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ABSTRACT  

In general, the availability of an accurate machine learning (ML) model plays a particularly important role in the 

development of new networking solutions and is one of the main drivers for the development of 5G and beyond 

networking. Although an option is to update the model once inaccurate data is detected, such approach requires 

high computational effort, specially once the data history is large. In this paper, we propose an approach that 

combines a traffic prediction model based on Long Short-Term Memory (LSTM) with an analysis module for 

dynamic connection capacity allocation. Once the model is generated, re-training can be triggered after 

inaccuracies are detected by the analysis module. Illustrative numerical results show the benefits from the proposed 

decision-based re-training approach to reduce the number of re-training rounds while maintaining model accuracy. 
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1. INTRODUCTION 

The emergence of 5G technology has revolutionized the telecommunications industry [1], necessitating significant 

changes not only in the way applications are designed but also in their management [2]. In particular, the 

increasing use of machine learning (ML)-based applications that convey traffic flows with unknown 

characteristics [3] presents a significant challenge in terms of operational goals such as guaranteeing quality of 

service (QoS) without incurring in an excessive capacity overprovisioning [4]. In this regard, the traffic should be 

properly forecasted, which poses a challenge since some traffic characteristics can be complex and hard to model 

due to the presence of multiple periodicities ranging from a few hours to several days. This fact makes it 

impractical applying traditional predictive approaches in many multilayer optical network automation scenarios, 

e.g., dynamically allocating capacity to a traffic flow according to traffic prediction [5]. 

To address this challenge, various machine learning techniques have been proposed to predict time series data 

accurately [6]. Long Short-Term Memory (LSTM) networks have been proposed as a means of expanding 

temporal dependence learning [3]. However, despite the high overall accuracy of LSTM models, they are still 

subject to errors when pre-trained, which can reduce their robustness in autonomous network operation. Under-

predicting traffic can lead to connection capacity under-provisioning and result in traffic loss. 

In this paper, we propose an approach that combines an LSTM-based traffic prediction model with a Model 

Refining Analysis module tailored for solving the dynamic connection capacity allocation problem. Our approach 

aims to reduce the need for re-training models while maintaining accuracy. By implementing this approach, we 

expect to enhance the reliability and efficiency of autonomous network operation, especially in multilayer optical 

network automation scenarios. The paper is organized as follows: Section 2 introduces the procedure of decision-

based LSTM model re-training with real-time error detection, while Section 3 details the models and procedures. 

Section 4 discusses performance evaluation and results, and Section 5 concludes the paper. 

2. DECISION-BASED MODELS RE-TRAINING 

In this section, we propose an autonomous capacity management system for connections transporting packet 

traffic flows using continuous re-training. Our approach considers a connection to be either a customer connection 

transporting a few Gb/s traffic flow or a virtual link supporting flow aggregation with traffic of hundreds Gb/s. 

The objective is to allocate the minimum capacity required to support the flow for the next period while meeting 

the intended performance, such as avoiding loss due to capacity under-provisioning. 

Figure 1 illustrates the two basic approaches for autonomous capacity management: i) threshold-based (Figure 

1a); ii) pre-trained LSTM-based prediction (Figure 1b). Figure 2 sketches the expected evolution of the allocated 

capacity (solid-colored lines) for a traffic flow (dotted line) that experiences a high perturbation in traffic. Under 

the threshold-based approach, future capacity is reactively adjusted according to the current traffic. A threshold 

value is statically defined, which must be set low enough to guarantee no loss during sharp traffic changes, which 

leads to high overprovisioning. In contrast, a LSTM model that be configured offline is used for dynamic 

operation. Notwithstanding the good overall accuracy, LSTM underestimates traffic during the peak, which can 
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lead to loss, and produces capacity under-provisioning. In this regard, we propose decision-based approach, a 

combination of LSTM-based traffic prediction model and Model Refining Analysis module for capacity allocation 

(Figure 1c). The Model Refining Analysis module includes a model drift detection algorithm (MDDA) that 

integrates with LSTM-based traffic predictor to compute: i) prediction error, and ii) check whether the error is out 

of a specific boundary. In this approach, the LSTM-based model can efficiently learn the new pattern in the traffic 

without requiring continuous re-training for each individual data point. The formal details of the extended 

environment blocks are presented in the next section. 
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Figure 1 (a) Threshold-based, (c) LSTM, and (c) Decision-based. 

3. MODELS AND PROCEDURE 

We consider that a monitoring data set is available for every connection, which consists of samples <y(t), z(t)>, 

with the traffic and capacity at time t, respectively. For the sake of simplicity, let us consider that a LSTM model 

is represented by eq. (1) has been previously trained on a dataset of historical network traffic data (tunedLSTM 

model). That historical data consists of one week of data points with the last w traffic monitoring samples and 

produces traffic predictions ŷ with single upper confidence intervals to be used at time t. 

As the initial step, model continuously trained in an interval [0, t] and gaussian mean square error (gssMSE) of 

actual traffic y(t) and traffic prediction y^(t) for interval [0, t] is calculated (eq. (2)). As a result, it returns the 

normal distribution of MSE characterized with a range of standard deviation α (error tolerance) (eq. 3). To increase 

the amount of data available for analysis within a α range, we employ a random variable θ to improve the overall 

accuracy of our results. Moreover, Model Refining Analysis module should select the most appropriate range of 

threshold from the range of standard deviation to keep the performance as continual re-training while the number 

re-training reduces as much as possible. 
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Figure 2 Expected capacity allocation. 

𝑡𝑢𝑛𝑒𝑑𝐿𝑆𝑇𝑀~𝑓({𝑦(𝑡 − 𝑗), 𝑗 = 0. . 𝑤}) (1) 

𝑔𝑠𝑠𝑀𝑆𝐸~ 𝜑(𝑚𝑠𝑒(𝑦(1 … 𝑡), �̂�(1 … 𝑡)), 𝛼2) (2) 

𝑔𝑠𝑠𝑀𝑆𝐸 = [𝛼, … , 𝑚𝛼 ± 𝜃]     𝑚 ∈  ℤ+ ,   𝜃 
∈  ℝ 

(3) 

𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑟𝑟 = max(𝜔(𝑔𝑠𝑠𝑀𝑆𝐸)) /𝑛 (4) 

Clearly, relaxing the error tolerance has impact on the model's performance, with an increase in prediction error 

and a decrease in number of model re-training. This highlights the importance of carefully selecting and tuning 

input variables for accurate and reliable predictions. To this aim, the targetERR (eq. (4)) is computed as the mean 

of maximum frequency distribution of the gssMSE error. Once the error is above the targetErr, algorithm stops 

searching the rest of the list. Once the error tolerance is fixed, tuneLSTM model is ready for decision-based re-



training. Note that the selected error tolerance variable can be updated with a given periodicity. The algorithm 

assesses the performance of the model and determines whether to re-train the model with an unknown traffic data 

sample. 

4. ILLUSTRATIVE RESULTS 

For the purpose of evaluating our method, we generated synthetic traffic data for two traffic flows over a period 

of three months. The traffic data includes a sinusoidal traffic component with two different fluctuation variables, 

0.01 and 0.25. In this paper, we evaluated our approach using traffic data with a daily profile pattern. We used 

the first half of the traffic data for training and the second half for validating the proposed approach. After 

evaluating a wide range of the number of hidden layers and size, we selected a fully-connected LSTM-model 

with three hidden layers and 30, 40, and 20 neurons per layer, respectively. We used the backpropagation training 

algorithm with batches of 128 samples and epoch 50. As the initial evaluation let us first see how we determine 

the proper error threshold to configure the analysis module. 

Figure 3a and b shows the tradeoff between prediction error and number of re-training rounds with respect to 

the error tolerance for traffic flow with fluctuation 0.01 and 0.25. As the error tolerance increases, the number of 

re-training decreases until it reaches a target error, ~3𝛼 ± 𝜃 determined according to our proposed approach; at 

which point the searching loop terminates. Let us assume that the traffic monitoring data is received with a 

frequency of 1 per second. Figure 3c and d shows the behavior of all the approaches at some intervals of the 

simulation. In no update approach, model is not able to anticipate enough the traffic changes, which leads to 

capacity under-provisioning and traffic loss, whereas the continual re-training and decision-based re-training 

approaches fit capacity remarkably close to actual traffic, resulting into a very good performance in terms of 

capacity provisioning. Table 1 also summarizes the numerical simulation results, where model does not re-train, 

continuously re-train, and re-trained based on decision from analysis module. Decision-based produces slightly 

less number of re-training compare to continual re-training. 
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Figure 3. Approaches comparison for 0.1 traffic (a, c) and 0.25 (b, d) traffic. 
 

Table 1 Model performance summary 

 

 

After fixing the error threshold, we configure the Model Refining Analysis module. Figure 4a and b presence 

the error convergence over several days in continual re-training and decision-based re-training approaches. We 

observe that decision-based approach converges to the minimum error like continual approach.  

 

Approach 
Mean square error Number of re-training 

0.01 0.025 0.01 0.025 

Continual re-training 0.000002 0.004143 7200 7200 

Decision-based re-training 0.00005 0.005035 2385 2635 

No re-training 0.001335 0.123427 - - 
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Figure 4. Accuracy performance result. 

5. CONCLUSIONS 

In this paper, we proposed an autonomous connection capacity management approach based on an analytic module 

for long-term traffic prediction. Our approach deploys highly accurate LSTM models and overcomes critical 

obstacles such as the need for pre-trained models with old historical measurements. Our proposed method reduces 

the number of re-trainings, into ~33% and ~36%, required while maintaining high model performance, resulting 

in moderate capacity overprovision. Overall, our results show that both the continual re-training and decision-

based re-training approaches require slightly lower over-provisioning than the no re-training approach. This 

suggests that our approach is effective in managing connection capacity while maintaining accuracy. Future work 

may involve extending our approach to consider multiple traffic flows and dynamically adjusting connection 

capacity based on real-time traffic information. 
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