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ABSTRACT

Most existing Point Cloud Quality Assessment (PCQA) meth-
ods do not consider the local structures among points, which can
impact the overall perceived quality. In this paper, we introduce
a novel and efficient no-reference objective metric for PCQA
that takes into account the intrinsic feature affinities of points
using a fully attention-based network, which results in extract-
ing relevant information to the local structures of the 3D content.
In addition, we employ information from two modalities: a suit-
able 2D projection of the PC and a relevant subset of the native
3D point cloud data. The rationale is that each modality may be
more sensitive to different distortion types and thus contribute
to the overall quality assessment. To evaluate the performance
of our method, we conducted experiments on well-known 3D
Point Clouds Quality Assessment benchmarks for PC compres-
sion. Our results demonstrate that our multi-modal attention-
based PCQA metric is competitive with state-of-the-art methods
in terms of both effectiveness and reliability. In particular, our
method is able to capture local structures and provide more ac-
curate quality assessments, even better than most full-reference
metrics, with a moderate computational cost.

Index Terms— 3D Point Clouds, Image Quality Assess-
ment, Graph Neural Network, Deep Learning.

1. INTRODUCTION
Over the past few years, there has been a rapid development in
computer graphics technologies, leading to promising immer-
sive applications with a higher level of real-world depiction.
As a result, 3D point clouds have become increasingly impor-
tant in various applications, ranging from AR/VR, autonomous
driving, to telepresence. Point clouds are a set of points in 3D
space.Working with point clouds can also present challenges due
to the scattered irregularity of points in 3D space[1].

However, due to the large amount of information required
to represent a 3D scene accurately, point clouds can consist of
thousands or even millions of points. Thus, lossy compression
schemes are often utilized to reduce their size for practical pur-
poses. This has made point cloud quality assessment (PCQA)
increasingly important. Depending on the availability of the
reference image, objective quality metrics can be grouped into

three categories: Full-Reference, Reduced-Reference, and No-
Reference. Full-Reference (FR) methods [2, 3, 4, 5] require ac-
cess to the original point cloud in order to compare it to the
distorted point cloud and calculate a quality score. Among FR
methods, feature-based PC quality metrics extract the geometry
with the associated attributes from point-wise level in a global
or local way. Examples include PC-MSDM [6] that extends the
2D SSIM metric [7] to PC by considering local curvature statis-
tics, the Geotex [8] metric that exploits the Local Binary Pattern
(LBP) [9] descriptors, PCQM [10] that combines the geome-
try and color features, and GraphSIM [11] that extracts key-
points at high frequencies that are sensitive to the perception,
and construct local graphs for local significance similarity fea-
ture computation. In projection-based PC Quality Metrics, the
3D points or their associated features are projected into 2D regu-
lar grids [12, 13]. No-Reference (NR) methods, such as the one
proposed in this paper, do not require any information from the
original point cloud and only use the distorted version for eval-
uation. These methods are well-suited for real-time applications
because they do not require access to the original data. How-
ever, their quality assessment may be less accurate compared to
Full-Reference and Reduced-Reference methods.

Our proposed method for no-reference point cloud quality
assessment addresses a significant limitation in previous ap-
proaches, which often lack the ability to effectively consider
the complex structural relationships within native 3D point
cloud regions[14, 1]. By utilizing a multi-level self and cross-
attention, we capture the local semantic affinities of points,
providing a more comprehensive representation for the evalua-
tion of its visual quality. Moreover, inspired by the multimodal
nature of 3D PCs — either in fully 3D environment or using a
series of fixed 2D projected screens, we extend our approach
to leverage this multi-modal information. Specifically, we aug-
ment our method by using the a single representative view of
the 3D point cloud from the front region, i.e., the one with the
maximum semantic information. This provides our network
with complementary information to infer a better connection of
the distributed 3D irregular representations. Also, 2D images
can be more sensitive to noise than 3D data, e.g., surface holes
caused by compression. Therefore, capturing this kind of noise
in the 2D domain is easier and can increase the accuracy of the
quality metric.



The contributions of this paper are summarized as follows:

1. We present an efficient end-to-end method for PC qual-
ity assessment integrating multimodal information. Our
method operates directly on the 3D point cloud features,
and 2D projections. This enables a more empirical and
comprehensive evaluation of the point cloud’s quality.

2. Our method is designed to capture the local semantic
affinities in point representations and creates connectiv-
ity between distant features using self-attention. This
facilitates better feature extraction from local regions.

3. We aggregate the representation from multiple modalities,
3D geometry and color features in point clouds, as well
as the complementary projected view by interpreting the
cross-correlation of deep features as an efficient way to
find information correspondence.

2. PROPOSED METHOD
In this section, we present our proposed design, and how it can
serve as an efficient and robust base feature extraction network
for no-reference point cloud quality assessment. Our network
is novel in two key aspects: First, it utilizes an attention mecha-
nism to establish soft, learnable links between the representation
of 3D points at multiple levels of the 3D architecture. In partic-
ular, these links are created using self-attention, and combining
the geometry and color features space through cross-attention.
Second, it employs multi-modal learning to exploit the sensitiv-
ity of different modalities to specific distortions and to improve
correspondence between distant patches within a region. The 2D
projection serves as a complement to the 3D method by filling in
any missing information and better mapping affinities between
distributed regions. As depicted in Fig. 1, the overall pipeline
of our method consists of three main steps: 3D pre-processing,
features extraction, multi-modal fusion and quality estimation.

2.1. Pre-processing

Pre-processing is a critical stage in our approach. It consists in
dividing the PC into vertical slices (partitions) of points. This
partitioning has two primary objectives: (i) enable parallel pro-
cessing of points, and (ii) meet the memory requirements for
GPU processing, as some PCs may have an important size (e.g
millions of points). In order to balance the computation load,
the number of partitions varies between 8 and 24 according to
the size of the original PC. Each partition is then divided to
form local patches. To achieve this, we first select a set of
non-overlapping centroids and then apply the k-nearest neighbor
clustering method around them. In order to reduce the memory
print, we selected only half of the ensemble of patches for each
partition. We note here that, unlike other methods, we avoid
applying a sampling on the point cloud local regions. This is
to preserve local information related to the sensitivity of our
downstream-task. Each patch is then fed into the 3D model
for feature extraction and representation modeling. At the same
time, we select the most representative front view of the pro-
jected point cloud to pass it to the 2D network.

2.2. Multi-Modal Quality Estimation

Feature extraction
Our model design draws inspiration from three existing

architectures: PointNet [15] for PCs processing, vision trans-
former [16] for image classification, and transformer for lan-
guage modeling [17].

First, we employ a principal characteristic of PointNet in
extracting information from point sets by using a permutation-
invariant function. To do so, we use a network with two parallel
streams for color and geometry independently. This network
transforms the input point geometry and color information into
a higher-dimensional space using a feature embedding layer. To
capture richer local structure information, we build on the fea-
ture embedding of the geometry stream by introducing multi-
head self -attention, which draws the semantic affinities between
neighboring points.

Second, to combine the geometry and the color represen-
tation, we employed multi-head cross-attention. This results
not only in adding the local connectivity information between
adjacent point representations, but also completing it with cor-
responding color features. The resulting attentive connectivity
of points’ representation is updated dynamically at each net-
work level, capturing different levels of semantic structure, as
the point embedding is updated. Our method thus combines the
strengths of both PointNet and Transformer while introducing
novel features for improved performance.

Finally, our network only processes a part of the point cloud
(about 50% of the original points). Since this input reduction
might impact negatively the final quality evaluation, we com-
plement the 3D representation with information from another
modality, i.e., using features from the 2D images domain. To
this end, we used a vision transformer (ViT)[16, 18] encoder
to extract features from the 2D projected view. Afterward, we
apply cross-attention [18] between both modalities’ representa-
tions for fusion and to provide an enhanced multi-modal signal
capturing higher-level PC features. We detail the 3D and 2D
feature extraction in the following.

2.2.1. 3D Streams Network

We consider the geometry and color as independent information,
corresponding to two different processing streams. Depending
on which stream we consider, the input points xi bring different
information. For the geometry stream, xi = (xi, yi, zi) contains
the 3-dimensional coordinates of the points, while for the color
stream, xi = (ri, gi, bi) represents the RGB attribute informa-
tion. In this work, we test only the use of Two-Stream Network,
but it is possible to include additional features in other streams.

Both the color and geometry streams consist of three fea-
ture embedding layers, each comprising a series of 1-D con-
volutions interspersed with nonlinear functions. Following each
feature embedding layer in the geometry stream, a multi-head
self-attention layer is applied to draw the semantic affinities be-
tween neighboring points. Afterward, we employ cross-multi-



Fig. 1. General pipeline of our proposed method

head attention to align the learned color information with the
geometrical representation.

Formally, for a given input point cloud partition composed of
M patches {P 0, P 1, P 2, .., PM}, each patch P i is represented
as a matrix of size RN×F , where N is the number of points in
the patch and F is the number of features per point. On each
layer, a standard feature embedding layer fΘ : RF → RF ′

is
applied to produce a new representation of the provided Xi

xyz

and Xi
rgb referring the geometry and color raw inputs or a sub-

sequently produced representations, for each of the two streams.
A multi-head self-attention layer MHSAΘ : RF ′ → RF ′

is
then applied to the geometry stream output f(Xxyz), producing
an updated representation X ′

xyz . Mathematically, the proposed
MHSAΘ can be expressed as follows:

q = XxyzWq,k = XxyzWk,v = XxyzWv (1)

A =
softmax(qkT )√

C
h

(2)

MHSAΘ(f(Xxyz)) = Av (3)

where Wq,Wk,Wv ∈ RC(C/h) are learnable parameters, C and
h are the embedding dimension and number of heads.

Notice that the X ′
xyz representation can be interpreted as an

embedding induced from a graph propagation layer, since the
attention scores between points create a sort of soft connection
simulating an adjacency matrix. More precisely, the actual con-
nections between points could be obtained by setting a threshold
on attention scores. Therefore, to accelerate convergence, we
incorporate a GraphNorm operation [19] on both streams. Al-
though the color representation X ′

rgb can not be deemed to have
an origin from a graph-similar function, we find that applying
the same sort of normalization on the two streams is useful to
keep a fixed scale of the features. The GraphNorm operation is
a variation of InstanceNorm [20], tailored for graph normaliza-
tion, and includes a learnable parameter α that determines how
much of the channel-wise average to retain in the shift operation.

The operation is expressed as follows:

x′ =
x′ − α · E[x′]√

Var[x′ − α · E[x′]] + ϵ
· γ + β (4)

where γ and β are learnable affine parameters that are similar to
those used in other normalization techniques.

Afterward, the representations produced by the two streams,
X ′

rgb and X ′
xyz , are finally fused using a multi-head-cross at-

tention layer MHSCAΘ : RF ′ → RF ′
. We note that cross-

attention is essentially an extension of self-attention in which
attention from one distribution is used to highlight the extracted
features in another distribution. It can thus be used as an intu-
itive information fusion technique. The fusion here is carried out
by measuring the similarity between the queries q (a linear pro-
jection of X ′

rgb) and the keys k (a linear projection of X ′
xyz) as

well as using it to adjust the values vector v (a linear projection
of X ′

xyz). Consequently, in contrast to Eq. (3), the MHCAΘ

function takes two inputs f(X ′
xyz), and f(X ′

rgb). The result-
ing vector is considered to be the new updated version of X ′

xyz

that is used for the subsequent network embedding layer. We
refer the reader to [17, 18] for more details about the computa-
tion of cross-attention. To sum up, in the two-stream network,
at each level a combination between the geometry and the color
stream is applied to update the geometry representation with in-
formation about the corresponding color features.

After three consecutive (feature embedding, MHSA Graph-
Norm, MHCA) blocks of layers, a Points Embedding Aggre-
gation is applied on each patch independently. Here a Max and
Mean pooling operations are applied on the features channel di-
mension. Afterward, the result of the two poolings is concate-
nated to one vector, so each point cloud partition with M patch
is transformed into M sequences of 2F ′-dimensional vectors.

2.2.2. 2D Stream and Multi-modal Fusion

To enhance the features of the 3D Network, we add a 2D stream
in parallel to provide complementary information to the 3D
representation. The combination of the 2D and 3D streams
is achieved using cross-attention, which incorporates both the



attention mechanism and cross-correlation operations. This de-
cision is motivated by two factors. Firstly, while the projection
process introduces some distortion, certain types of noise are
more accurately captured on 2D images, due to the capability of
neural networks to address local connectivity on a regular grid.
Secondly, computing the cross attention of 3D features with
respect to 2D features provides more insight into the location
of patches within a region (PC’s partitions) and their semantic
affinities.

ViT for Features Encoding: Visual Transformer (ViT) [16]
is a transformer-based architecture that operates on patches of
the input image, enabling it to model long-range dependencies
and capture global context information and object relationships.
The model consists of transformer blocks with multi-head self-
attention layers and feed-forward neural networks, and includes
a special CLS token [16] that is processed along with the image
patch embeddings. The output of the final transformer block
corresponding to the CLS token, is used as the image represen-
tation for the downstream task. For this study, we utilized a
pre-trained ViT model on the Imagenet1K dataset, which con-
sist of 12 layers and 12 attention heads. The patch size was set
to 16 × 16, and the 3D model image was cropped to a size of
384× 384.
Cross-Attention For Multi-modal Fusion: Both representa-
tion modalities from 2D network and 3D network are passed to
a cross-attention layer for features fusion. First, the 2D CLS
are repeated M times, and projected to meet the dimension size
of 3D representation M sequence of 2F ′-dimension vectors.
Afterward, for the cross-attention operation, we consider the
representations coming from the 2D network as Queries, and
linear transformations of 3D representation as Key and Value.
This operation measures the cross-correlation between the fea-
tures of both modalities and uses the resulting output to rectify
the 3D patches’ features. In addition to its fusion purpose, the
mulimodal cross-attention operation also serves to find corre-
spondences between the 3D and 2D representations, thus en-
hancing the local information of 3D features of each indepen-
dent patch by knowing its corresponding location on the 2D reg-
ular grid.

2.3. Feature Aggregation and Quality Estimation
In order to aggregate the representations obtained from each
point cloud partition and capture the affinities between them, we
use a Patch Aggregation method. This involves also a multi-
head self-attention layer followed by max pooling to produce a
vector representing each partition. Finally, a shallow multi-layer
perceptron is used to estimate the quality score, and the overall
score is obtained by computing the mean of the sequence of par-
tition scores.

3. EXPERIMENTS

3.1. Training and Implementation Details

We trained our model end-to-end using the mean square error
(MSE) as the loss function. The goal of the network is to create

a mapping function between the input point clouds and the mean
opinion score (MOS) quality. The loss function is defined as:

L = MSE

(
mean

(∑
i

Outi

)
,Y

)
, (5)

where Outi refers to each predicted partition score, and Y
refers to the MOS.

3.2. Evaluation Protocol and Result Analysis

To evaluate the effectiveness of our model, we conducted exper-
iments on a publicly available benchmark that uses subjective
scores and adopts different emerging compression schemes,
ICIP20 [21]. ICIP20 includes 6 reference point clouds, each
compressed using 5 levels and 90 degraded versions were de-
rived through three types of compression.We used a 6-fold
cross-validation protocol to train and test our model on ICIP20,
with 5 reference point clouds used for training and one for
testing at each iteration. Prior to each fold end-to-end multi-
stream training, we first fine-tuned the ViT model by adding a
regression head that will removed later. The 2D images used for
this part of the training are obtained by projecting point cloud
images of each corresponding fold.

Table 1. Results obtained on ICIP20 dataset using 6-fold cross
validation

Model PLCC ↑ SROCC ↑
po2point MSE 0.946 0.934
po2plane MSE 0.959 0.951

PSNR po2point MSE 0.868 0.855
color Y MSE 0.876 0.892
color Y PSNR 0.887 0.892
pl2plane AVG 0.922 0.910
pl2plane MSE 0.925 0.912

PCQM 0.796 0.832
GraphSim 0.931 0.893

PointNet-SSNR 0.908 0.955
PointNet-DCCFR 0.947 0.973
PointNet-Graph 0.946 0.973

Ours 0.945 0.978

Table 1 presents the results of our method on the ICIP20
dataset and compares them to state-of-the-art methods, with
mean correlations calculated over all folds for our and other
method. Our results demonstrate a strong correlation with
the subjective ground truth, showing a clear gap for both
PLCC and SROCC when compared to most existing methods.
Our proposed method outperforms all other methods with the
highest SROCC score achieving a correlation equal to 0.976,
and sharing the highest PLCC score with the full-reference
po2planeMSe method, with a correlation equal to 0.959. It’s
worth noting that our approach surpasses most full-reference
methods [10, 6]. Notably, all listed methods in the table are
full-reference except for PointNet-SSNR[14] and PointNet-
Graph [22], which are no-reference.



4. CONCLUSION
In this paper, we introduce a novel no-reference quality metric
for point clouds using a learning-based approach. Our network
uses multi-modal input: we augment 3D point coordinates and
attributes with a 2D projection of the point cloud, with the goal
to extract complementary features for PC quality assessment.
We also use self- and cross-attention to capture local relations
across points. Our method achieves competitive results in pre-
dict MOS of compressed PCs.
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