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ABSTRACT Quantum networks make use of the quantum entanglement as building block. When two qubits are
entangled, their state changes exhibit non-classical correlations used to design new applications not possible with
classical communication, such us quantum key distribution or distributed quantum computation. Unfortunately,
quantum entanglement is a probabilistic process strongly dependent on the features of involved devices (optical
fibers, lasers, quantum memories, ...). The management decisions (i.e., the control policy) to set up and keep
the entanglement as long as possible with the highest quality constitutes a stochastic control problem. This
process can be modelled as Markov Decision Process (MDP) and solved via the Reinforcement Learning (RL)
framework (a form of Machine Learning). In this work, we apply this RL framework to learn an entanglement
management policy outperforming the State-of-the-Art policy when models characterising precisely the involved
quantum devices are not known.
Keywords: Quantum communications, quantum swapping, deep reinforcement learning.

1. INTRODUCTION

In the last years, the application of quantum physics principles to computer networks is gaining momentum
among the research and industry communities, as shown by the first attempts of standardisation of a so-
called “Quantum Internet” [1], [2] by the Internet Engineering Task Force (IETF). Amongst these principle
the quantum entanglement has been identified as fundamental resource for Quantum Communication [1], since
it enables the Quantum Internet applications, as secure cryptographic key distribution and, distributed quantum
computing [2]. But, quantum entanglement is a probabilistic process strongly dependent on the features of the
involved communication devices. Consequently, the entanglement management constitutes a stochastic control
problem that can be formulated as a Markov Decision Process (MDP) [3]. In this preliminary work, we investigate
the capacity of Deep Reinforcement Learning (DRL) to solve these problems, in particular, when a quantum
entanglement is set up between two remote communication nodes not directly connected by a link. In the
paragraphs below, we will introduce the required background.
Qubit and entanglement. In quantum communication and quantum computing, the counterpart of a classical
bit is the quantum bit (or qubit). But, whereas the classic bit can take either the “0” state or the “1” state,
the qubit can be in a superposition of the two, with a certain probability to be at one of the states. The qubit
exists in this superposition until its eventual measurement. Afterwards, it will take the “0” value or “1” value
according to the corresponding probability. When two qubits are entangled, their individual states cannot be
described in a separated way: a state change, i.e., a qubit reading measurement, in one of them implicitly comes
with a change in the other one, regardless of the physical distance between them. Thus, the measurements at
the two entangled qubits exhibit non-classical correlations used to design new applications not possible with
classical communication, such us quantum key distribution or distributed quantum computation.
Quantum network. A set of nodes able to exchange qubits and distribute entangled states amongst themselves
is defined as a quantum network in the RFC [1]. These quantum nodes are connected each other by optical
fiber or satellite laser links. In this paper, we assume fiber links. When, an entanglement is set up between
two qubits located at two adjacent quantum nodes connected by a direct link (e.g., between nodes A and B in
Fig. 1), the entanglement constitues an elementary quantum link [1]. Its success probability Pe exponentially
decreases with distance, which means that short-distance entanglements (like A-B, in Fig. 1) are more likely to
succeed than long-distance entanglements (like A-C, in Fig. 1). To overcome this issue, we can create a virtual
link [1] over two elementary links via the so-called entanglement swapping [1], [4]. This process allows creating
long-distance entangled pairs by consuming the previously generated elementary links on the path between two
further end-points. In Fig. 1, the elementary links A-B and B-C are consumed to create a longer virtual link
A-C. Quantum nodes (as B in Fig. 1) that create long-distance entangled pairs via entanglement swapping
are called quantum repeaters [1] and they must store intermediate elementary links on the so-called quantum
memories [1] to be consumed later.
Quantum memory lifetimes. The probability that a qubit stored in a quantum memory is still, after a certain
time, in its original state (e.g., an entangled state) decreases with time [5]. This probability is referred as to
memory efficiency ηm [5], and its decay is known as decoherence. This process is the consequence of the
progressive interactions of the quantum memory with the environment, since a memory cannot be perfectly
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Figure 1: Elementary link vs virtual link.

isolated from it. The entanglement swapping success probability Ps depends on the memory efficiency ηm of
the oldest loaded quantum memory involved in the swapping [6].

This paper, as far as we know, is one of the first works modelling a quantum virtual link generation process
as a classical MDP and using a DRL algorithm to find an optimal generation policy tracking the age of the
elementary links. This supposes an innovative contribution with respect to the related works, where this age of
the elementary are not used in the generation procedures.

Related works are presented in Section 2. The MDP modelling the virtual link generation along with the DRL
approach used to solve it are described in Section 3. Numerical results and experiment settings are shown in
Section 4. Section 5 concludes the article.

2. RELATED WORKS
The idea that the management problem of quantum elementary and virtual links can be mathematically formalised
as a quantum generalisation of a MDP was developed in the Khatri’s PhD dissertation [3]. This dissertation
assumes the Quantum Decision Process (QDP) framework, [7], the quantum analog of a MDP, where states
are quantum and actions are quantum operators, which implies the usage of a quantum computer. In contrast
to this work, we model the decision problem as a classical MDP with states described by measured physical
properties and actions taken on a macroscopic level. We think that many of Khatri’s ideas can be adapted to
the current state-of-the-art without waiting for the development of a quantum computer. Then, in the this paper,
we model as a classical MDP the QDP with entanglement swapping presented in the Appendix D in [3]. This
process aims to generate a virtual link from two elementary links via entanglement swapping as explained in
Section 1. The virtual link generation has been recently studied in two contexts: (i) quantum repeaters chains [8]
and, (ii) quantum entanglement routing [9]. In both of them, we target to set up long-distance entanglements
between non-adjacent communication nodes when topologies are Daisy chains and mesh networks, respectively.
In these works, the “history” of the links is ignored, i.e., the timestamps at which the elementary (and virtual)
link generation processes succeed are not used. Besides, the virtual link generation always follows a infinity
memory cutoff-time policy when, once the early elementary link is successful set up, we keep it till the late also
succeeds, regardless the impact of larger decoherence of the oldest one onto the swapping probability Ps.

3. REINFORCEMENT LEARNING FOR VIRTUAL LINK GENERATION
3.1 Problem Statement
As aforementioned, the management of a virtual link generation over two elementary links via entanglement
swapping can be formulated as a MDP [3]. In this decision process, we aim to maximize the number of
successful entanglement swaps per time unit, i.e., the virtual link generation rate. To generate the virtual link,
two elementary links must have been successfully created before attempting the entanglement swapping with
probability Ps. The older the first generated elementary link is, the more likely the swapping will fail. Then,
after a cutoff time tc, discarding the oldest elementary link and trying to generate it again (i.e., resetting it)
becomes beneficial, since links freshly resets have always a higher swapping probability. Unfortunately, this reset
(a new elementary link generation) comes with a cost, as it is also a stochastic process with success probability
Pe, which must be repeated till success, delaying the eventual swapping attempt. Thus, the cutoff time tc of
the elementary link has to be carefully selected to reduce the time between two successful swaps and, hence,
maximize the virtual link generation rate.

Now, we describe the process as a MDP. At each time step t, a control agent applies a certain action at after
observing the current state st. The execution of this action will trigger a transition into a new state st+1 with a
certain probability p(st, at, st+1). The agent receives a reward rt+1 based on the “quality” of the pair (st, at) to
maximize a long-term objective. Then, the agent observes the new state st+1 and repeats these steps. Assuming
an initial state s0, the MDP gives rise to a trajectory: s0, a0, r1, s1, a1, r2, s2, a2, r3, , . . .. This trajectory is
generated based on an agent policy π(s, a) denoting the probability that action at = a is taken at state st = s.
In our case, the system state (action) consists of the concatenation of the states (actions) of the two elementary
links and the virtual link. The state of each link is a vector s = [x,m], where x is 1 if entanglement is active
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(0, otherwise); and, m is the entanglement age (-1, if entanglement is inactive). Two actions can be taken over
each link: either the link is re(set), i.e., a link generation is (re)tried; or the link waits, i.e., no link generation
is (re)tried. The former provokes a stochastic transition with probability Pe (Ps) to a state s = [1, 0] for an
elementary (virtual) link generation. The later leaves the current link state unchanged. Here, we assume a unique
virtual link to be set up by swapping two elementary links, i.e., a space action of size 23 = 8. The reward is
simply 1 if the entanglement swapping succeeds; and 0, otherwise.

Finally, we conclude this subsection by detailing the assumptions about the quantum environment model.
In our work, entanglements are created in a “heralded” fashion, i.e., we know when the entanglement has
been successfully established (therefore, cutoff times tc can be measured). One created, entanglements must be
stored in quantum memories to eventually be swapped to create virtual links. Amongst the different methods
of entanglement generation, the DLCZ-based protocols [6] are an option satisfying these requirements. When
DLCZ-based protocols are used the time becomes slotted with time slots L0/v long, where L0 is the length of
the elementary link (fiber) and v is the light propagation speed at the fiber. This slot duration represents the time
required to know if an elementary link generation has succeeded: the duration of the time step before observing
a new state and taking a new action (retry or not a link generation). The elementary link generation success
probabilities Pe exponentially decreases with fiber distance L0 according to the work [6]. Whereas, the memory
efficiency ηm, main factor defining the swapping success probability Ps, falls with the storage time following
the Mims’ model described in [5]. The exact values of these probabilities depend on the precise characterisation
of the optical fiber and quantum memories involved. We assume that we do not know them.

3.2 Reinforcement Learning based approach
If we do not possess models characterizing precisely the elementary link generation probability Pe and the
memory efficiency ηm (and, thus, the entanglement swapping success probability Ps), the state transition
probabilities p(st, at, st+1) are unknown. In this case, we can apply Deep Reinforcement Learning (DRL) [10],
[11] to find a policy maximizing the virtual link generation rate. In Reinforcement Learning (RL), we define a
Q-value function Qπ(s, a) as the expected discounted return from a given state-action pair (s, a) when following
a policy π thereafter. The discounted return is the sum of the discounted rewards the agent receives over the
future in a trajectory: sum∞k=0γ

krt+k+1, with γ ∈ [0, 1]. Therefore, an agent solving a RL problem searches an
optimal policy π∗ maximizing this Q-value function. Here, this policy consists of finding the best cutoff time tc
for the oldest elementary link (see Section 3.1). When state transition probabilities are unknown (our case), this
Q-value function can be estimated by using statistical learning with the Deep Q-Network (DQN) algorithm [11].
In the present work, the learning routine simply follows the classical DQN [11] but adapted to our virtual link
generation problem.

4. SIMULATION EXPERIMENTS
4.1 Experiment Settings
We use OpenAITMGym [12], one of the most popular toolkits to define RL environments in Python, to program
a quantum environment modelling the MDP as described in Section 3.1. We consider the length of the fiber
links L0 and the light speed are 100 km and 200, 000 km/s, respectively, which yields to a time step duration
of 0, 5 ms. We assume fiber losses of 0.2 dB/km achievable around 1, 550 nm. We use the Mims’ equation
corresponding to the DD sequence ’XX’ in study [5], but considering a zero-time efficiency of 1.

The agent is implemented in TensorFlow [13] as a three-layer neural network with two dense layers of 32
neurones, each having a tanh activation function, and output layer without activation with as many neurones
as actions (8, here since we consider two elementary links and one virtual link). The neural network is trained
using the DRL algorithm called DQN [11] provided by the OpenAITM Baselines library [14].

Fig. 2a depicts the episode reward evolution along the training time. An episode reward is the sum of the
rewards r produced during all the steps in a training episode. We observe that the average episode reward
increases with time, stabilizing after 600 episodes, where an episode is 10, 000 steps long.

4.2 Numerical Results
In Fig. 2b, we compare the policy learned by the DRL agent with two benchmarks:
• Inf-cutoff-time policy: the cutoff time of the oldest link is set to infinity, then, when the first elementary

link to succeed is set up, we keep it till the second one also succeeds regardless the decoherence level of
the first one. This is the by-default policy considered by the State-of-the-Art [8], [9]. It represents a lower
bound on the optimal policy.

• Opt-cutoff-time policy: the optimal cutoff time of the oldest link is found by brute force. This process
cannot scale up with larger problem instances. It trivially represents an upper bound on the policy learned
by the DRL agent.



We test the policies by simulating the MDP process 1000 times. An episode is a simulation instance. Each
episode again consist of 10, 000 steps. We observe that the DRL agent clearly outperforms the Inf-cutoff-time
policy and is close to the opt-cutoff-time policy.The found cutoff times are 146.0 steps and 108 steps for the
DRL policy and opt-cutoff-time policy, respectively.

(a) (b)

Figure 2: (a) Episode reward evolution during training. (b) Swap rate of DRL agent vs benchmarks during test.

5. CONCLUSIONS
In this study, we explore if DRL can be used to learn policies maximizing the virtual link generation rate via
entanglement swapping in scenarios where a model of the entanglement success probabilities is not previously
known. In such scenario, we have obtained some first results pointing out that we can discover a close-to-optimal
policy outperforming the State-of-the-Art Inf-cutoff-time policy.
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