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Abstract

Standardising the representation of biomedical knowledge among all

researchers is an insurmountable task, hindering the effectiveness of many

computational methods. To facilitate harmonisation and interoperability despite

this fundamental challenge, we propose to standardise the framework of

knowledge graph creation instead. We implement this standardisation in

BioCypher, a FAIR (findable, accessible, interoperable, reusable) framework to

transparently build biomedical knowledge graphs while preserving provenances of

the source data. Mapping the knowledge onto biomedical ontologies helps to

balance the needs for harmonisation, human and machine readability, and ease of

use and accessibility to non-specialist researchers. We demonstrate the usefulness

of the framework on a variety of use cases, from maintenance of task-specific

knowledge stores, to interoperability between biomedical domains, to on-demand

building of task-specific knowledge graphs for federated learning. BioCypher

(https://biocypher.org) thus facilitates automating knowledge-based biomedical

research, and we encourage the community to further  develop and use it.

Keywords: prior knowledge, knowledge graph, database, ontology,

harmonisation, federated learning, FAIRness
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Main Text

Introduction

Biomedical knowledge, although increasingly abundant, is fragmented across

hundreds of resources. For instance, a clinical researcher may use protein

information from UniProtKB 1, genetic variants from COSMIC 2, protein

interactions from IntAct 3, and information on clinical trials from ClinicalTrials.gov
4. Combining these complementary datasets is a fundamental requirement for

exhaustive biomedical research and thus has motivated a number of integration

efforts to form harmonised knowledge graphs (KGs; i.e., knowledge representations

based on a machine-readable graph structure). Decisions made on how to store the

knowledge at each primary source poses many real-world problems in their

recombination, for instance via the use of different identifier namespaces, levels of

granularity, or licences 5,6. However, directly standardising the representation of

biomedical knowledge is not appropriate for the diverse research tasks in the

community; there is no one-size-fits-all 5–8.

This heterogeneity directly affects the FAIRness of knowledge representation.

Findability: Since many KGs have been created, finding the one most suitable for a

specific task is challenging and time-consuming 5,6.

Accessibility: Few available KG solutions perfectly fit the task the individual

researcher wants to perform. Creating custom KGs is only possible for those that

can afford years of development time by an individual 7,9 or even entire teams 10.

Smaller or non-bioinformatics labs need to choose from publicly available KGs,

thereby also limiting the use of non-public data. There exist frameworks to build

certain kinds of KG from scratch 8,11, but these are difficult to use for researchers

outside of the ontology subfield and often have a rigid underlying data model 6,12.

Even task-specific knowledge graphs sometimes need to be built locally by the user

due to licensing or maintenance reasons, which requires significant technical

expertise 13.

Interoperability: For the above reasons, many KGs (Supplementary Table 1) are

built manually for specific applications, which is very laborious and often

redundant, since the primary data sources overlap substantially 5. For downstream
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users, the resulting KGs are too distinct to easily compare or combine 6.

Reusability: Maintaining KGs for the community is additional work; once

maintenance stops, they quickly deteriorate, leading to reusability and

reproducibility issues 5. Modifying an existing, comprehensive KG for a specific

purpose is a non-trivial and often manual process prone to lack of

reproducibility14.

Approach

To address these problems, we present BioCypher to improve biomedical

knowledge representation by means of:

1) Modularity: To facilitate the maintenance of multiple task-specific KGs from

overlapping primary resources, we propose a modular approach that allows

recombining individual data “adapters” for primary resources (e.g. UniProtKB and

COSMIC) in a reusable manner. This allows delegating the maintenance work to

one central place for each adapter instead of having to maintain the primary

resource inside each individual KG (see case study “Modularity”).

2) Harmonisation: To facilitate harmonisation of datasets from a biological

perspective, we propose to use ontology mapping. Primary data sources may

represent similar data in different ways. By mapping divergent representations

onto the same ontological class (for instance, “protein” or “somatic variant”),

harmonisation can be greatly simplified (see case study “Tumour board”). In

addition, the ontological information projected onto each KG entity allows for

more flexible and informative queries in downstream analyses (see case study

“Network expansion”).

3) Reproducibility: By sharing the ontology mapping from (2) in a

project-specific manner, a database used for a specific task can be reproduced more

effectively. Since sharing the databases themselves is often prohibited by their large

size, BioCypher facilitates the creation of task-specific subsets of databases to be

shared alongside analyses. This is enabled by extensive automation, reducing the

time required and file sizes (see case studies “Network expansion”, “Subgraph

extraction”, and “Embedding”).
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4) Reusability and accessibility: Finally, the sustainability of research software is

strongly related to adoption in - and contributions from - the community. We are

developing an open source software applying modern methods of continuous

integration and development, including many researchers and developers from the

beginning (see case study “Data integration”). This facilitates robust workflows that

are tested end-to-end, including the integrity of the scientific data. We operate

under the permissive MIT licence and provide contributors with guidelines for

their contributions and a code of conduct. To provide the knowledge and methods

to a larger community, we create user-friendly interfaces using open standards.

These interfaces, together with the biological perspective introduced by ontologies,

improve usability by non-bioinformaticians.

Taken together, these features will make the process of gathering and

harmonising biomedical knowledge simpler, more democratic, and FAIR 15.

Implementation

We build on recent technological and conceptual developments in biomedical

ontology that greatly facilitate the harmonisation of biomedical knowledge. We

integrate a consistent and comprehensive biomedical ontology, the Biolink model
16, and an extensive catalogue and resolver for biomedical identifier resources, the

Bioregistry 17. Both projects, like BioCypher, are open-source and

community-driven. Biolink serves as a biological anchor for the harmonisation of

different data sources, and Bioregistry provides consistent vocabularies for

representing biological concepts as well as mapping and validation of identifiers.

We also facilitate exchange, extension, and modification of the ontological scaffold

to accommodate database-specific needs. BioCypher is implemented as a Python

library that provides a low-code access point to data processing and ontology

manipulation (for examples, see case studies “Tumour board” and “Network

expansion”). BioCypher facilitates the decision on how to represent knowledge and

simplifies the creation of the corresponding KG, bridging the gap between the field

of biomedical ontology and the broad application of databases to biological

research questions.
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BioCypher’s translation framework simplifies the creation of custom KGs

through a combination of “adapters” (where the data is ingested) and a schema

configuration (where the structure of the graph and mappings to ontology are

recorded). Building a task-specific KG, given existing configuration, takes  only

minutes, and creating a KG from scratch can be achieved in a few days of work.

This allows for rapid prototyping and automated machine learning (ML) pipelines

that iterate the KG structure to optimise predictive performance (for instance,

building custom task-specific KGs for graph embeddings and ML (see case study

“Embeddings”). In spite of its speed, automated end-to-end testing of billions of

entities and relationships per KG increases trust in the consistency of the data (see

Methods for details and the case study “Network expansion” for an example).

By abstracting the KG build process as a combination of modular input adapters,

BioCypher saves developer time in maintaining integrative resources made up of

overlapping primary sources (Figure 1A, see case study “Modularity”). We are

migrating several of these integrative resources using the BioCypher framework,

for instance OmniPath 18,19, the Clinical Knowledge Graph (CKG, 20), CROssBAR v2
21, the Bioteque 7, and a Dependency Map KG 22. By mapping each of these

knowledge collections onto the same ontological framework, we also gain

automatic interoperability between the different biomedical domains (Figure 1B).

By providing modular output adapters, we can adjust to the various needs of KG

users. A Neo4j adapter provides rapid access to extensive databases for querying

from analysis ( Jupyter) notebooks and facilitates maintenance of large knowledge

collections for storage. A CSV writer allows exchange with other knowledge

curation services, for instance in the KGX format 12. Python-native adapters (for

instance to sparse matrix or NetworkX format) yield knowledge representations

that can immediately be used programmatically in machine learning frameworks

such as PyTorch Geometric for deep learning 23.

For high performance, we implement property graph database technologies that

provide intuitive query interfaces, such as the Cypher graph query language

developed by Neo4j 24. This enables complex and versatile queries that pave the

way towards rich and highly interactive interfaces. For example, web widgets and
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apps (such as https://crossbar.kansil.org and https://drugst.one) allow

non-computational researchers to browse and customise the database, and to plug

it into standard pipelines 25. Additionally, a structured knowledge representation

facilitates connection to modern natural language processing applications 26. Neo4j

is highly scalable and interacts well with other components of large-scale,

distributed, high performance computing infrastructure. Thanks to common

standards, tools developed can be shared across projects and used

community-wide or in cloud-based services that preserve sensitive patient data

(see case study “Federated learning”).

Conclusion

Biomedical knowledge is amassed at an ever increasing rate, and machine

learning tools that leverage prior knowledge in combination with biomedical big

data are gaining much traction, yielding, for instance, sophisticated deep neural

architectures that perform prediction of combinatorial perturbations or attempt to

diagnose rare diseases 7,27–32. However, the knowledge representations used in these

frameworks result from arbitrary decisions about inclusion and structure, followed

by manual implementation, and thus are not optimised for the task at hand nor

tested for alternatives or robustness with regard to the representation. BioCypher

provides a timely framework for KG standardisation to improve the

interoperability of different prior knowledge sources and downstream

computational analysis methods. We facilitate FAIRness in knowledge

representation by increasing accessibility for non-bioinformatics groups and

smaller labs, and demonstrate the key advantages of BioCypher by examples in the

Supplementary Note. We invite all database and tool developers to join this

collective effort.
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Figure 1: The BioCypher framework. A) We transform commonly used, curated resources into
configurable, task-specific knowledge graphs, using ontology to inform biological “objectness”,
facilitating integration, reasoning, and interpretation. B) Agreeing on a common representational
framework allows recombination of task-specific data sources to answer complex queries across
biomedical domains. For instance, starting at mass spectrometry measurements of a patient’s tumour
(left), one could go through clinical annotations to genetic dependencies from the Dependency Map
project to identify potential drug targets, or through pathway / process annotations in Reactome and
IntAct, identify relevant ligand-receptor pairs using OmniPath, and use CROssBAR to perform drug
discovery or repurposing for these receptors.
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Methods

BioCypher is implemented as a Python package. Its main purpose is to receive

arbitrarily structured biomedical information and create or update a knowledge

graph (KG) database that unambiguously maps each KG entity to its corresponding

biological class. It uses ontology (the curation of biomedical concepts into a

hierarchy of classes) to encode semantic information about KG entities

(“objectness”) in the biomedical space. From a software development perspective,

BioCypher can be described as an extract-transform-load (ETL) pipeline with a

focus on biomedicine.

As a baseline, we use the Biolink model 16, a comprehensive and generic

biomedical ontology system; where needed, this ontology can be exchanged with

or extended by more specific and task-directed ontologies, for instance from the

OBO Foundry 33. Identifier namespaces are collected from the community-curated

Bioregistry service 17, where available. Bioregistry also supplies convenient

methods for parsing identifier Compact URIs (CURIEs), which are the preferred

method of unambiguously specifying identities of KG entities. For identifier

mapping, where it is needed, the corresponding facilities of PyPath 18 are used and

extended.

The preferred way of entering data into a BioCypher graph attaches scientific

provenance to each entry, allowing the aggregation of data with respect to their

sources (for instance, the publication an interaction was derived from) and thus

avoiding problems such as duplicate counting of the same primary data from

different secondary curations. In this way, confidence about knowledge contents of

each graph can be assessed more easily, for instance in the order of “multiple

curated sources” > “single curated source” > “multiple experimental sources” >

“single experimental source” > “predicted interaction”. For author attribution, the

preferred way of entering data into BioCypher also includes the exact provenance

of each entry, for instance, the publication it was derived from or the consortium

responsible for the curation of said content. In the same way, all licences of the
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contents are propagated forward, enabling the users of the framework to easily

determine the allowed uses for any given KG.

Particularly for the creation of databases available to the public we recommend

using the “strict mode” of BioCypher, which does not allow creation of entities

without associated source, licence, and version parameters. In this scenario,

BioCypher can effectively prevent the re-distribution of data whose original

licence does not allow it, and guarantees that data originators are acknowledged.

BioCypher is a free software under MIT licence, openly developed and available

at https://biocypher.org. Community contributions in the form of GitHub issues or

pull requests are very welcome and encouraged.

Usage

A key advantage of the modular structure of BioCypher is the ability to reuse

existing adapters for primary or secondary knowledge sources. In case no adapter

exists for a given resource, it can be created following the pattern of one of our

existing adapters and shared with the community for further use. To create a

custom KG with BioCypher, two main components are necessary: 1) a YAML file

(https://yaml.org) detailing the configuration of graph constituents, including their

mode of representation (node or edge) and their preferred identifier (default is

included); and 2) one or multiple adapter modules responsible for handing off the

data to BioCypher. These two components are described below. BioCypher

provides a number of utilities for manipulating the input data as well as the

ontological foundation of the graph, for instance, filtering properties of input types

or arbitrarily extending the ontology. More details and a tutorial can be found in

the documentation at https://biocypher.org.

Schema configuration

Configuration of graph constituents is made available through a graph schema

YAML file, whose main purpose is to mediate between the structure of the input

data and the resulting BioCypher graph structure. It details, for each constituent

species of the graph, the mode of representation (node or edge), the unique
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identifier system used (e.g., UniProt or HGNC Symbol), the label to be expected in

the input, and - in the case of relationships - the types of source and target nodes.

It can also be used to unify the properties attached to nodes and edges in the

resulting KG, which is useful when combining sources or dealing with

heterogeneous datasets.

Data retrieval (the adapter)

A Python adapter module is responsible for the actual database creation process.

Briefly, the primary data are ingested and passed into BioCypher through the

driver instance created in the build pipeline. BioCypher accepts lists and

generators; the latter enable streaming of very large datasets that may not fit into

the working memory of smaller machines. We provide information about the

structure of the input data through the package and its documentation. BioCypher

enables automatic extended labelling of each node with the entire hierarchy of that

node derived from the ontology tree, which allows more flexibility in querying the

resulting KG and simplifies the queries. For instance, a narrow query could yield

interactions of proteins, while a query for “polypeptides” (the ontological parent of

“protein”) yields proteins, peptides, and precursors; a query for “gene or gene

product” additionally returns genes and transcripts without the need for

concatenating all individual classes of entities or modifying the underlying graph.

Interacting with the graph

All interactions with BioCypher take place through its main module (`driver.py`).

It connects to a running Neo4j instance with multiple options for authorisation,

and also handles calls to the other modules, such as the batch writer used for the

rapid `admin import` feature of Neo4j, which allows building and maintaining very

extensive databases in very little time. The main modes of graph manipulation are

showcased in our tutorial.

The connected graph database can be interactively manipulated through the

Python driver supplied by Neo4j through our `neo4j-utils` library

(https://github.com/saezlab/neo4j-utils), creating, updating, and deleting nodes and
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edges ad libitum. BioCypher provides a high-level interface that introduces

consistency through the use of standardised structure of the biomedical contents.

For internal consistency and integration purposes, each BioCypher graph contains

a meta-graph that details its structure and exact settings (e.g., identifiers used),

which is created upon instantiation of a graph instance and updated after each

manipulation. It includes time-stamps for versioning purposes, which can also be

customised with manually created version numbers, facilitating sharing and

reproducibility of analyses.

Time can be a limiting factor in the interactive creation of graph content. If the

dataset is of large size - say, in the realm of millions of nodes and edges - the

creation of a graph can take hours to days. For this reason, we also support the

creation of consistent CSV files to be used for the `neo4j-admin import` shell

command. This mode significantly speeds up the database creation through the

deactivation of safety features that guarantee the consistency of the graph in

interactive mode. Thus, we programmatically ensure the consistency of CSV files

generated by BioCypher, allowing speedy and secure building of large databases on

the fly. Since Neo4j v5, admin import also allows incremental updates of already

existing databases, increasing the usefulness of this feature.
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Supplementary Materials

Case studies

Modularity

There are several resources used by the biomedical community that can be

considered essential to a majority of bioinformatic tasks. A good example is the

curation effort on proteins done by the members of the Universal Protein Resource
1; many secondary resources and tools depend on consistent and comprehensive

annotations of the major actors in molecular biology. As such, there is an

enormous amount of individual tools and resources that make requests to the

public interface of the UniProt service, all of which need to be individually

maintained. We and several of our close collaborators make use of this resource,

for instance in OmniPath 18, CKG 20, Bioteque 7, and the CROssBAR drug discovery

and repurposing database 21. We have created an example on how to share a

UniProt adapter between resources and how to use BioCypher to combine

pre-existing databases on the basis of ontology.

We have written such an adapter for UniProt data, using software infrastructure

provided by the OmniPath backend PyPath (for downloading and locally caching

the data). The adapter provides the data as well as convenient access points and an

overview of the available property fields. Using these methods, selecting specific

content from the entirety of UniProt data and integrating this content with other

resources is greatly facilitated (Figure S1), since the alternative would be, in many

cases, to use a manual script to access the UniProt API and rely on manual

harmonisation with other datasets.

The adapter and a script demonstrating its usage are available at

https://github.com/HUBioDataLab/CROssBAR-BioCypher-Migration.
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Figure S1: Modularity of knowledge input. Individual primary source adapters can be used

to build secondary knowledge curations such as OmniPath (compare to Figure 1A). This

shifts maintenance towards the primary source and thus reduces maintenance effort:

instead of maintaining each primary resource at the integrated KG level, only one reusable

adapter for each resource is necessary. The primary adapters provide an additional level of

flexibility to the user by providing accessible insight into the contents of each primary

resource, which can be extensive. For instance, in the adapter for the UniProt knowledge

base, the user can select their favourite species, fields of protein information such as the

length or mass of the protein, and relationships to import, such as the host organism or the

coding gene of each protein.
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Tumour board

Cancer patients nowadays benefit from a large range of molecular markers that

can be used to direct treatment and estimate prognoses 13,34. In the context of the

DECIDER project (www.deciderproject.eu), we are creating a platform to inform

the tumour board of actionable molecular phenotypes of high grade serous

ovarian cancer patients. The current manual workflow of discovering actionable

genetic variants consists of multiple complex database queries to different

established cancer genetics databases 13,35,36. The returns from each of the individual

queries then need to be curated by human experts (geneticists) in regard to their

identity (e.g. identify duplicate hits from different databases), biological relevance,

level of evidence, and actionability. The heterogeneous nature of results received

from different primary database providers makes this a time-consuming task.

To facilitate the discovery of actionable variants and reduce the manual labour

of human experts, we use BioCypher to transform the individual primary

resources into an integrated, task-specific KG. Through mapping of the contents of

each primary resource to ontological classes in the build process, we essentially

remove the need to manually curate and harmonise the individual database results.

This mapping is determined once, at the beginning of the integration process, and

results in a BioCypher schema configuration that details the types of entities in the

graph (e.g., patients, different types of variants, related treatment options, etc.) and

how they are mapped and thus integrated into the underlying ontological

framework. As a second step, datasets that are not yet available from pre-existing

BioCypher adapters are adapted in similar fashion to yield data ready to be

ingested by BioCypher. The code for this project can be found at

https://github.com/oncodash/oncodashkb.

We make use of the ontology manipulation facilities provided by BioCypher to

extend the broad but basic Biolink ontology at certain branches where it is useful

to have more granular information about the data that enters the KG. For example,

the exact type of genetic variants are of high importance in the molecular tumour

board process, but Biolink only provides a generic “sequence variant” class in its
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schema. Therefore, we extended the ontology tree at this node with the very

granular corresponding subtree of the Sequence Ontology (SO, 37), yielding a

hybrid ontology with the generality of Biolink and the accuracy of a specialised

ontology of sequence variants (Figure S2). Due to the mechanism provided by

BioCypher, this hybridisation can be performed by providing only the minimal

input of the sequence ontology URL and the nodes that should be the point of

merging (“sequence variant” in Biolink and “sequence_variant” in SO). The same

process is used with the Disease Ontology 38 and OncoTree (39, see Figure S2).

Figure S2: The ontology manipulation feature is used to extend Biolink with more refined ontologies.

Since Biolink has a broad but general representation of biomedical classes, we extend the “sequence

variant” with the corresponding granular information from the specialised Sequence Ontology.

Similarly, information about cancer and specific tumour types are added from Disease Ontology and

OncoTree.

Once the database has been created through BioCypher, the process of querying

for an actionable variant and its associated treatment options for a given patient is

greatly simplified. This kind of approach is also known to improve the

concordance of knowledge base sources, the ability to incorporate external clinical

resources, and the recovering of evidence only represented in a single resource 13.
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The major advantage of using BioCypher to integrate several resources is the

formal representation of the process provided by the schema configuration, which

allows for a simple description and long-term maintenance. Other approaches 13

would need ad-hoc scripts, hindering refactoring if the input resources change, and

would lose metadata about the provenance of the merged information, hindering a

posteriori analysis.

Network expansion

Database schemata of large-scale biomedical knowledge providers are tuned for

effective storage. For analysis, the user may benefit from a more dedicated schema

type corresponding to the biological question under investigation. We created

BioCypher with the objective to simplify the transformation from

storage-optimised schemas to analysis-focused schemas. Given one or multiple

data sources, the user should be able to quickly build a task-specific knowledge

graph using only a simple configuration of the desired graph contents. We

demonstrate the simplifying capabilities using an interaction-focussed version of

the Open Targets graph database as an example 40.

Barrio-Hernandez et al. used this graph database to inform their method of

network expansion 41. The database runs on Neo4j, containing about 9 million

nodes and 43 million edges. It focuses on interactions between biomedical agents

such as proteins, DNA/RNA, and small molecules. Returning one particular

interaction from the graph requires a Cypher query of ~13 lines which returns ~15

nodes with ~25 edges (variable depending on the amount of information on each

interaction). A procedure to collect information about these interactions from the

graph is provided with the original manuscript 41, containing Cypher query code of

almost 400 lines

(http://ftp.ebi.ac.uk/pub/databases/intact/various/ot_graphdb/current/apoc_proce

dures_ot_data.txt). Still, this extensive query only covers 11 of the 37 source labels,

10 of the 43 target labels, and 24 of the 76 relationship labels that are used in the

graph database, offering a large margin for optimisation in creating a task-specific

KG.
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After BioCypher adaptation, the KG (covering all information used by

Barrio-Hernandez et al.) has been reduced to ~700k nodes and 2.6 million edges, a

more than ten-fold reduction, without loss of information with regard to this

specific task. Compared to the original file of the database dump (zipped, 1.1 GB),

the BioCypher output is ~20-fold smaller (zipped, 63 MB), which greatly facilitates

sharing and accessibility (e.g. by simplifying online access via Jupyter notebooks).

The Cypher query for an interaction has been reduced from 13 query lines, 15

nodes, and 25 edges to 2 query lines, 3 nodes, and 2 edges (Figure S3).

Figure S3: Semantic abstraction A) The original, “storage-oriented” format used by the OTAR KG,

displaying one interaction with additional data. B) The Cypher query to receive one interaction from

the OTAR graph. C) The migrated, “task-oriented” format produced by the BioCypher adapter,

displaying one interaction. The “additional data” from (A) about experiment and evidence type can

be added to the interaction node as a property or encoded in additional nodes connected to the

interaction node. D) The Cypher query to receive one interaction from the migrated graph.

Most of this reduction is due to removal of information that is not relevant to

the task at hand and semantic abstraction; for instance, the original chain of

`(“hgnc”)-[:database]-(“SNAI1”)-[:preferredIdentifier]-(:Interactor)-[:interactorB]-(:Interact

ion)-[:interactorA]-(:Interactor)-[:preferredIdentifier]-(“EP300”)-[:database]-(“hgnc”)` to

qualify one protein-protein-interaction can be reduced to

`(“EP300”)-[:enzyme]-(“phosphorylation”)-[:enzyme target]-(“SNAI1”)`. Arguably, the
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shorter BioCypher query is also more informative, since it details the type of

interaction as well as the roles of the participants. In addition, this representation

returns sources of information about the proteins and the interaction as properties

on the nodes, and the hierarchical ontology-derived labels provide rich

information about the biological context. For instance, the first ancestor labels of

the “phosphorylation” node are “enzymatic interaction”, “direct interaction”, and “physical

association”, grounding this specific interaction in its biological context and enabling

flexible queries for broader or more specific terms. This additional information

was introduced into the data model by combining the Biolink ontology with the

molecular interaction ontology by the Proteomics Standards Initiative 42. Thus, this

“task-oriented” representation is complementary to the “storage-oriented” one,

serving a different purpose, and BioCypher provides an easy and reliable way of

going from one type of representation to the other.

The BioCypher migration is fast (about 15 minutes on a common laptop) and

tested end-to-end, including deduplication of entities and relationships as well as

verbose information on violations of the desired structure (e.g., due to

inconsistencies in the input data), making the user explicitly aware of any fault

points. Through this feedback, several inconsistencies were found in the original

Open Targets graph during the migration, some of which originated from

misannotation in the Signor primary resource (e.g., “P0C6X7_PRO_0000037309”

and “P17861_P17861-2”). This problem affected only a few proteins, which could

have gone unnoticed in a manual curation of the data; a problem that likely is

common in our current biomedical knowledge.

Knowledge representations can and should be tuned according to the specific

needs of the downstream task to be performed; BioCypher is designed to

accommodate arbitrarily simple or complex representations while retaining

information important to biomedical research tasks. A compressed structure is

important, for instance, in graph machine learning and embedding tasks, where

each additional relationship exponentially increases computational effort for

message passing and embedding techniques 7,43. Most importantly, evidence (which

experiment and publication the knowledge is derived from) and provenance (who

provided which aspects of the primary data) should always be propagated. The
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former is essential to enable accurate confidence measures; e.g., not

double-counting the same information because it was derived from two secondary

sources which refer to the same original publication. The latter is important for

attribution of work that the primary maintainers of large collections of biomedical

knowledge provide to the community.

The code of this migration can be found at

https://github.com/saezlab/OTAR-BioCypher.

Subgraph extraction

For many practical tasks in the workflow of a research scientist, the full KG is not

required. For this reason, building complex and extensive KGs such as the CKG 20

or the Bioteque 7 would not be sensible in all use cases.

For instance, in the context of a proteomics analysis, the user would only like to

contextualise their list of differentially abundant proteins using literature

connections in the CKG, rendering much of the information on genetics and

clinical parameters unnecessary. In addition, the KG may contain sensitive data on

previous projects or patient samples, which cannot be shared (e.g. in the case of

publishing the analysis), causing reproducibility issues. Likewise, some datasets

cannot be shared due to their licences. With BioCypher, a subset of the entire

knowledge collection can be quickly and easily created, taking care to not include

sensitive, irrelevant, or unlicenced data. The analyst merely needs to select the

relevant species (e.g. proteins, diseases, and articles) and their relationships in the

BioCypher configuration. BioCypher then queries the original KG and extracts the

required knowledge, conserving all provenance information, and yielding a much

reduced data set ready for sharing. Since a complete CKG adapter already existed

(found at https://github.com/saezlab/CKG-BioCypher/), the subsetting required

minimal effort; i.e., the only required step was to remove unwanted contents from

the complete schema configuration. The code for this task can be found at

https://github.com/saezlab/CKG-BioCypher/tree/subset.
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Embedding

As a second subsetting example, we demonstrate the usefulness of subsetting

KGs for task-specific graph embeddings. KG embeddings can be an efficient

lower-dimensional replacement of the original data in many machine learning

tasks7 and, as methods such as GEARS 27 show, these embeddings can be useful for

complex machine learning tasks. However, including all prior data in every

embedding is not necessary for good results, while using the proper domain of

knowledge can vastly increase the performance of downstream tasks 7. This issue

extends both to the type of knowledge represented (not every kind of relationship

is relevant to any given task) as well as the source of the knowledge (different focus

points in knowledge resources lead to differential performance across different

tasks). Thus, it is highly desirable to have a means to identify the proper knowledge

domain relevant to a specific task to increase the efficiency and efficacy of

subsequent analysis. To achieve this aim, BioCypher can facilitate task-specific

builds of well-defined sets of knowledge from a combination of primary sources

for each application scenario. And, since the BioCypher framework automates

much of the build process going from only a simple configuration file, the

knowledge representations can be iterated over quickly to identify the most

pertinent ones. As above, the only requirement from the user (given existing

BioCypher adapters for all requested primary sources) is a selection of biological

entities and relationships between them in the schema configuration.

Federated learning

Federated learning is a machine learning approach that enables multiple parties

to collaboratively train a shared model while keeping their data decentralised and

private 44,45. This is achieved by allowing each party to train a local version of the

model on their own data, and then sharing the updated model parameters with a

central server that aggregates these updates. However, most machine learning

algorithms depend on a unified structure of the input; when it comes to algorithms

that combine prior knowledge with patient data, a large amount of harmonisation

needs to occur before the algorithms can be applied.
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BioCypher facilitates federated machine learning by providing an unambiguous

blueprint for the process of mapping input data to ontology. Once a schema for a

specific machine learning task has been decided on by the organisers, the

BioCypher schema configuration can be distributed, ensuring the same database

layout in all training instances. For example, the Care-for-Rare project of the

Munich Children’s Hospital has to synchronise a broad spectrum of biomedical

data: demographics, medical history, medical diagnosis, laboratory results from

routine diagnostics, imaging and omics data with analyses of proteome,

metabolome and transcriptome in different tissues as well as genetic information.

To allow reaching a sample size that is suitable for modern methods of diagnosis

and treatment options in rare diseases 32, world-wide collaboration between

children’s hospitals is a necessity. The unstructured nature of most clinical data

necessitates a harmonisation step with subtle challenges with respect to ontology.

For instance, general classifications such as ICD10-GM subsume rare childrens’

diseases under umbrella terms for whole disease groups, requiring alternative

coding catalogues such as Orphanet OrphaCodes 46 and the German Alpha-ID 47.

Larger ontologies such as HPO 48 and SNOMED-CT 49 are complex and expanded

constantly. In addition to the technical challenges, the legal requirements of patient

confidentiality and data protection necessitate extreme care in the processing of all

data, hindering information sharing between collaborators. All of the above poses

great challenges in data integration in the clinical setting.

Using BioCypher, we enable a federated learning pipeline by supplying build

instructions for each local database in the form of the schema configuration. At

each location, a task-specific KG is created from public data with the Clinical

Knowledge Graph as baseline, using the subsetting facilities described in the case

study “Subsetting large datasets”. Afterwards, the sensitive patient data (e.g.,

germ-line genetic variants) are integrated into this KG at each location, using the

BioCypher schema configuration to specify the type of data involved (e.g., clinical

measurements, genetic profiling). This ensures that, regardless of how the sensitive

data are represented at each location, the machine learning algorithm works with

the exact same structure of KG, preventing accidental data leakage.
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Data integration

The German Center for Diabetes Research (DZD, www.dzd-ev.de) has developed

a knowledge graph to support data integration for translational research. The

internal KG instance provided the foundation of the open-source CovidGraph

project 50 which is now maintained by the HealthECCO community

(www.healthecco.org). At the core of the DZD KG is a data ingestion pipeline for

PubMed that transforms publication data into a detailed graph representation,

including authors, affiliations, references, and MeSH term annotations. The

PubMed graph contains 350 million nodes and 850 million relationships, as well as

data on biological entities (genes, transcripts, proteins), their functional

annotations, and biochemical interactions. This KG is used to link internal research

data to public knowledge and to generate new research hypotheses.

The growth of the graph posed three major challenges:

1. Maintaining data ingestion pipelines for dozens of upstream data sources is

not feasible in a research context.

2. The KG used a custom data model that was able to capture the initial

information. The effort to integrate a new upstream data source grows with

the total number of data sources. Each new data source has to be

cross-referenced with all existing data sources and inconsistencies arise

because the same piece of information may be represented with different

levels of abstraction.

3. The custom data model complicated the collaboration with external

researchers. Integrating data from different contexts required the

collaborator to adapt to the internal data model.

BioCypher can handle all three challenges. Firstly, the open architecture and

community effort around BioCypher allows maintaining core data ingestion

pipelines while reusing data adapters from experts in other fields. Secondly, the

well described data model of Biolink drastically reduces the effort required to

integrate new data sources because they need only to be adapted to the core data

model, not to all existing data. Thirdly, the combination of an open architecture
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and ontology-based data integration facilitates collaborations with external

researchers.

This approach reduces the time required to bring new data products to researchers

at the DZD because the unified data model and ontology-backed data

harmonisation allows the reuse of data analysis modules and user interface

components. Removing obstacles for collaboration on the knowledge graph

supports interdisciplinary research on diabetes complications and comorbidities.

Supplementary table 1. Knowledge graph solutions (non-comprehensive).

Database Reference

Biological Insight Knowledge Graph 10

Bioteque 7

Clinical Knowledge Graph 20

CROssBAR 21

Dependency Map 22

GenomicKB 51

HealthECCO Covidgraph 50

INDRA CogEx https://github.com/bgyori/indra_cogex

KG-COVID-19 12

OmniPath 18

Open Targets 40

PheKnowLator 8

PORI (Platform for Oncogenic
Reporting and Interpretation)

13

PrimeKG 52

RTX-KG2 53

TypeDB https://github.com/typedb-osi/typedb-
bio
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