 in the Rust code), we retrieve back
access to x and y. At this point, we have to compute their new values: we do so by using a backward
function, i.e., choose_back at line 10 in the F∗ model. Backward functions use the updated outputs (z0
in the pure model) to compute new values (x0 and y0) for the inputs that we borrowed at call site and
give back upon lifetime termination. As a consequence they go in the direction opposite to the normal
computation flow, hence the name backward. Finally, we give the possibility of generating unit tests for
Rust functions with type () -> () (line 12 in the F∗ snippet).

An interesting property of our translation is its modularity: in order to generate a model for
test_choose, we need only look at the signature of choose, and can ignore its body. We leverage this
property at every step of the translation an in particular when handling external dependencies, that we
treat as opaque declarations. We believe it will also be useful to implement support for traits.

3 New Features
Aeneas supports a variety of Rust features which enable its application to existing Rust projects. Those
features include recursive functions and data-structures, and as a recent addition non-nested loops. For
instance, one might write the nth function below, which allows taking a mutable reference to the n-th
element of a list, mutating it, and regaining ownership of the list, while panicking if n is out of bounds.

enum List<T> { Cons(T, Box<List<T>>), Nil }
pub fn nth<'a, T>(mut ls: &'a mut List<T>, mut i: u32) -> &'a mut T {

while let List::Cons(x, tl) = ls { if i == 0 { return x; } else { ls = tl; i -= 1; } }
panic!() }

A challenge is that the loop recursively dives into the list by manipulating a mutable borrow of the
current list segment, which we can later use for in-place updates. Contrary to the function case, we can
not rely either on a user-written signature to abstract away the loop body. Rather than asking the user
for annotations, we compute a fixed-point for the loop, thus giving a memory predicate that is invariant
through the loop body; this predicate amounts, in our framework, to a function signature, which allows
us to reuse existing facilities to translate loops functionally. We show the complete translation below.
In addition to forward and backward functions for nth, we also generate recursive forward and backward
functions for the loop body (nth_loop_fwd and nth_loop_back).

type list_t (t : Type) = | ListCons : t -> list_t t -> list_t t | ListNil : list_t t

let rec nth_loop_fwd (t : Type)
(ls : list_t t) (i : u32) : result t =
begin match ls with
| ListCons x tl ->

if i = 0 then Return x
else let* i0 = u32_sub i 1 in

nth_loop_fwd t tl i0
| ListNil -> Fail Failure end

let nth_fwd t ls i = nth_loop_fwd t ls i

let rec nth_loop_back (t : Type) (ls : list_t t)
(i : u32) (ret : t) : result (list_t t) =
begin match ls with
| ListCons x tl ->

if i = 0 then Return (ListCons ret tl)
else let* i0 = u32_sub i 1 in

let* tl0 = nth_loop_back t tl i0 ret in
Return (ListCons x tl0)

| ListNil -> Fail Failure end
let nth_back t ls i ret = nth_loop_back t ls i ret

2

	Introduction
	Background
	New Features

