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The Triadic Resonant Instability of internal waves in stably stratified fluids

We construct explicit exponentially growing in time solutions of the Boussinesq equations linearized around a plane wave solution to the linear, non viscous and non diffusive part of the equations. Our solution has the form of a plane wave multiplied by an exponentially growing function of time and modulated by a periodic function of the phase of the solution around which one linearizes. Our construction is valid in a regime involving explicit relations between the diffusive constant, the one in front of the convection term and the amplitude of the solution around which the equation is linearized. The exponential explosion arises under a resonance condition satisfied by the wave number of the plane wave part of the constructed solution. All the constants are explicit along the whole article.

Introduction

Instabilities of internal gravity waves play a primary role in geophysical fluids. Some of them consist in the creation, due to the non-linear effects, of growing in time solutions of the fluid equations linearized near a plane wave solution of the linear part of the equation. There are very few (rigorous) mathematical studies of this phenomenon (in the context of (in-)stability of Stokes waves, let us mention [START_REF] Nguyen | Proof of Modulational Instability of Stokes Waves in Deep Water[END_REF][START_REF] Berti | Full description of Benjamin-Feir instability of stokes waves in deep water[END_REF], and [START_REF] Korotkevich | Superharmonic Instability of Stokes Waves[END_REF] for a numerically detection of superharmonic instability) while there is a huge literature in physics on the subject (we refer to [START_REF] Dauxois | Instabilities of Internal Gravity Wave Beams[END_REF] and exhaustive references therein).

In the present article we consider the case of two-dimensional Boussineq equations and present, for the first time at our knowledge, a rigorous derivation of the so-called triadic resonant instability (TRI).

Let us point out that our method, beside the completely different physical situation, differs strongly from the one used in [START_REF] Nguyen | Proof of Modulational Instability of Stokes Waves in Deep Water[END_REF] by a construction of quasi-modes and the derivation of precise related estimates.

Main result

We study the two-dimensional Boussinesq equations for stably stratified fluids in R 2 B t u `Bx P `εpu ¨∇qu " ν∆u, B t v ´b `By P `εpu ¨∇qv " ν∆w, B t b `N 2 v `εpu ¨∇qb " κ∆b, B x u `By v " 0,

(2.1) eq:bouss where u " pu, vq " pupt, x, yq, vpt, x, yqq : R `ˆR 2 Ñ R 2 is the (divergence-free) velocity field, b " bpt, x, yq : R `ˆR 2 Ñ R is the buoyancy term, P " P pt, x, yq : R `ˆR 2 Ñ R is the incompressible pressure, ν ą 0 and κ ą 0 are the viscosity and diffusivity coefficients, and ε ą 0 is a small parameter for the order of magnitude of the (weakly) nonlinear convection term. The coefficient N 2 in the equation for b is the buoyancy frequency.

We first consider a plane-wave solution to the linear, non viscous and non diffusive part of the system, i.e. Eqs (2.1) with ε " ν " κ " 0; for a given couple z 0 " pk 0 , m 0 q P R 2 and for the (time) frequency ´ω0 given by

ω 0 " k 0 a k 2 0 `m2 0 , presp. ω 0 " ´k0 a k 2 0 `m2 0 q (2.
2) eq:omega0 such solution reads as follows:

W z 0 " ¨u0 v 0 b 0 p 0 ‹ ‹ ' " W z0 `Wź 0 , (2. 
3) eq:lin-sol with W z0 " W z0 pt, x, yq "

¨u0v 0b 0p 0,˘‹ ‹ ' " Θ ˘¨1 ´k0 m 0 ˘ik 0 m 0 ω 0 ω 0 k 0 ‹ ‹
' expp¯iω 0 t ˘ik 0 x ˘im 0 yq, (2.4) eq:linear-pl where Θ ´is the complex conjugate of Θ `. By rescaling the unknowns, we take hereafter that N " 1 and we further assume that ν " κ. We linearize system (2.1) around the above W z 0 " W z 0 pt, x, yq in (2.3). The linearized system reads: B t u `Bx P `εppu ¨∇qu 0 `pu 0 ¨∇quq " ν∆u,

B t v ´b `By P `εppu ¨∇qv 0 `pu 0 ¨∇qvq " ν∆v, (ii)

B t b `v `ε `pu ¨∇qb 0 `pu 0 ¨∇qb ˘" ν∆b, (iii) 
B x u `By v " 0.

(iv),

(2.5) eq:bouss-lin where u 0 " pu 0 , v 0 q. The main result of our paper is the following.

thm:main THEOREM 2.1. Let Z 0 " p´ω 0 , k 0 , m 0 q P r´1, 1s ˆR2 where z 0 " pk 0 , m 0 q be the frequency of the original wave in (2.4) and ω 0 " k 0 {|z 0 |.

Let us suppose the parameters ε, ν in the Boussinesq equations, and Θ ˘, Z 0 of the solution on the linear Boussineq equations satisfy

ε ν ď 1 6|Θ|γ and 16L 2 |z 0 | 2 3|Θ| ă ν 2 ε ă γ 2 |Θ| 18γ|z 0 | 2 `5 |z 0 | m 0 . p1 `γ|z 0 | 2 q 2 `p1 `γ|z 0 | 2 qp6γ|z 0 | 2 `|z 0 | m 0 q (2.6) consthm
where γ " 5 4 , L 2 " ř n‰0 n ´2. Let Z " p´ω, k, mq P r´1, 1s ˆR2 satisfying the constraint

|z| psin θ z,z 0 q 2 ă 1 16 ´ε ν ¯2 |z 0 || |Θ| 2 m 2 0 ,
where θ z,z 0 is the angle between z and z 0 , be such that

ω 0 " k `k0 |z `z0 | `k |z| or ω 0 " k ´k0 |z ´z0 | `k |z| .
Then there exist a solution of the linearized Boussinesq system (2.5) of the form

¨u v b P ‹ ‹ ' pt, x, yq " e λt e ´iωt`ikx`imy ¨ũ ṽ b P ‹ ‹ ' p´ω 0 t `k0 x `m0 yq, ¨ũ ṽ b P ‹ ‹ ' P L 2 pTq, (2.7) 
and

0 ă ℜpλq " ´νp|z| 2 `|z `z0 | 2 q `bν 2 p|z| 2 ´|z `z0 | 2 q 2 ´ε2 |Θ| 2 CpZq 2 |z||z`z 0 | G `´0 ,1 G ``1 ,0 2 `Opν 2 `ε2 q
where CpZq,

G `´0 ,1 G ``1 ,0
are defined in (3.27) in Section 3 below.

In particular,

› › › › › › › › ¨u v b P ‹ ‹ ' pt, ¨, ¨q› › › › › › › › L 8 pR 2 q " e λt › › › › › › › › ¨u v b P ‹ ‹ ' p0, ¨, ¨q› › › › › › › › L 8 pR 2 q " e λt › › › › › › › › ¨ũ ṽ b P ‹ ‹ ' › › › › › › › › L 8 pTq . (2.8)
The number λ and the functions u, v, b, P are explicitly constructed out of the result of Theorem 2.2 at the end of this section.

Note that for |Θ| large enough, the hypothesis (2.6) is not empty. Before entering the core of the quite involved proof of this result, let us provide its key ideas. Summing B x of (i) to B y of (ii) and using the divergence-free condition (iv) yields the following elliptic equation for the incompressible pressure P :

∆P ´By b `εB x ppu ¨∇qu 0 `pu 0 ¨∇quq `εB y ppu ¨∇qv 0 `pu 0 ¨∇qvq " 0.

(2.9) eq:elliptic

Plugging the equation for P in (2.9) inside (i)-(ii), system (2.5) reduces to three equations in the unknowns pu, v, bq. Moreover, exploiting the divergence-free condition in (iv) allows to express v in terms of u. Therefore, there is an explicit change of pu, v, b, P q Ñ pu, bq which reduces (2.5) to a system of only two equations in the unknowns pu, bq, that can be written in compact form as follows:

L ε ν ˆu b ˙" 0, (2.10 
) eq:linear-op where L ε ν pt, x, yq is a space-time dependent linear operator. Since the pt, x, yq dependence of L ε ν is only through the plane wave W z 0 , it is convenient to formulate (2.10) on the other side of the Fourier-transform in time and space F XÑZ , where X " pt, x, yq. Let us denote pûpZq, bpZqq with Z " p´ω, zq " p´ω, k, mq, (2.11) the Fourier transform of pupt, x, yq, bpt, x, yqq in time and space. Tedious but straightforward computations, explicitly written in Section 3, provide the following system for pûpZq, bpZqq :

´iωûpZq `km k 2 `m2 bpZq ´iεmCpZq ˆΘm `m0 ˆ1 `2pkk 0 `mm 0 q |z| 2 ˙ûpZ `Z0 q `Θḿ ´m0 ˆ1 ´2pkk 0 `mm 0 q |z| 2 ˙ûpZ ´Z0 q ν|z| 2 ûpZq " 0, ´iω bpZq ´k m ûpZq `ε k 0 ω 0 CpZq ˆΘm `m0 ûpZ `Z0 q `Θḿ ´m0 ûpZ ´Z0 q iεCpZq ´bpZ `Z0 qΘ ``b pZ ´Z0 qΘ ´¯`ν|z| 2 bpZq " 0,
(2.12) eq:system-z where Z 0 " p´ω 0 , k 0 , m 0 q and Θ ˘are in (2.4) and we define the function CpZq :" m ´1 0 pkm 0 ´k0 mq.

(2.13) def:f

Let us introduce the following compact formulation for (2.12), equivalent to (2.10) by Fourier conjugation :

L ε ν ˆû b˙p Zq " 0.
(2.14) def:Lstraigh Now, fix Z " p´ω, k, mq P R 3 and define, for each sequence c Z " tc n Z u nPZ P ℓ 2 pZq, the following g Z pZ 1 q "

ÿ nPZ c n Z δpZ 1 ´Z ´nZ 0 q with c n Z P R 2 .
(2.15) eq:gz LEMMA 2.1 (Decomposition). For Z P R 3 , L ε ν in (2.14) preserves the structure (2.15), i.e. for each g Z pZ 1 q of the form (2.15), there exists a sequence d Z " tc n Z u nPZ P ℓ 2 pZq such that L ε ν g Z pZ 1 q " ÿ nPZ d n Z δpZ 1 ´Z ´nZ 0 q.

(2.16) eq:repre PROOF. It is an obvious consequence of the structure of (2.12). □

We will call l z : l 2 pZq b C 2 Þ Ñ l 2 pZq b C 2 the operator defined by the representation (2.16), i.e.

tc n Z u nPZ l Z ÝÑ td n Z u nPZ , (2 
.17) eq:matrix-s we will prove in Section 5.1 that it is a bounded perturbation of an operator which is diagonal on the canonical basis tpe k,j q kPZ :" ˆδj,k

ˆ1˘1 2 1´˘1
2 ˙˙kPZ , j P Zu. Therefore, it has a spectral decomposition and we denote by tλ Z,j , j P Zu the spectrum of l Z and by te Z,j , j P Zu nPZ the set of eigenvectors, yielding the eigenvalue identity L ε ν g Z,j " λ Z,j g Z,j where g Z,j pZ 1 q :" ÿ nPZ e n Z,j δpZ 1 ´Z ´nZ 0 q.

(2.18)

Our main result will be a consequence of the following. ´Θ´C pZ ´Z0 q pm `pn `2qnm 0 q|Z `pn `1qZ 0 | 2 e n`1,Z ˙˙.

The end of the proof follows by linearity of (2.5) and estimates on ℜpλ Z q given in Section 5.5.

In particular, there exists exists C ą 0 such that }Wpt, ¨q} L 8 pR 2 q " Ce ℜpλ Z,j qt for all t P R `.

(2.22)

□

In this work, we will study the spectral property of the operator L ε ν in (2.10) by means of perturbation theory, where L ε ν has pure point spectrum being a bounded perturbation of a diagonal operator. More precisely, for L ε ν we will construct quasimodes, that is vectors ψ j and numbers λ j such that L ε ν pψ j q " λ j ψ j `Opε 2 `ν2 q. This construction will be shown to provide precise information on the distance between the spectrum of L ε ν and λ j at the condition that the set of eigenvectors of L ε ν is a Riesz basis. This last property will be shown to hold true by a standard argument involving the behavior of the norm of the difference of the two eigenbasis of L 0 ν and L ε ν obtained by the Neuman series.

In Section 3 we transform a (partial) spectral study of L ε ν into the study of the spectrum and eigenstates of an operator on l 2 pZq b C 2 .

Section 4 is devoted to a general study of band limited perturbations of (finitely) degenerate eigenvalue through an abstract construction of quasimodes, and related precise estimates.

We apply the results of Section 4 to the TRI problem in Section 5 which contains the proof of Theorem 2.2. Section 6 compares our results to the ones of [START_REF] Dauxois | Instabilities of Internal Gravity Wave Beams[END_REF].

Fourier analysis

mp-fourier der 3.1. Derivation of Eq. (2.12) by Fourier analysis. In this section, we derive (2.12). Introducing the Fourier transform

F XÑZ pf pXqq " ż f pXq e iX¨Z dX, (3.1) 
which implies that

B x Ñ ´ik, B y Ñ ´im, (3. 
2) eq:derivativ we Fourier-transform the convection terms

F xÑZ rpu ¨∇qu 0 `pu 0 ¨∇qus ": (A) u `(B) u , F xÑZ rpu ¨∇qv 0 `pu 0 ¨∇qvs ": (A) v `(B) v , F xÑZ rpu ¨∇qb 0 `pu 0 ¨∇qbs ": (A) b `(B) b .

This gives:

(A) u pZq " F pt,XqÑZ rpu ¨∇qu 0 s " F XÑZ rpuB x `vB y qu 0 s " ÿ ℓPt`,´u

F XÑZ rpuB x `vB y qu 0ℓ s " ÿ ℓPt`,´u
iℓΘ ℓ pk 0 ûpZ `ℓZ 0 q `m0 vpZ `ℓZ 0 qq. Now, notice that from (iv) in (2.5), for any Z 1 " p´ω, k 1 , m 1 q P r´1, 1s ˆR2 , we have

ik 1 ûpZ 1 qptq `im 1 vpZ 1 qptq " 0 Ñ vpZ 1 qptq " ´k1 m 1 ûpZ 1 qptq. (3.3) eq:div-free Plugging it into (A) yields (A) u pZq " ÿ ℓPt`,´u
iℓΘ ℓ ˆk0 ´pk `ℓk 0 q pm `ℓm 0 q m 0 ˙ûpZ `ℓZ 0 q " ipk 0 m ´km 0 q ÿ ℓPt`,´u Θ ℓ ℓûpZ `ℓZ 0 q pm `ℓm 0 q .

We can write it in compact notation as follows,

(A) u pZq " ´im 0 CpZq ÿ ℓPt`,´u Θ ℓ ℓpûpZ `ℓZ 0 qq pm `ℓm 0 q ,
where CpZq is given by (2.13). Since from (2.3) we know that v 0 " ´k0 m 0 u 0 , we have

(A) v pZq " ik 0 CpZq ÿ ℓPt`,´u Θ ℓ ℓpûpZ `ℓZ 0 qq pm `ℓm 0 q . Similarly, (A) b pZq " k 0 ω 0 CpZq ÿ ℓPt`,´u
Θ ℓ ûpZ `ℓZ 0 q pm `ℓm 0 q .

Let us turn to the terms of type (B). First (notice the ´i from (3.2))

(B) u pZq " F xÑz rpu 0 B x `v0 B y qus " ÿ ℓPt`,´u F xÑz rpu 0ℓ B x `v0ℓ B y qus " ´i ÿ ℓPt`,´u Θ ℓ ˆk ´k0 m 0 m ˙ûpZ `ℓZ 0 q " ´iCpZq ÿ ℓPt`,´u
Θ ℓ pûpZ `ℓZ 0 qq.

From (3.3), one recovers vpZ `ℓZ 0 q " ´k`ℓk 0 m`ℓm 0 ûpZ `ℓZ 0 q, yielding (B) v pZq " iCpZq ÿ ℓPt`,´u Θ ℓ pk `ℓk 0 q pm `ℓm 0 q ûpZ `ℓZ 0 q. Finally (B) b pZq " ´iCpZq ÿ ℓPt`,´u Θ ℓ p bpZ `ℓZ 0 qq.
Putting them together, we have that

(A) u `(B) u " ´iCpZq ˆΘ`p m `2m 0 q m `m0 ûpZ `Z0 q `Θ´p m ´2m 0 q m ´m0 ûpZ ´Z0 q ˙, (A) v `(B) v " iCpZq ˆΘ`p k `2k 0 q m `m0 ûpZ `Z0 q `Θ´p k ´2k 0 q m ´m0 ûpZ ´Z0 q ˙, (A) b `(B) b " k 0 ω 0 CpZq ˆΘ`û pZ `Z0 q m `m0 `Θ´û pZ ´Z0 q m ´m0 ˙´iCpZq ´bpZ `Z0 q `bpZ ´Z0 q ¯.
It is then immediate to write the Fourier transform of equation (iii) in (2.5)

´iω bpZq ´k m ûpZq `ε k 0 ω 0 CpZq ˆΘ`û pZ `Z0 q m `m0 `Θ´û pZ ´Z0 q m ´m0 iεCpZq ´Θ`p bpZ `Z0 qq `Θ´p bpZ ´Z0 qq ¯" ´ν|z| 2 bpZq.
(3.4) eq:bz Furthermore, we can write the elliptic equation for the pressure (2.9) in Fourier:

´pk 2 `m2 q P pZq ´im bpZq `iεk p(A) u `(B) u q `iεm p(A) v `(B) v q " 0,
and, simplifying ´pk 2 `m2 q P pZq ´im bpZq `2m 0 CpZq 2 ˆΘm `m0 ûpZ `Z0 q ´Θḿ `m0 ûpZ ´Z0 q ˙" 0, (3.5) eq:elliptic-f which gives 

ik P pZq " km k 2 `m2 bpZq `2ikm 0 CpZq 2 |z| 2 ˆΘm `m0 ûpZ `Z0 q ´Θḿ ´m0 ûpZ ´Z0 q ˙. ( 3 
ˆΘ`p 1 `ΥpZqq m `m0 ûpZ `Z0 q `Θ´p 1 ´ΥpZqq m ´m0 ûpZ ´Z0 q ˙`ν|z| 2 ûpZq " 0.
(3.9) eq:uz1 sec:fourier 3.2. Matrix representation of the operator l Z in (2.17). Since the equations for pûpZq, bpZqq in (2.12) depend both on pûpZ ´Z0 q, bpZ ´Z0 qq and pûpZ `Z0 q, bpZ `Z0 qq, system (2.12) is not closed and leads to an infinite hierarchy of algebraic equations. We write explicitly the matrix representation for pûpZ ´Z0 q, bpZ ´Z0 qq and pûpZ `Z0 q, bpZ `Z0 qq respectively. To do that in an efficient way, it is important to notice that the function CpZq in (2.13) is invariant by translation Z ˘Z0 , i.e.

CpZq " CpZ `Z0 q " CpZ ´Z0 q.

Taking ˆû Z pZ 1 q bZ pZ 1 q

˙" ř nPZ ˆun Z,u b n Z,b
˙δpZ 1 ´Z ´nZ 0 q satisfying the ansatz (2.15), we can write the matrix associated to the operator l z in (2.17) acting on the vector ¨... ...

u n´1 Z,u b n´1 Z,b u n Z,u b n Z,b u n`1 Z,u b n`1 Z,b ... ... ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' ": ¨... ... u n´1 b n´1 u n b n u n`1 b n`1 ... ... ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , ( 3 
.10) eq:frakvect namely the following (infinite) matrix In order to lighten a bit the notation, we drop the dependency in Z, Z 0 and denote this matrix by L ε ν . For ε " 0, we remark that L 0 ν is 2x2 block-diagonal with blocks indexed by n P Z, namely ˜´ipω `nω 0 q `ν|z `nz

L 1 Z :" ... ... ... ... ... ... L 1 n´1,n´1 L 1 n´1,n 0 ... ... L 1 n,n´1 L 1 n,n L 1 n,n`1 ... ... 0 L 1 n`1,n L 1 n`1,
`ν|z n´1 | 2 ε k 0 ω 0 m n CpZqΘ`´iεCpZqΘ`0 0 ... ... ´iεCpZqm n m n´1 p1 ´ΥpZ n qqΘ´0 ´iω n `ν|z n | 2 k n m n |z n | 2 ´iεCpZqm n m n`1 Θ`p1 `ΥpZ n qq 0 ... ... ε k 0 ω 0 m n´1 CpZqΘ´´iεCpZqΘ´´k n m n ´iω n `ν|z n | 2 ε k 0 ω 0 m n`1 CpZqΘ`´iεCpZqΘ`... ... 0 0 ´iεCpZqm n`1 m n p1 ´ΥpZ n`1 qqΘ´0 ´iω n`1 `ν|z n`1 | 2 k n`1 m n`1 |z n`1 | 2 ... ... 0 0 ε k 0 ω 0 m n CpZqΘ´iεCpZqΘ´´k n`1 m n`1 ´iω n`1 `ν|z n`
0 | 2 pk`nk 0 qpm`nm 0 q |z`nz 0 | 2 ´k`nk 0 m`nm 0 ´ipω `nω 0 q `ν|z `nz 0 | 2 ¸. (3.14)
Therefore it can be diagonalized and we get the formula for the eigenvalues

λ ˘,0,ν Z`nZ 0 " ´ipω `nω 0 q ˘i k `nk 0 |z `nz 0 | `ν|z `nz 0 | 2 , n P Z.
(3.15) eq:eig.invis

In particular, for the blocks corresponding to n " ´1, 0, 1, we have

λ ˘,0,ν Z´Z 0 " ´ipω ´ω0 q ˘i k ´k0 |z ´z0 | `ν|z ´z0 | 2 , λ ˘,0,ν Z " ´iω ˘i k |z| `ν|z| 2 , λ ˘,0,ν Z`Z 0 " ´ipω `ω0 q ˘i k `k0 |z `z0 | `ν|z `z0 | 2 .
(3.16) eq:eig.invis

For Z such that pk n , m n q R tpk 1 , 0q, p0, m 1 q, k 1 , m 1 P Zu, it is convenient to introduce the following change of variables into (3.10):

q n :" k n m n u n ´i k n a pk n q 2 `pm n q 2 b n , ρ n :" k n m n u n `i k n a pk n q 2 `pm n q 2
b n , (3.17) eq:diag-var which is inverted by

u n " m n 2k n pq n `ρn q, b n " i a pk n q 2 `pm n q 2 2k n pq n ´ρn q. (3.18)
This change of variable has obviously the property of diagonalizing L 1 Z for ε " 0. Let us denote by A Z the (infinite) 2x2 block-diagonal matrix, whose diagonal blocks are given by

A n " ¨mn 2k n m n 2k n i ? pk n q 2 `pm n q 2
2k n ´i?

pk n q 2 `pm n q 2 2k n ‹ ', n P Z. ( 3 

.19) def:blockm

We will denote

L Z " A ´1 Z L 1 Z A Z .
(3.20) eq:mat Obviously, if L Z v " λv, then L 1 Z pA Z vq " λpA Z vq. A tedious but straightforward computation shows that, when acting on vectors of the form

¨... ... ˆun´1 b n´1 un b n un`1 b n`1 ... ... ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , (3.21) 
L Z is a 2 ˆ2 tridiagonal matrix whose non-zero blocks are given by

L n´1,n " A ´1 n´1 L 1 n´1,n A n " ´i ε 2 Θ `Fn´1,n ˆG``ǹ ´1,n G ``ń ´1,n G `´ń ´1,n G `´ǹ ´1,n ˙, (3.22) L n,n´1 " A ´1 n L 1 n,n´1 A n´1 " ´i ε 2 Θ ´Fn,n´1 ˆG``ǹ ,n´1 G ``ń ,n´1 G `´ń ,n´1 G `´ǹ ,n´1 ˙, (3.23) L n,n " A ´1 n L 1 n,n A n " ˆλ`,0,ν z`nz 0 0 0 λ ´,0,ν z`nz 0 ˙, (3.24) 
L n,n`1 " A ´1 n L 1 n,n`1 A n`1 " ´i ε 2 Θ `Fn,n`1 ˆG``ǹ ,n`1 G ``ń ,n`1 G `´ń ,n`1 G `´ǹ ,n`1 ˙, (3.25) 
L n`1,n " A ´1 n`1 L 1 n`1,n A n " ´i ε 2 Θ ´Fn`1,n ˆG``ǹ `1,n G ``ń `1,n G `´ń `1,n G `´ǹ `1,n ˙, n P Z, (3.26) 
where we used the notation:

G ℓ 1 ℓ 2 ℓ 3 n˘1,n : " ℓ 1 |z n˘1 |p1 ¯ΥpZ n˘1 qq `ℓ2 k 0 ω 0 `ℓ3 |z n |, G ℓ 1 ℓ 2 ℓ 3 n,n˘1 : " ℓ 1 |z n |p1 ˘ΥpZ n qq `ℓ2 k 0 ω 0 `ℓ3 |z n`1 |, F n,n˘1 : " CpZqk n k n˘1 |z n | , F n˘1,n : " CpZqk n˘1 k n |z n˘1 | , (3 
.27) eq:matg for ℓ 1 , ℓ 2 , ℓ 3 P t´, `u, where we recall that k n " k `nk 0 and from (2.13) that CpZq " CpZ `nZ 0 q for any n P Z is translation invariant and ΥpZq is given by (3.8). It is important to notice by the definitions in (3.27) that

G ``ń ,n´1 " ´G`´ń ´1,n `ΥpZ n´1 q|z n´1 | ´ΥpZ n q|z n | " ´G`´ń ´1,n `2z 0 ¨ˆz n´1 |z n´1 | ´zn |z n | ˙" ´G`´ń ´1,n `2pcospθ n´1,0 q ´cospθ n,0 qq|z 0 |, (3.28) 
where θ n,0 is the angle between z n and z 0 for all n P Z. Let us consider, choosing by (2.2) that k 0 ω 0 " ´|z 0 |, the expression of G `´0 ,´1 for small |z|, which reads Let L be an operator with pure spectrum tλ n , n P Zu and V a perturbation. Let λ j be a finitely degenerate eigenvalue of L. Let us denote tψ n , j ‰ n P Zu Y tψ j,k , k " 0, . . . , Ju an orthonormal eigenbasis of L satisfying

G ``0 ,´1 " ´2|z 0 | `Op|z|q. ( 3 
Lψ n " λ n ψ n , n ‰ j Lψ j,k " λ j ψ j,k , @k " 1, . . . , J pψ j,k , Vψ j,k q " δ k,k λ j,k
Finally, let r ψ j,k be defined by pψ n , r ψ j,k q " ´p1 ´δn,j q pψ n , Vψ j,k q λ n ´λj .

Then pL `V ´pλ j `λj,k qqpψ j,k `r ψ j,k q " ϕ j,k , (4.1) def:phij with pψ j,k , ϕ j,k q " 0, k " 1, . . . , J and pψ n , ϕ j,k q " pψ n , pV ´λj,k q r ψ j,k q, n ‰ j.

Therefore, in the following we will be able to estimate }ϕ j } 2 . quasimode COROLLARY 4.2.

}ϕ j,k } 2 ď ÿ n‰j ¨ÿ l‰j pψ n , pV ´λj,k qψ l qpψ l , Vψ j,k q λ l ´λj '2 . ( 4 

.3) cruc

Note that when V is finite band of size R, namely pψ k , Vψ k 1 q " 0 when |k ´k1 | ą R, the above sum if finite and we obtain the estimate }ϕ j,k } ď p2Rq Let H be an operator with pure point spectrum σpHq " tσ j , j P Zu on a Hilbert space H, whose set of eigenfunctions tψ j u is a Riesz basis with extremal constants B ą A ą 0, i.e. for all Ψ " ř j µ j ψ j P H,

}Ψ} H " 1 it holds A ÿ j |µ j | 2 ă }Ψ} 2 H ď B ÿ j |µ j | 2 . ( 4 

.5) def:riesz

Then, for all r Ψ P H, } r Ψ} H " 1, and for all Λ P C, there exists σ j P σpHq such that PROOF.

|Λ ´σj | ď B A }pH ´ΛIdq r Ψ} H . ( 4 
}ψ n ´ψV n } 2 ℓ 2 " 2 ´2ℜpψ n , ψ V n q " 2 ´2|pψ n , ψ V n q| 2 " }|ψ n yxψ n | ´|ψ V n yxψ V n |} 2 HS . □
The above result yields that it is enough to prove that

}|ψ n yxψ n | ´|ψ V n yxψ V n |} 2 HS ă 1. Recall that |ψ n yxψ n | " ż Cn pL ´zIdq ´1dz,
where C n is a contour around the eigenvalue λ n . Taking C n large enough, we have This expansion will allow to estimate the difference |ψ n yxψ n | ´|ψ V n yxψ V n | by using the information on V and the spacing of unperturbed eigenvalues (3.16), in terms of ε, ν and z 0 , providing estimates of the constants A, B. Indeed, sandwiching each appearance of V by a decomposition of the identity on the eigenbasis of L and performing the integration over z in the r.h.s. of (4.13) selects automatically the terms involving single poles of the form 1 pλn´λ l q , l ‰ n (the integration of high orders poles giving zero by the Cauchy formula). Therefore the term ˜ψk , ˜żCn pL ´zIdq ´1VpL ´zIdq ´1 ˜8 ÿ m"0 pVpL ´zIdq ´1q m ¸dz ¸ψk 1 will be the sum over m of at most R 2m`2 matrix elements of the form R m`2 }pVpL ´zIdq ´1q} m`2 (by the finite band structure), divided by denominators of the form pλ n ´λl q, l ‰ n. Indeed, taking a path of integration which avoids the middle point between two consecutive eigenvalues and denoting α " sup

|ψ V n yxψ V n | " ż Cn pL `V
λ i ‰λ j 1 |λ i ´λj | , we have, for each m, ˆψk , ż Cn pL ´zIdq ´1VpL ´zIdq ´1 `pVpL ´zIdq ´1q m ˘dz ψ k 1 " ż Cn 1 pλ k ´zqpλ k 1 ´zq ÿ lo,...,lmPZ ˜l"m ź l"0 1 λ k l ´z ¸pψ k , Vψ k 0 qpψ k 0 , Vψ k 1 q . . . pψ km , Vψ k 1 qdz " 1 2πi 1 pλ k ´λn qpλ k 1 ´λn q ÿ λ k l ‰λn ˜l"m ź l"0 1 λ k l ´λn ¸pψ k , Vψ k 0 qpψ k 0 , Vψ k 1 q . . . pψ km , Vψ k 1 q, so that ˇˇˇˆψ k , ż Cn pL ´zIdq ´1VpL ´zIdq ´1 `pVpL ´zIdq ´1q m ˘dz ψ k 1 ˙ˇˇď sup l‰n 1 |λ n ´λl | mR 2m`2 pα}V }q m`1 1 |k´n|,|k 1 ´n|ďR 2m`2 pk, k 1 q, (4.14)
where 1 |k´n|,|k 1 ´n|ďR 2m`2 pk, k 1 q is the characteristic function of the frequency set pk, k 1 q such that |k ´n|, |k 1 ´n| ď R 2m`2 . Therefore, by (4.13) and (4.14), Let us (re)fix the notation in an obvious way as:

}|ψ V n yxψ V n | ´|ψ n yxψ n |} 2 HS " ÿ k,k 1 PZ ˇˇˇˇ˜ψ k , ˜żCn pL ´zIdq ´1VpL ´zIdq ´1 ˜8 ÿ m"0 pVpL ´zIdq ´1q m ¸dz ¸ψk 1 ¸ˇˇˇˇ2 ď sup l‰n 1 |λ n ´λl | 2 ÿ k,k 1 ÿ m,m 1 1 |k´n|,|k 1 ´n|ďR 2m`2 pk, k 1 qmR 2m`2 pα}V }q m`1 m 1 R 2m 1 `2pα}V }q m 1 `1 ď sup l‰n 1 |λ n ´λl | 2 ÿ m,m 1 mR 4pm`1q pα}V }q m`1 m 1 R 4pm 1 `1q pα}V }q m 1 `1 ď pα}V}R 4 q 4 p1 ´αR 4 }V}q 4 sup l‰n 1 |λ n ´λl | 2 . ( 4 
L Z " L ν,ε Z " L 0,0 Z `Vν,0 Z `V0,ε Z . (4.17) fixnot 
In section 4.1, we have been under the setting, in case of an exact resonance:

L :" L 0.0 Z and V " V ν,0 Z `V0,ε Z
and in Section 4.2 L :" L 0.0 Z `Vν,0 Z and V " L 0,ε Z . Therefore the condition (4.16) reads now:

β :" pα}V 0,ε Z }R 4 q 4 p1 ´αR 4 }V 0,ε Z }q 4 ˜ÿ nPZ sup l‰n 1 |λ ν,0 n ´λν,0 l | ¸2 ă 1 (4.18) vraicrit
where λ ν,0 k are the eigenvalues (3.16) of L 0,0 Z `Vν,0 z , so their difference behaves as n and this ensures the convergence of the series in (4.18)). thmabs THEOREM 4.2. With the notations of Lemma 4.1, there exist eigenvalues σ j,k , k " 1, . . . , J, of L Z satisfying ℜpσ j,k q ď ℜpλ j `λj,k q `p1 `?βq 2 p1 ´?βq 2 p2Rq

3 2 ˜sup n‰j‰l p|pψ n , pV ν,0 Z `V0,ε Z qψ l q| `|λ j,k |q|pψ l , pV ν,0 Z `V0,ε Z qψ j,k q| ¸inf l‰j 1 |λ 0,0 l ´λ0,0 j | where λ 0,0
l are the eigenvalues of L 0,0 Z . corabs COROLLARY 4.6. The instability criterion is:

ℜpλ j `λj,k q ă ´p1 `?βq 2 p1 ´?βq 2 p2Rq 3 2 ˜sup n‰j‰l p|pψ n , pV ν,0 Z `V0,ε Z qψ l q| `|λ j,k |q|pψ l , pV ν,0 Z `V0,ε Z qψ j,k q| ¸inf l‰j 1 |λ 0,0 l ´λ0,0 j | COROLLARY 4.7.
In the case of an approximated resonance:

λ j " λ j`1
one has to replace in Theorem 4.2 L 0,0 Z and V ν,0 Z by L 0,0 Z `pλ j ´λj`1 q|ψ j`1 yxψ j`1 | and V ν,0 Z ´pλ j ´λj`1 q|ψ j`1 yxψ j`1 |.

TRI apptri bdnss

Boundedness. Let us write

L Z " L d Z `εL p Z , (5.1 
) where L d Z is the diagonal part of L Z . We have the following result. LEMMA 5.1. The operator L p Z is bounded. PROOF. Since L p Z is 2x2-block tridiagonal, it is enough to prove that each 2x2 block L n,n`1 is uniformly bounded. We immediately find, using (3.27), that

|L n,n`1 | ď ε 2 |Θ ˘||CpZq| |z n`1 | `|z n ||1 `ΥpZ n q| `|z 0 | |z n | ď εC z,z 0 , @n P Z. (5.2) boundform 

□

Therefore, by Kato's Theorem [START_REF] Kato | Perturbation theory for linear operators[END_REF], we get the following.

PROPOSITION 5.2. The operator L Z has pure point spectrum.

We will use the notation

V Z :" L Z ´Ld Z .
(5.3) def:V We will estimate the real part of the eigenvalues of L Z by construction of quasi-modes. Such construction, recalled below, will provide an estimate of the distance of the spectrum of L Z with respect to explicit quasi-eigenvalues. Imposing that this estimate is strictly smaller than the real part of the corresponding quasi-eigenvalue leads to the existence of eigenvalues with strictly positive real part. def:res DEFINITION 5.3 (Exact resonance for the inviscid system (2.5) with ν " 0). We call "exact resonance" the locus of the points z " pk, mq P R 2 such that there exist j, l P Z and a couple of eigenvalue pλ ˘,0,0 z`jz 0 , λ ˘,0,0 z`lz 0 q satisfying λ ˘,0,0 z`jz 0 ´λ˘,0,0 z`lz 0 " 0 with |j ´l| ď 1.

(5.4) rmk:res REMARK 5.4. The above condition |j ´l| ď 1 is motivated by the fact the matrix L Z in (3.20) is tridiagonal for any fixed j P Z. This implies the modes z `jz 0 , z `lz 0 with |j ´l| ą R " 2 (the finite band structure) are not coupled by the system, so that their distance will not affect any of our estimates below. lem:res LEMMA 5.5. Let z 0 " pk 0 , m 0 q P R 2 with k 0 ‰ 0 be the (spatial) Fourier mode of the original wave (2.4) with time frequency ´ω0 In the regime |z| ! 1, all the possible exact resonances are identified by the following set of values of z " pk, mq P R 2 : R z 0 :" R z 0 ,1 Y R z 0 ,2 , where, recalling from (2.2) that ω 0 " k 0 {|z 0 |,

R z 0 ,1 : " tz " pk, mq P R 2 | λ `,0,0 z`z 0 ´λ´,0,0 z " 0u " " z " pk, mq P R 2 | ω 0 " k `k0 |z `z0 | `k |z| * ; R z 0 ,2 : " tz " pk, mq P R 2 | λ ´,0,0 z´z 0 ´λ`,0,0 z " 0u " " z " pk, mq P R 2 | ω 0 " k ´k0 |z ´z0 | `k |z| * .
(5.5) eq:res-set PROOF. First, appealing to Definition 5.3 and Remark 5.4, we can restrict ourself to considering the part of the tridiagonal reduced matrix with ν " 0, whose eigenvalues λ ˘,0,0 z`pj´1qz 0 , λ ˘,0,0 z`jz 0 , λ ˘,0,0 z`pj`1qz 0 are given by (3.16). In our low-frequency regime |z| " op1q, recalling from (2.2) that ω 0 " k 0 {|z 0 |, we have the following expansions for j ‰ t0, ˘1u λ ˘,0,0 z`pj´1qz 0 " ´ipω `pj ´1qω 0 q ˘i signpj ´1qω 0 `op1q, λ ˘,0,0 z`jz 0 " ´ipω `jω 0 q ˘i signpjqω 0 `op1q, λ ˘,0,0 z`pj`1qz 0 " ´ipω `pj `1qω 0 q ˘i signpj `1qω 0 `op1q.

We then have that λ ˘,0,0 z`pj˘1qz 0 ´λ˘,0,0 z`jz 0 " ˘iω 0 ˘i signpjqω 0 ˘i signpj ˘1qω 0 which does not vanish for all j ‰ t0, ˘1u. Therefore, according to Definition 5.3, there is no resonance for j P Zzt0, ˘1u. On the other hand, one can easily check that for j P t0, ˘1u the resonance locus is exactly given by R z 0 ,1 Y R z 0 ,2 . □ figureone FIGURE 1. R 1 (blue) and R 2 (red) for the point z 0 " pk 0 , m 0 q " p1, 1q and ω 2 0 " 1 2 .

Lemma 5.5 states that two eigenvalues λ ι 1 z 1 , λ ι 2 z 2 , ι 1 , ι 2 P t˘u are "paired" by a resonance with the following rule pz 1 , z 2 q " pz `z0 , zq with pι 1 , ι 2 q " p`, ´q or pz 1 , z 2 q " pz, z ´z0 q with pι 1 , ι 2 q " p`, ´q . 

S z 0 :" pR z 0 ,1 Y R z 0 ,2 q X " z " pk, mq P R 2 | |z| sin θ z,z 0 | 2 ď C * ‰ H, (5.6 
) eq:inter-con where R z 0 ,1 , R z 0 ,2 are given in (5.5) and θ z,z 0 :" θ z ´θz 0 is the angle between z and z 0 . Let Θ `" |Θ| exppiµq for some µ P R (resp. Θ ´" |Θ| expp´iµq for its complex conjugate) be the amplitude of the original wave (2.4). ppspecpert 5.5. Application of results of Section 4, proof of Theorem 2.2. The resonance leading to the TRI takes place for values of Z given by (3.16) such that λ ´,0,0 Z " λ `,0,0 Z`Z 0 and the projection of the perturbation on the corresponding eigenspace is The eigenvalue equation reads

ˆν|z| 2 ´i ε 2 Θ `F0,1 G `´0 ,1 ´i ε 2 Θ ´F1,0 G ``
λ 2 ´λνp|z| 2 `|z `z0 | 2 q `ε2 4 |Θ| 2 CpZq 2 |z||z `z0 | G `´0 ,1 G ``1 ,0 `ν2 |z| 2 |z `z0 | 2 solved by λ ˘" νp|z| 2 `|z `z0 | 2 q ˘bν 2 p|z| 2 ´|z `z0 | 2 q 2 ´ε2 |Θ| 2 CpZq 2 |z||z`z 0 | G `´0 ,1 G ``1
,0 2 and ℜp´λ ´q ą 0 at the condition that

ε 2 4 |Θ| 2 CpZq 2 |z||z `z0 | G `´0 ,1 G ``1 ,0 `ν2 |z| 2 |z `z0 | 2 ă 0. (5.10) condiii i.e. G `´0 ,1 G ``1 ,0 ď ´4 |Θ| 2 pν{εq 2 |z| 3 |z `z0 | 3 CpZq 2 " ´4m 2 0 |Θ| 2 pν{εq 2 |z||z `z0 | 3 |z 0 | 2 psin θ z,z 0 q 2 (5.11) as CpZq 2 " |z| 2 |z 0 | 2 m 2 0
psin θ z,z 0 q 2 (from (2.13)). Recalling from (3.27) that

G ℓ 1 ℓ 2 ℓ 3 n˘1,n :" ℓ 1 |z n˘1 |p1 ¯ΥpZ n˘1 qq `ℓ2 k 0 ω 0 `ℓ3 |z n |,
i.e., as from (3.8) ΥpZq "

2 z¨z 0 |z| 2 " 2 |z 0 | |z| cospθ z,z 0 q, G `´0 ,1 " |z| `|z 0 |p2 cos θ z,z 0 ´1q ´|z `z0 | Moreover, G `´0 ,1 " ´G``1 ,0 `p|z|Υpzq ´|z `z0 |Υpz `z0 qq " ´G``1 ,0 `2 ˆz ¨z0 |z| ´pz `z0 q ¨z0 |z `z0 | ṡo that G `´0 ,1 G ``1
,0

" ´pG ``1 ,0 q 2 `2pcospθ z,z 0 q ´cospθ z`z 0 ,z 0 qq|z 0 |G ``1 ,0 . Therefore, (5.11) reads

p|z| `|z 0 |p2 cos θ z,z 0 ´1q ´|z `z0 |q 2 ą 4m 2 0 |Θ| 2 pν{εq 2 |z||z `z0 | 3 ||z 0 | 2 psin θ z,z 0 q 2 ´2pcospθ z,z 0 q ´cospθ z`z 0 ,z 0 qq|z 0 | ˆp|z| `|z 0 |p2 cos θ z,z 0 ´1q ´|z `z0 |q.
(5.12) bgrd From p|z| `|z 0 |p2 cos θ z,z 0 ´1q ´|z `z0 |q 2 ě 2|z 0 | 2 , and the fact that, for |z| small enough and θ z,z 0 not too small , so that cospθ z,z 0 q ´cospθ z`z 0 ,z 0 q ă 0, we have that ´2pcospθ z,z 0 q ´cospθ z`z 0 ,z 0 qq|z 0 |p|z| `|z 0 |p2 cos θ z,z 0 ´1q ´|z `z0 |q ă 0 and (5.12) is satisfied as soon as

2|z 0 | 2 ą 4m 2 0 |Θ| 2 pν{εq 2 |z||z `z0 | 3 ||z 0 | 2 psin θ z,z 0 q 2 that is, for |z| small enough (so that, say, |z `z0 | ď 2|z 0 |) pν{εq 2 |z| psin θ z,z 0 q 2 ă 1 16 |z 0 || |Θ| 2 m 2 0 . ( 5 

.13) boxboxbox

Finally, one sees immediately that the r.h.s. of the boxed formula in Corollary 4.6 is Oppν `εq 2 q and β " Opε 2 q so that, since λ ´" ν `ε, we have by Theorem 4.2 that, under the hypothesis (5.13), ℜpσ j,k q :" ℜpσ 0,´q :" ℜpλ ´q ă 0.

More precisely, we have, by (5.2) Therefore we get the constraint, say, Let us summarize all the constraints, on z, ν, ε we have: Therefore one recover the same structure as in the corresponding formula in [START_REF] Dauxois | Instabilities of Internal Gravity Wave Beams[END_REF], namely the formula after formula 16., after a rescaling ν Ñ ν{2 and a rescaling by ε of the amplitude of the linear plane wave, i.e |Ψ 0 | in [START_REF] Dauxois | Instabilities of Internal Gravity Wave Beams[END_REF],

ε 2 ν 3 ă 1 
ε ν ď 1 6|Θ|γ ε ν 2 ă 3|Θ| 16L 2 |z 0 | 2 ν 2 ε ă γ 2 |Θ| 18γ|z 0 | 2 `5 |z 0 | m 0 . p1 `γ|z 0 | 2 q 2 `p1 `γ|z 0 | 2 qp6γ|z 0 | 2 `|z 0 | m 0 q |z| psin θ z,z 0 q 2 ă

,

  Vψ l q| `|λ j,k |q|pψ l , Vψ j,k q| ¸inf

. 6 )REMARK 4 . 3 .

 643 The above result has been stated in the case of pure point spectrum, but of course it is still valid (with slight modifications) in more general cases, for instance a self-adjoint operator with continuous spectrum.PROOF OF THEOREM 4.1. We have that pH ´ΛIdq r Ψ " ÿ j µ j pσ j ´Λqψ j " ÿ j μj ψ j , μj :" µ j pσ j ´Λq. (4.7) By (the lower bound in) the definition of the Riesz basis (4.5), we have }pH ´ΛIdq r Ψ} 2 ě A ÿ j |μ j | 2 .

restri 5 . 2 .

 52 Resonances for the TRI.

resloc 5 . 3 .

 53 The resonance locus.

resassump 5 . 4 .

 54 Assumption ensuring the existence of resonances. The following simple lemma, whose proof is left to te reader will be important for the following. LEMMA 5.6. For any C ą 0,

4 1 8γL 2 3 ,0 |z 0 |. that is ν 2 ε ă γ 2 ν 2 ε ă γ 2

 42322 |z||z 0 | implied, under the constraint (5.14) and the fcat the |z| ď |z 0 |, and the criterion of Corollary 4.6 readsp6ε|Θ| `ν|z 0 | 2 q 2 `p6ε|Θ| `ν|z 0 | 2 qp6ν|z 0 | 2 `5ε |Θ| m 0 |z 0 |q ă ´ℜλ j,ksince one can estimate|λ j,k | ď 6ν|z 0 | 2 `5ε |Θ| m 0 |z 0 |. Since ´ℜλ j,k " λ ´ě 3ν|z 0 | 2 `5ε |Θ| m 0 |z 0 |.we get, using (5.14), the constraintp ν γ `ν|z 0 | 2 q 2 `p ν γ `ν|z 0 | 2 qp6ν|z 0 | 2 `ν m 0 γ |z 0 |q ă 3ν|z 0 | 2 `5ε |Θ| m 0 |z 0 |,which is implied, using (5.14) again.p ν γ `ν|z 0 | 2 q 2 `p ν γ `ν|z 0 | 2 qp6ν|z 0 | 2 `ν m 0 γ |z 0 |q ă 18|Θ|γε|z 0 | 2 `5ε |Θ| m |Θ| 18γ|z 0 | 2 `5 |z 0 | m 0 . p1 `γ|z 0 | 2 q 2 `p1 `γ|z 0 | 2 qp6γ|z 0 | 2 `|z 0 |m 0 q compatible with (5.15) for |Θ| large enough, since the two constraint give together:16L 2 |z 0 | 2 3|Θ| ă |Θ| 18γ|z 0 | 2 `5 |z 0 | m 0 p1 `γ|z 0 | 2 q 2 `p1 `γ|z 0 | 2 qp6γ|z 0 | 2 `|z 0 | m 0 qNote that this constraint on |Θ| (size of the amplitude of the solution around which one linearizes) is also on |z 0 | (that is the size of the oscillation of the solution around which one linearizes). Namely, for |z 0 | large, one has the constraintˆ|Θ| |z 0 | 2 ˙´1 ă C |Θ| |z 0 | 2 , C ą 0.

1 G `` 1 ,0 2 `

 112 all the results of this section provides a proof of Theorem 2.2 in the case of the resonance ω 0 " k`k 0 |z`z 0 | `k |z| . The case ω 0 " k´k 0 |z´z 0 | `k |z| is treated the same way. Note that it seems that as |z 0 | Ñ 8,ℜpσ j,k q " ´ν 1 |z 0 | .in accordance to [2, Figure2].6. Conclusion: comparison with the results of Dauxois et al. in [2]compdaux Let us recall that the asymptotic formula we get in Theorem 2.1 for the real part of λ is ℜpλq " ´νp|z| 2 `|z `z0 | 2 q `bν 2 p|z| 2 ´|z `z0 | 2 q 2 ´ε2 |Θ| 2 CpZq 2 |z||z`z 0 | G `´0 ,Opν 2 `ε2 q

  Under the same hypothesis in ε, ν, |Θ `|, Z 0 , Z of Theorem 2.1, there exists an eigenvector e Z of l Z with eigenvalue λ Z such that ℜpλ Z q ą 0.

	thm:intro	THEOREM 2.2. PROOF OF THEOREM 2.1.				
		Let us define, associated to the eigenvector e Z the following
						g Z pZ 1 q "	ÿ	e n Z δpZ 1 ´Z ´nZ 0 q.
								nPZ
		Calling pũ j Z pXq, bj Z pXqq t the inverse Fourier transform of g Z , i.e.
		ˆũ Z bZ	˙pXq "	ż R 2	g Z,j pZ 1 qe iZ 1 ¨X dZ 1 " e ´iZ¨X	nPZ ÿ	e n Z e ´inZ 0 ¨X,	(2.19)
		it holds that, for L ε ν defined in (2.10)			
							L ε ν	ˆũ Z bZ	˙" ´λZ	ˆũ Z bZ	˙,	(2.20)
		and therefore					L ε ν	ˆeλ Z t ˆũ Z bZ	˙˙" 0,	(2.21)
		namely wpt, Xq :" e λ Z t ˆũ Z bZ	˙is an exponentially growing solution to (2.10).
		Moreover, ṽ solving (iv) in (2.5) is easily obtained, see (3.3), Section3.1 below:
				ṽpXq " ´e´iZ¨X	ÿ	e n,Z k`nk 0 m`nm 0 e ´inZ 0	¨X
								nPZ
		and, by (3.5) in Section 3.1 again			
		P pXq " e ´iZ¨X	ÿ nPZ	e ´inZ 0	¨X ˆi m`nm 0 |z`nz 0 | 2 e n,Ź ´2m 0	ˆΘ`C pZ `Z0 q pm `nm 0 q|Z `pn ´1qZ 0 | 2 e n´1,Z

  .6) eq:pressure Substituting the expression of P pZq inside the Fourier version of equation (i) in (2.5) yields

	´iωûpZq	`km k 2 `m2 bpZq `εp(A) u `(B) u q	|z| 2 `2iεkm 0 CpZq 2	ˆΘm	`m0	ûpZ `Z0 q	´Θḿ	´m0	ûpZ ´Z0 q "
												´ν|z| 2 ûpZq,
	namely										
												´iωûpZq	`km k 2 `m2 bpZq
	´iεmCpZq	ˆΘm	`m0	ˆ1	`2pkk 0 `mm 0 q |z| 2	˙ûpZ `Z0 q	`Θḿ	´m0	ˆ1	´2pkk 0 `mm 0 q |z| 2	˙ûpZ ´Z0 q "
												´ν|z| 2 ûpZq. (3.7) eq:uz
	Finally, (3.4)-(3.7) is exactly system (2.12). We will use the following shortened notation:
								ΥpZq :"	2z ¨z0 |z| 2 .	(3.8) def:upsilon
	This way, equation (3.7) rewrites as					
	´iωûpZq	`km k 2 `m2 bpZq ´iεmCpZq					

  1 | 

							2	...
	...	...	...	...	...	...	...	...
								(3.13)	eq:notdiagm
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Now,

where in the last inequality we used the (upper bound in) the definition of Riesz basis (4.5). This concludes the proof. □ By Lemma 4. In particular, we find that ℜpσ j,k q ď ℜpλ j `λj,k q `B A p2Rq

.9) toutestdit so that a condition for having "instability" is that it exists λ j,k such that ℜpλ j `λj,k q ă ´B A p2Rq 

Therefor by [8, Theorem 13], t r ψ n , n P Zu is a Riez basis. Moreover,

□

We the extract some information on ψ V n by means of the Neumann expansion of the resolvent of L `V, namely the spectral projector |ψ V n yxψ V n |. To that end, we rely on the following result. LEMMA 4.5. Choosing a phase factor for ψ V n (always possible since, writing pψ n , ψ V n q " ρe iθ , 0 ď ρ ď 1, one can choose cos θ " ρ) such that ℜpψ n , ψ V n q " |pψ n , ψ