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In this paper, we present prisma-v2, a new release of prisma, a Packet Routing Simulator for Multi-Agent Reinforcement Learning. prisma-v2 brings a new set of features. First, it allows simulating overlay network topologies, by integrating virtual links. Second, this release offers the possibility to simulate control packets, which allows to better evaluate the overhead of the network protocol. Last, we integrate the modules along with the core (ns-3) to a docker container, so that it can be run in any machine or platform. prisma-v2 is, to the best of our knowledge, the first realistic overlay network simulation playground that offers to the community the possibility to test and evaluate new network protocols.

INTRODUCTION

Overlay networks are virtual or logical networks built on top of a physical network (called underlay networks). Overlay networks provide flexible and dynamic traffic routing between nodes that are not directly connected by physical links, but rather by virtual or logical links that correspond to paths in the underlying network. Those virtual links can be established using different technologies, like Generic Routing Encapsulation (GRE), Virtual Private Network (VPN) or network virtualization. The underlay topology is managed by a third party, typically one or more network operators. One particular example of overlay networks is Software-Defined Wide Area Network (SD-WAN) [START_REF] Yang | Software-defined wide area network (sd-wan): Architecture, advances and opportunities[END_REF], which fully utilizes the bandwidth of all available transport networks serving one location, like Multiple Protocol Label Switching (MPLS) fabric, Internet and 5G, considering each one of them as an overlay link. In the context of overlay networks, the problem of routing the traffic between the overlay links, especially in muti-hop scenarios, becomes challenging, since the underlay routing policies are unknown and can involve different protocols, like Open Shortest Path First (OSPF), Border Gateway Protocol (BGP) and others. The absence of information about the underlay network topology and routing policies, yields the existence of Triangle Inequality Violation (TIV) [START_REF] Lumezanu | Triangle inequality and routing policy violations in the internet[END_REF]: it is highly possible to find another path relayed by cloud servers which has a much lower delay than following the shortest path in the overlay topology. There are classical routing protocols that can be used to route in overlay, like Cisco's Overlay Management Protocol (OMP), which is a control protocol developed by Cisco and working as BGP. This class of protocols highly depends on pre-defined metrics, and they do not handle multi-hop overlay network. To deal with the above limitations and challenges, a promising approach is using Machine Learning (ML) methods, especially Reinforcement Learning (RL) [START_REF] Sutton | Reinforcement learning: An introduction[END_REF], which provides the ability for an agent (typically a network device) to learn from its environment, and to adapt it policy to meet the dynamically changing demand. In the context of overlay networks, the agent can exploit the information gathered from the network to overcome the lack of knowledge about the underlay network.

The Distributed Packet Routing (DPR) is the problem of finding optimal paths for packets, where each node decides locally which neighbor to forward a packet to. Multi-Agent Reinforcement Learning (MA-RL) is a suitable approach for addressing DPR. Each node can work as an agent that learns a local policy based on its observations and rewards, resulting in scalable and robust solutions. Moreover, MA-RL can leverage the advances of Deep Reinforcement Learning (DRL) techniques, which enables the agents to handle complex and high-dimensional state and action space. Several studies applied MA-RL and DRL to DPR in many situations, ranging from a general multi-hop routing [START_REF] You | Toward Packet Routing With Fully Distributed Multiagent Deep Reinforcement Learning[END_REF], to specific application like mobile ad-hoc networks (MANets) [START_REF] Kaviani | Robust and scalable routing with multi-agent deep reinforcement learning for manets[END_REF]. These works can be extended to the case of overlay networks [START_REF] Houidi | Amac: Attention-based multi-agent cooperation for smart load balancing[END_REF]. However, developing and testing MA-RL solutions for DPR requires a realistic and flexible simulation environment in which the researchers can evaluate the performance, and also the overhead of their solutions.

To support this research field, we made available the first version of prisma [START_REF] Alliche | Prisma: a packet routing simulator for multi-agent reinforcement learning[END_REF], which is an open-source realistic network simulation environment based on ns-3 [START_REF] Nsnam | Ns-3 documentation website[END_REF] and openAI-Gym [START_REF] Brockman | OpenAI Gym[END_REF]. This tool allows fast prototyping of Multi-Agent Deep Reinforcement Learning (MA-DRL) solutions, while assuring close to realworld behaviors. prisma is, along with other network simulation tools providing data driven based control, not adapted to the overlay scenarios. Given the challenging aspect of this context, we propose in this paper, a new release of prisma, namely prisma-v2, which offers the possibility to experiment MA-DRL approaches in the context of cloud overlay networks. The new features brought by prisma-v2 are listed below:

• Overlay topology simulation and control management.

• Ability to add dynamic underlay traffic along with the overlay one.

• High reproducibility of results by supplying containerizing capability using docker [START_REF]Docker main page website[END_REF].

• Refactoring the code for better readability.

• Improve Tensorboard [START_REF]Tensorboard visualization toolkit[END_REF] logging by incorporating both training and testing phases.

• Implement control packets to realistically simulate the communication and evaluate the overhead. The prisma-v2 code source is publicly available as v0.2 release of prisma at [START_REF]Prisma tool: An open marl framework for packet routing[END_REF]. The following of the paper will be structured as follows. First, we will talk briefly about the related work in terms of network simulating tools. Second, we will present prisma-v2 features and code structure. Then, we will present how to install the tool and present some use cases.

RELATED WORKS

One of the most popular network simulating tools is ns-3 [START_REF] Nsnam | Ns-3 documentation website[END_REF], which is a discrete-event simulator implemented in C++. It allows researchers to model and test different aspects of network configuration and protocols. However, ns-3 does not support deep learning algorithms, since most of these algorithms rely on open-source python frameworks like TensorFlow and PyTorch. To enable the interaction between ns-3 and the latter frameworks, many extensions have been proposed, such as ns3-gym [START_REF] Gawłowicz | ns-3 meets OpenAI Gym: The Playground for Machine Learning in Networking Research[END_REF] and ns3-ai [START_REF] Yin | Ns3-ai: Fostering artificial intelligence algorithms for networking research[END_REF]. The first one implements a socket communication channel between ns-3 and python, while the second uses a shared memory. Another direction for extending ns-3 is to focus on specific domains or applications of network systems, such as wireless and IoT networks. These domains pose new challenges and opportunities for network research. To address these challenges, some extensions have been developed such as GrGym [START_REF] Zubow | Grgym: When gnu radio goes to (ai) gym[END_REF] which is designed for radio communication, MR-iNet Gym [START_REF] Farquhar | Marconi-rosenblatt framework for intelligent networks (mr-inet gym): For rapid design and implementation of distributed multi-agent reinforcement learning solutions for wireless networks[END_REF] and mobile-env [START_REF] Schneider | mobile-env: An open platform for reinforcement learning in wireless mobile networks[END_REF] which enable the use of DRL for wireless networks and wireless mobile networks, respectively. In this paper, we present prisma-v2, which is the first tool to our knowledge to bring DRL, especially MA-DRL, to cloud overlay networks. 

PRISMA-V2 STRUCTURE

The main features of this release are illustrated in the Fig. 1. ns-3 part. The prisma-v2 allows controlling the packet routing policy in overlay networks and, also simulating control signalling packets. We implemented three types of control signalling packets: the big signalling packets generated at a fixed time interval, and used to simulate the transfer of neural network weights between neighbors; the small signalling packets generated as a response to data packets, in order to transport the new observation and the reward; and the ping packets created according to a parameterized number of data packet transmissions and used to collect the overlay link's delay. For managing the data and control signalling packets, we developed the class PacketManager, which is inherited by five specific packet manager classes. The SmallSignallingPacketManager manages the arriving of small signalling packets. The class extracts the overlay link's delay measured during the sending of the data packet. The BigSignallingPacketManager manages the big signalling packet, extracting the information about the neural network weights shared by a node. The PingForwardPacketManager receives a ping packet sent, and calculate the overlay link's delay in the overlay scenario. The PingBackPacketManager receives the response of the ping packet containing the tunnel delay and stores it. The DataPacketManager manages the data packets. It collects the observation information to transmit to the agent. Furthermore, it sends the packet for the next hop based on the agent action. This class communicates with the ComputeStats class, which is responsible for the statistics of the network simulation, such as the number of injected packets by the node, the number of lost packets by the node and the end-to-end delay of the arrived packets. python part. The left side of figure 1 presents the python code structure of prisma-v2. Like the first version, the program is launched by calling main.py with the simulation arguments. Packet Forwarder agent objects are instantiated from the Forwarder class stored in forwarder.py, while trainer daemon agent objects are instantiated from the Trainer class stored in Trainer.py. Both classes are children of the Agent class stored in agent.py. The Agent class implements the methods run, reset, and step, which will be overridden by the children's classes: For the Trainer class, the run method will launch the daemon main loop that checks if it is the time to train, and calls step method to run a training step; For the Forwarder class, the run method will start the agent episode and connects it to the network node in ns-3. It calls the step method to run a transition (waiting for a packet to arrive to the node, taking an action using the take-action method, and handling the information returned as a response to the action). The reset method of the Forwarder class will reset the agent environment before starting a new episode. Along with the agent's classes, we provide DQN Agent class in agent.py, which provides the necessary methods to use an adaptation of Deep Q-Network (DQN) model for the DPR problem like in [START_REF] You | Toward Packet Routing With Fully Distributed Multiagent Deep Reinforcement Learning[END_REF] and [START_REF] Alliche | Impact evaluation of control signalling onto distributed learning-based packet routing[END_REF]. This class relies on the files replay buffer.py and models.py for the experience replay buffer and the neural network architecture, respectively. Tensorboard logger part. In prisma-v2 release, the network metrics(end-to-end delay, packet loss, control overhead) are computed by the ns-3 part and transmitted to the python for being displayed in the tensorboard logger. Moreover, the tensorboard displays in real time all the metrics to the user during the simulation.

We also improved the logger to automatically store in the same instance the train and the test stats. The logs are saved in the session folder, which is given by the argument session name, respectively.

USAGE

In this section, we will go through different parts of the code, and explain the basic use cases that a user may encounter to launch a simulation.

Installation

After cloning the repository, the user is able to run prisma-v2 by three different ways:

• Run locally by installing the required packages and dependencies by calling install.sh.

• Create a local docker image, by running the docker build command on the root folder. This is possible since we provide a docker definition file. This will copy all the folder in the image and so that user may run prisma-v2 by calling the docker run command and binding the results' folder to be able to retrieve the results in the host machine. • Pull a docker image provided in Docker Hub. This image only contains the Linux environment with the requirements installed, so the user need to bind the prisma-v2 folder to the image.

We have provided an illustrative example in the readme.md file, guiding the user from the installation to training a Multi-Agent Deep Q-Network (MA-DQN) model to solve the DPR problem in an overlay network.

Use cases

1) Modifying or Adding parameters: Like the previous version, the parameters are organized by groups and can be visualized by calling "python3 main.py -help". They are accessible in the file argument parser.py, where the user can add a new parameter or modify an existing one. In the find run ns3.py, we parse the arguments to ns-3, so the user can modify this function to pass arguments to the NS-3 part.

2) Changing the DRL algorithm: The state can be modified for in GetObservation method of the DataPacketManager. The user may modify the DRL model input shape to match the new observation shape. Pre-defined neural networks models are already implemented in models.py, and a DRL algorithm is implemented in the DQN Agent class. The user may change the latter class to change the learning algorithm.

3) Sharing the information between the agents: The agent forwarder and trainer objects share information with the main process using the Agent class static variables. In those variables, we can find agents which stores the DQN Agent objects, and pkt tracking dict to keep track of transiting packets in the network.

4) Changing the topology settings: To change the overlay topology configuration, the user may change some parameters: physical adjacency matrix path, overlay adjacency matrix path and map overlay path for the paths to the underlay topology's adjacency matrix file, the overlay topology's adjacency matrix file, and the map between the indices of overlay and underlay nodes file, respectively; The traffic in underlay topology is handled, by default, using the OSPF protocol, which is used for computing the routing tables. Changing the routing policy is possible by the native ns-3 method RecomputeRoutingTables.

5) Customize control packets:

For customizing the control packets, the user may create a new class that inherits the class PacketManager. For example, The receivePacket method recovers the packet information at its arriving and the method GetInfo encapsulate the useful collected information in order to send it to the agent. For generating control signalling packets, the user may be inspired by the methods sendSmallSignalingPacket and sendPingForwardPacket, providing the packet size and the information which the control signalling packet should encapsulate. For the bigSignallingPacket, the parameters syncStep and bigSignalingSize contain the period time for sharing the model weights and weghts total size, respectively. For creating new control signalling mechanisms, the user may be inspired in the current mechanisms developed in prisma-v2.

CONCLUSION

In this paper, we have presented prisma-v2, which is a new release of prisma, extending this tool to overlay networks. This version adds a new set of features, like offering the possibility to add control signalling packet and measure the impact of having communication between the agent, and so, evaluate the real cost of implementing MA-DRL solutions for DPR in overlay networks. We hope that this initiative will motivate future research works tackling this challenging problem or adapting the tool to new problems involving decentralized solutions.
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