
HAL Id: hal-04135985
https://hal.science/hal-04135985

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

prisma-v2: Extension to Cloud Overlay Networks
Redha A. Alliche, Tiago da Silva Barros, Ramon Aparicio-Pardo, Lucile

Sassatelli

To cite this version:
Redha A. Alliche, Tiago da Silva Barros, Ramon Aparicio-Pardo, Lucile Sassatelli. prisma-v2: Exten-
sion to Cloud Overlay Networks. ICTON 2023 - 23rd International Conference on Transparent Optical
Networks, Jul 2023, Bucarest, Romania. �10.1109/ICTON59386.2023.10207272�. �hal-04135985�

https://hal.science/hal-04135985
https://hal.archives-ouvertes.fr


prisma-v2: Extension to Cloud Overlay Networks
Redha A. Alliche?, Tiago Da Silva Barros?, Ramon Aparicio-Pardo?, Lucile Sassatelli†

? Université Côte d’Azur, CNRS, Inria, I3S, France
† Université Côte d’Azur, CNRS, I3S, Institut Universitaire de France, France

Contact: alliche@i3s.unice.fr

ABSTRACT
In this paper, we present prisma-v2, a new release of prisma, a Packet Routing Simulator for Multi-Agent

Reinforcement Learning. prisma-v2 brings a new set of features. First, it allows simulating overlay network
topologies, by integrating virtual links. Second, this release offers the possibility to simulate control packets,
which allows to better evaluate the overhead of the network protocol. Last, we integrate the modules along with
the core (ns-3) to a docker container, so that it can be run in any machine or platform. prisma-v2 is, to the
best of our knowledge, the first realistic overlay network simulation playground that offers to the community
the possibility to test and evaluate new network protocols.
Keywords: ns-3, Multi-Agent, Packet Routing, Reinforcement Learning, Network Simulation, ML tool.

1. INTRODUCTION

Overlay networks are virtual or logical networks built on top of a physical network (called underlay networks).
Overlay networks provide flexible and dynamic traffic routing between nodes that are not directly connected
by physical links, but rather by virtual or logical links that correspond to paths in the underlying network.
Those virtual links can be established using different technologies, like Generic Routing Encapsulation (GRE),
Virtual Private Network (VPN) or network virtualization. The underlay topology is managed by a third party,
typically one or more network operators. One particular example of overlay networks is Software-Defined Wide
Area Network (SD-WAN) [1], which fully utilizes the bandwidth of all available transport networks serving one
location, like Multiple Protocol Label Switching (MPLS) fabric, Internet and 5G, considering each one of them
as an overlay link. In the context of overlay networks, the problem of routing the traffic between the overlay links,
especially in muti-hop scenarios, becomes challenging, since the underlay routing policies are unknown and can
involve different protocols, like Open Shortest Path First (OSPF), Border Gateway Protocol (BGP) and others.
The absence of information about the underlay network topology and routing policies, yields the existence of
Triangle Inequality Violation (TIV) [2]: it is highly possible to find another path relayed by cloud servers which
has a much lower delay than following the shortest path in the overlay topology. There are classical routing
protocols that can be used to route in overlay, like Cisco’s Overlay Management Protocol (OMP), which is a
control protocol developed by Cisco and working as BGP. This class of protocols highly depends on pre-defined
metrics, and they do not handle multi-hop overlay network. To deal with the above limitations and challenges,
a promising approach is using Machine Learning (ML) methods, especially Reinforcement Learning (RL) [3],
which provides the ability for an agent (typically a network device) to learn from its environment, and to adapt
it policy to meet the dynamically changing demand. In the context of overlay networks, the agent can exploit
the information gathered from the network to overcome the lack of knowledge about the underlay network.

The Distributed Packet Routing (DPR) is the problem of finding optimal paths for packets, where each node
decides locally which neighbor to forward a packet to. Multi-Agent Reinforcement Learning (MA-RL) is a
suitable approach for addressing DPR. Each node can work as an agent that learns a local policy based on
its observations and rewards, resulting in scalable and robust solutions. Moreover, MA-RL can leverage the
advances of Deep Reinforcement Learning (DRL) techniques, which enables the agents to handle complex and
high-dimensional state and action space. Several studies applied MA-RL and DRL to DPR in many situations,
ranging from a general multi-hop routing [4], to specific application like mobile ad-hoc networks (MANets)
[5]. These works can be extended to the case of overlay networks [6]. However, developing and testing MA-RL
solutions for DPR requires a realistic and flexible simulation environment in which the researchers can evaluate
the performance, and also the overhead of their solutions.

To support this research field, we made available the first version of prisma [7], which is an open-source
realistic network simulation environment based on ns-3 [8] and openAI-Gym [9]. This tool allows fast
prototyping of Multi-Agent Deep Reinforcement Learning (MA-DRL) solutions, while assuring close to real-
world behaviors. prisma is, along with other network simulation tools providing data driven based control, not
adapted to the overlay scenarios. Given the challenging aspect of this context, we propose in this paper, a new
release of prisma, namely prisma-v2, which offers the possibility to experiment MA-DRL approaches in the
context of cloud overlay networks. The new features brought by prisma-v2 are listed below:

• Overlay topology simulation and control management.
• Ability to add dynamic underlay traffic along with the overlay one.
• High reproducibility of results by supplying containerizing capability using docker [10].



2

• Refactoring the code for better readability.
• Improve Tensorboard [11] logging by incorporating both training and testing phases.
• Implement control packets to realistically simulate the communication and evaluate the overhead.

The prisma-v2 code source is publicly available as v0.2 release of prisma at [12].
The following of the paper will be structured as follows. First, we will talk briefly about the related work in
terms of network simulating tools. Second, we will present prisma-v2 features and code structure. Then, we
will present how to install the tool and present some use cases.

2. RELATED WORKS

One of the most popular network simulating tools is ns-3 [8], which is a discrete-event simulator implemented
in C++. It allows researchers to model and test different aspects of network configuration and protocols.
However, ns-3 does not support deep learning algorithms, since most of these algorithms rely on open-source
python frameworks like TensorFlow and PyTorch. To enable the interaction between ns-3 and the latter
frameworks, many extensions have been proposed, such as ns3-gym [13] and ns3-ai [14]. The first one
implements a socket communication channel between ns-3 and python, while the second uses a shared
memory. Another direction for extending ns-3 is to focus on specific domains or applications of network
systems, such as wireless and IoT networks. These domains pose new challenges and opportunities for network
research. To address these challenges, some extensions have been developed such as GrGym [15] which is
designed for radio communication, MR-iNet Gym [16] and mobile-env [17] which enable the use of DRL
for wireless networks and wireless mobile networks, respectively. In this paper, we present prisma-v2, which
is the first tool to our knowledge to bring DRL, especially MA-DRL, to cloud overlay networks.

child

child

Agent class

agent_type: str
train : bool
neighbors: list
tb_writer_dict: dict

init_static_vars(parameters) 
run()
reset()
step()
sync_current(neighbor_idx)

Forwarder class

port: int
transition_number: int

take_action()
treat_info()
handle_new_packet()
handle_transit_packet()
handle_done()

DQN_Agent class

 q_network: tf.model
 num_actions: int
num_nodes: int
gamma: float
observation_shape: tuple
optimizer: tf.optimizer
loss: tf.losses
neighbors_target_q_networks: list

step(obs, stochastic, update_eps)
train(obs, actions, q_t_selected_targets)
sync_neighbor_target_q_network(agent_nn, neighbor_idx)
get_neighbor_target_value(neighbor_idx)

Trainer class

gradient_step_idx: int
last_training_time: int
last_sync_time: int

train_step

main.py

Instantiate N
forwarder agents

Instantiate N
trainer agents

tb_logger.py

argument_parser.py utils.py

run_ns3.pyUse

Use Use

Use

parent

child

Use

Python Code C++ code

parent

child

PacketManager

packet: *Packet (NS3)

source:int
desttination: int

receivePacket(packet)
getExtraInfo(): string

DataPacketManager

getObservation()
dropPacket(packet)
sendPacket(packet)

SmallSignalingPacketManager

childOneHopDelay: float

getReward(): float

BigSignalingPacketManager

NNIndex: int
segmentIndex:int

PingForwardPacketManager

delay: float

SendPingBackPacket(packet, delay)

ComputeStats

globalPacketsInjected: int

globalPacketsArrived: int

globalPacketsLost: int

globalEndToEndDelay: vector<float>

PingBackPacketManager

pingPacketIndex: int
pingPacketsDelay: Array<vector<float>>

packet_routing_gym.ccZMQ
sockets

Use

Use

Use

Use

Use

child

child

parent

Use

Figure 1: prisma-v2 code structure

3. PRISMA-V2 STRUCTURE

The main features of this release are illustrated in the Fig. 1. ns-3 part. The prisma-v2 allows controlling
the packet routing policy in overlay networks and, also simulating control signalling packets. We implemented
three types of control signalling packets: the big signalling packets generated at a fixed time interval, and used
to simulate the transfer of neural network weights between neighbors; the small signalling packets generated as
a response to data packets, in order to transport the new observation and the reward; and the ping packets created
according to a parameterized number of data packet transmissions and used to collect the overlay link’s delay. For
managing the data and control signalling packets, we developed the class PacketManager, which is inherited
by five specific packet manager classes. The SmallSignallingPacketManager manages the arriving of
small signalling packets. The class extracts the overlay link’s delay measured during the sending of the data
packet. The BigSignallingPacketManager manages the big signalling packet, extracting the information
about the neural network weights shared by a node. The PingForwardPacketManager receives a ping
packet sent, and calculate the overlay link’s delay in the overlay scenario. The PingBackPacketManager
receives the response of the ping packet containing the tunnel delay and stores it. The DataPacketManager
manages the data packets. It collects the observation information to transmit to the agent. Furthermore, it sends
the packet for the next hop based on the agent action. This class communicates with the ComputeStats class,
which is responsible for the statistics of the network simulation, such as the number of injected packets by the
node, the number of lost packets by the node and the end-to-end delay of the arrived packets.



3

python part. The left side of figure 1 presents the python code structure of prisma-v2. Like the first version,
the program is launched by calling main.py with the simulation arguments. Packet Forwarder agent objects
are instantiated from the Forwarder class stored in forwarder.py, while trainer daemon agent objects are
instantiated from the Trainer class stored in Trainer.py. Both classes are children of the Agent class
stored in agent.py. The Agent class implements the methods run, reset, and step, which will be
overridden by the children’s classes: For the Trainer class, the run method will launch the daemon main loop
that checks if it is the time to train, and calls step method to run a training step; For the Forwarder class, the
run method will start the agent episode and connects it to the network node in ns-3. It calls the step method
to run a transition (waiting for a packet to arrive to the node, taking an action using the take-action method,
and handling the information returned as a response to the action). The reset method of the Forwarder
class will reset the agent environment before starting a new episode. Along with the agent’s classes, we provide
DQN Agent class in agent.py, which provides the necessary methods to use an adaptation of Deep Q-Network
(DQN) model for the DPR problem like in [4] and [18]. This class relies on the files replay buffer.py
and models.py for the experience replay buffer and the neural network architecture, respectively.
Tensorboard logger part. In prisma-v2 release, the network metrics(end-to-end delay, packet loss, control
overhead) are computed by the ns-3 part and transmitted to the python for being displayed in the tensorboard
logger. Moreover, the tensorboard displays in real time all the metrics to the user during the simulation.

We also improved the logger to automatically store in the same instance the train and the test stats. The logs
are saved in the session folder, which is given by the argument session name, respectively.

4. USAGE

In this section, we will go through different parts of the code, and explain the basic use cases that a user may
encounter to launch a simulation.

4.1 Installation

After cloning the repository, the user is able to run prisma-v2 by three different ways:

• Run locally by installing the required packages and dependencies by calling install.sh.
• Create a local docker image, by running the docker build command on the root folder. This is possible

since we provide a docker definition file. This will copy all the folder in the image and so that user may
run prisma-v2 by calling the docker run command and binding the results’ folder to be able to retrieve
the results in the host machine.

• Pull a docker image provided in Docker Hub. This image only contains the Linux environment with the
requirements installed, so the user need to bind the prisma-v2 folder to the image.

We have provided an illustrative example in the readme.md file, guiding the user from the installation to
training a Multi-Agent Deep Q-Network (MA-DQN) model to solve the DPR problem in an overlay network.

4.2 Use cases

1) Modifying or Adding parameters: Like the previous version, the parameters are organized by groups and
can be visualized by calling “python3 main.py –help”. They are accessible in the file argument parser.py,
where the user can add a new parameter or modify an existing one. In the find run ns3.py, we parse the
arguments to ns-3, so the user can modify this function to pass arguments to the NS-3 part.

2) Changing the DRL algorithm: The state can be modified for in GetObservation method of the
DataPacketManager. The user may modify the DRL model input shape to match the new observation
shape. Pre-defined neural networks models are already implemented in models.py, and a DRL algorithm is
implemented in the DQN Agent class. The user may change the latter class to change the learning algorithm.

3) Sharing the information between the agents: The agent forwarder and trainer objects share information
with the main process using the Agent class static variables. In those variables, we can find agents which stores
the DQN Agent objects, and pkt tracking dict to keep track of transiting packets in the network.

4) Changing the topology settings: To change the overlay topology configuration, the user may change some
parameters: physical adjacency matrix path, overlay adjacency matrix path and
map overlay path for the paths to the underlay topology’s adjacency matrix file, the overlay topology’s
adjacency matrix file, and the map between the indices of overlay and underlay nodes file, respectively; The traffic
in underlay topology is handled, by default, using the OSPF protocol, which is used for computing the routing
tables. Changing the routing policy is possible by the native ns-3 method RecomputeRoutingTables.



5) Customize control packets: For customizing the control packets, the user may create a new class that
inherits the class PacketManager. For example, The receivePacket method recovers the packet in-
formation at its arriving and the method GetInfo encapsulate the useful collected information in order
to send it to the agent. For generating control signalling packets, the user may be inspired by the meth-
ods sendSmallSignalingPacket and sendPingForwardPacket, providing the packet size and the
information which the control signalling packet should encapsulate. For the bigSignallingPacket, the
parameters syncStep and bigSignalingSize contain the period time for sharing the model weights and
weghts total size, respectively. For creating new control signalling mechanisms, the user may be inspired in the
current mechanisms developed in prisma-v2.

5. CONCLUSION

In this paper, we have presented prisma-v2, which is a new release of prisma, extending this tool to overlay
networks. This version adds a new set of features, like offering the possibility to add control signalling packet and
measure the impact of having communication between the agent, and so, evaluate the real cost of implementing
MA-DRL solutions for DPR in overlay networks. We hope that this initiative will motivate future research works
tackling this challenging problem or adapting the tool to new problems involving decentralized solutions.

ACKNOWLEDGMENTS
The author acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant
ANR-19-CE-25-0001-01 (ARTIC project). This work was performed using HPC resources from GENCI-IDRIS
(Grant 2021-AD011012577).

REFERENCES
[1] Z. Yang et al., “Software-defined wide area network (sd-wan): Architecture, advances and opportunities,”

in 2019 28th International Conference on Computer Communication and Networks (ICCCN). IEEE, 2019.
[2] C. Lumezanu et al., “Triangle inequality and routing policy violations in the internet,” in Passive and

Active Network Measurement: 10th International Conference, PAM 2009, Seoul, Korea, April 1-3, 2009.
Proceedings 10. Springer, 2009, pp. 45–54.

[3] R. S. Sutton et al., Reinforcement learning: An introduction. MIT press, 2018.
[4] X. You et al., “Toward Packet Routing With Fully Distributed Multiagent Deep Reinforcement Learning,”

IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 2, pp. 855–868, Feb. 2022,
conference Name: IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[5] S. Kaviani et al., “Robust and scalable routing with multi-agent deep reinforcement learning for manets,”
arXiv preprint arXiv:2101.03273, 2021.

[6] O. Houidi et al., “Amac: Attention-based multi-agent cooperation for smart load balancing,” in 2023
IEEE/IFIP Network Operations and Management Symposium (NOMS 2023), 2023.

[7] R. A. Alliche et al., “Prisma: a packet routing simulator for multi-agent reinforcement learning,” in 2022
IFIP Networking Conference (IFIP Networking). IEEE, 2022, pp. 1–6.

[8] nsnam, “Ns-3 documentation website.” [Online]. Available: https://www.nsnam.org/documentation/
[9] G. Brockman et al., “OpenAI Gym,” arXiv:1606.01540 [cs], Jun. 2016, arXiv: 1606.01540.

[10] “Docker main page website.” [Online]. Available: https://www.docker.com/
[11] “Tensorboard visualization toolkit.” [Online]. Available: https://www.tensorflow.org/tensorboard
[12] “Prisma tool: An open marl framework for packet routing.” [Online]. Available: https://github.com/

rapariciopardo/PRISMA
[13] P. Gawłowicz et al., “ns-3 meets OpenAI Gym: The Playground for Machine Learning in Networking

Research,” in Proc. ACM International Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), November 2019.

[14] H. Yin et al., “Ns3-ai: Fostering artificial intelligence algorithms for networking research,” in Proc. ACM
2020 Workshop on Ns-3 (WNS3), New York, NY, USA, 2020, p. 57–64.

[15] A. Zubow et al., “Grgym: When gnu radio goes to (ai) gym,” in Proceedings of the 22nd International
Workshop on Mobile Computing Systems and Applications, 2021, pp. 8–14.

[16] C. Farquhar et al., “Marconi-rosenblatt framework for intelligent networks (mr-inet gym): For rapid design
and implementation of distributed multi-agent reinforcement learning solutions for wireless networks,”
Computer Networks, vol. 222, p. 109489, 2023.

[17] S. Schneider et al., “mobile-env: An open platform for reinforcement learning in wireless mobile networks,”
in NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022, pp. 1–3.

[18] R. A. Alliche et al., “Impact evaluation of control signalling onto distributed learning-based packet routing,”
in 34th Intl. Teletraffic Congress, ITC 2022, 2022.


