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1. Introduction

We consider here the problem of minimizing a real-valued function f , defined on an open convex set ω
in IR n , subject to m (m < n ) nonlinear equality constraints c :

min { f (x ) : x ∈ ω , c (x ) = 0 } . (1.1)

We shall suppose that the m × n Jacobian matrix of the constraints at a point x in ω, namely A (x ), is sur-
jective, i.e. has full rank m . Then, if x

*
is a local solution of (1.1), there exists a unique Lagrange multi-

plier λ
*

in IR m , such that the following first order optimality conditions are satisfied for x = x
*

and λ = λ
*

(see Fletcher (1981), for example):
�
�
� ∇ f (x ) + A (x )T λ = 0 .

c (x ) = 0 ,
(1.2)

We have denoted by ∇ f (x ) the gradient vector of f at x .

Locally, the faster methods for solving (1.1) tackle the problem by trying to solve directly the sys-
tem (1.2), whose solutions correspond to stationary points of the original problem. Two classes of local
methods may be distinguished.

The first class is formed of those algorithms whose step is an approximation of the Newton step for
solving (1.2). Among them are the quasi-Newton methods, which may be introduced as follows. The
Jacobian matrix of (1.2) at (x

*
,λ

*
) is given by

J
*

..=
�
�
� L

*

A (x
*
)

A (x
*
)T

O �
�
�

,

where L
*

is the Hessian according to x of the Lagrangian l (x ,λ) ..= f (x ) + λT c (x ) evaluated at (x
*
,λ

*
).

If J
*

is approximated by

Jk
..=

�
�
� Lk

A (xk )
A (xk )T

O �
�
�

,

where Lk is a symmetric matrix of order n and if we denote by ∇x l (xk ,λk ) the gradient according to x of
the Lagrangian, quasi-Newton methods consist in calculating approximations (xk ,λk ) of (x

*
,λ

*
), by using

the following scheme:

�
�
�λk +1

xk +1
�
�
�
=

�
�
�λk

xk
�
�
�
− Jk

−1
�
�
�∇x l (xk ,λk )

c (xk ) �
�
�

.

Note that if Lk is positive definite, or only positive definite in Ker A (xk ), the kernel of A (xk ), i.e.
ξT Lk ξ > 0 for all nonzero ξ in Ker A (xk ), then Jk is non singular and the previous iteration is well
defined. This method is called the Successive Quadratic Programming (SQP) method because
xk +1 = xk + dk

SQP , where dk
SQP is obtained by solving successively in d the following quadratic programs:

�
�
�
�
�

s.t. d ∈ IR n , c (xk ) + A (xk ) d = 0

min ∇ f (xk )T d +
2
1�� d T Lk d ,

(1.3)

and λk +1 = λk +1
SQP , the associated multiplier. In this algorithm, Lk is updated at each iteration. This method

has been extensively studied since the papers by Wilson (1963), Han (1976) and Powell (1978,a,b,c) and
we refer to Powell (1986) for a state of the art on the subject.
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The second class of methods is based on the fact that the dimension of problem (1.1) is not n but
n −m , which is the dimension of the manifold M (x

*
) ..= c −1(0) on which f is minimized. Therefore, one

may expect to find secant methods in which the updated matrices are of order n −m . This is certainly a
realistic expectation if we force the iterates xk to belong to the manifold M (x

*
), i.e. c (xk ) = 0 for all k .

Indeed, in this case, c being a submersion, M (x
*
) is a submanifold of IR n (see e.g. Leborgne (1982)) and

there exists a smooth parametric representation ξ of M (x
*
) in a neighborhood V of x

*
, i.e. a function

ξ : U → M (x
*
) ∩ V such that c (ξ(u )) = 0 for all u in the open set U of IR n −m . Therefore, working on

the set U to minimize f (ξ(u )) will give the expected algorithm. But it is usually unrealistic to impose
c (xk ) = 0 and fortunately, this is not necessary. As far as we know, the first studies on reduced secant
methods (reduced because the order of the updated matrices is n −m rather than n in the SQP method),
without the feasibility condition (c (xk ) = 0), are due to Gabay (1982,b) and Coleman and Conn
(1982,a,b). Theoretically, the method proposed by Coleman and Conn seems better than the method stu-
died by Gabay. Generally, the convergence of the latter is only superlinear in two steps (see Powell
(1978,c), Gabay (1982,b), Byrd (1985) and Yuan (1985)), meaning that:

� � xk +1−x
*
� � / � � xk −1−x

*
� � → 0 , (1.4)

while the convergence of the former has been proved to be superlinear (in one step) (see Byrd (1984) and
Gilbert (1986,a,b)), that is to say:

� � xk +1−x
*
� � / � � xk −x

*
� � → 0 . (1.5)

This is a better rate of convergence than the rate (1.4). Note that this rate of convergence can also be
obtained by using the SQP method but with the necessity of updating a matrix of order n . Therefore,
reduced secant methods become competitive and sometimes the only ones usable when the number m of
constraints is large while the number n −m of parameters remains reasonable.

In this work, we shall focus on some aspects of the method proposed by Coleman and Conn. But
first, what is this method?

The presentation of the algorithm given below has been developed in Gilbert (1986,a and 1988) and
differs noticeably from the one given by Coleman and Conn (1982,a). In particular, the formalism used
here, which is due to Gabay (1982,a), allows us to group together a set of methods that differ only by a
choice of operators. The main idea is to build, at each point y in ω, a decomposition of IR n in two com-
plementary subspaces and to do this smoothly in y . The first subspace is Ker A (y ), the tangent space to
M (y ) ..= c −1(c (y )) at y , for which a basis Z (y )− is chosen. This is to say that Z (y )− is an n × (n −m )
matrix whose columns form a basis of Ker A (y ). Therefore, for all y in ω, we have:

A (y ) Z (y )− = 0 , (1.6)

and Z (y )− is injective, i.e. u ∈ IR n −m and Z (y )−u = 0 imply u = 0. The complementary subspace to
Ker A (y ) depends on the choice of a right inverse A (y )− of A (y ) and is given by R (A (y )−), the range of
A (y )−. Then, there exists a unique (n −m ) × n matrix Z (y ) satisfying:

Z (y ) Z (y )− = I in IR (n −m )×(n −m ) , (1.7)

Z (y ) A (y )− = 0 in IR (n −m )×m . (1.8)

One way to introduce the algorithm is to say that it tries to solve the system of optimality (1.2) by
considering both equations separately and successively. Therefore, starting from an estimate (xk ,λk ) of
(x

*
,λ

*
), the next iterate (xk +1,λk +1) is calculated in two steps:

yk
..= xk − Rk c (xk ) = .. xk + rk , (1.9)
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xk +1
..= yk − Z (yk )− Hk g (yk ) = .. yk + tk , (1.10)

λk +1
..= − A (yk )−T ∇ f (yk ) + A (yk )−T Lk Z (yk )− Hk g (yk ) . (1.11)

In (1.9), rk is the restoration step and Rk is the restoration operator, an n × m injective matrix, asymp-
totically close to A (x

*
)−. Here, we shall take Rk

..= A (xk )−, although Rk
..= A (yk −1)

−, which avoids the
linearization of the constraints at xk , is also possible without destroying superlinear convergence, but this
is more difficult to analyze. In (1.10), tk is the tangent step and Hk is a symmetric matrix of order n −m
that should be updated so as to remain positive definite (the main concern of this paper) and so as to have

(Gk −G
*
) Z (yk ) tk = o ( � � tk � � ) , (1.12)

where Gk
..= Hk

−1 and G
*

is the reduced Hessian of the Lagrangian. This is defined by

G
*

..= Z (x
*
)−T L

*
Z (x

*
)− . (1.13)

Condition (1.12) is a sufficient (but not necessary) condition of superlinear convergence for (xk ) (see
Byrd (1984), Gilbert (1986,a,b)). Usually, it is satisfied in practice (see Coleman and Conn (1984) and
Gilbert (1988)). In (1.10), g (yk ) is the reduced gradient of f at yk and is defined by

g (y ) ..= Z (y )−T ∇ f (y ) .

Finally, in (1.11), Lk is an approximation of L
*
.

Algorithm (1.9)-(1.10) differs from the one proposed by Coleman and Conn (1982,a) because of
their particular choice of operators. In their algorithm, A (y )− is the Moore-Penrose pseudo-inverse of
A (y ), i.e. A (y )− ..= A (y )T (A (y ) A (y )T )−1, and Z (y )− is an orthogonal basis of Ker A (y ). However, the
local analysis of the method has shown that this particular choice of operators has no influence on the
superlinear convergence of the method (see Hoyer (1986) and Gilbert (1986,a)). This means that it is
possible to use this freedom of choice for other purposes.

Algorithm (1.9)-(1.11) calls for some comments. First, note that λk does not intervene in the calcu-
lation of xk +1 and λk +1. Therefore, from the superlinear convergence of the sequence (xk ,λk ) (together),
we can deduce the superlinear convergence of (xk ), while for (λk ) we get

� � λk +1−λ*
� � / � � xk −x

*
� � → 0 . (1.14)

We also see that the sequence (xk ) can be generated by (1.9)-(1.10) independently of the sequence (λk ).
We shall see, indeed, that the update of Hk does not require the knowledge of (λk ). Therefore, algorithm
(1.9)-(1.10) is a reduced method for (xk ), because the only matrix to update is Hk , which is of order n −m .
On the other hand, the n × n matrix Lk intervenes in the calculation (1.11) of λk +1. We have said that,
locally, this calculation is not necessary. However, in a global framework, some estimate of λ

*
is useful.

Therefore, we shall avoid the need of generating Lk by taking the following estimate:

λ(y ) ..= − A (y )−T ∇ f (y ) , (1.15)

whose value at y = x
*

is λ
*
.

The local algorithm (1.9)-(1.10) may be globalized by using a penalty function θ of the form:

θ(x ) ..= f (x ) + φ(c (x )) , (1.16)

where φ : IR m → IR + satisfies φ(0) = 0. If φ is convex, one may calculate θ′(x ; t ), the directional deriva-
tive of θ at x in a direction t . In particular, one finds: θ′(yk ; tk ) = ∇ f (yk )T tk + φ′(c (yk ); A (yk ) tk ) and
because tk ∈ Ker A (yk ), we have:
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θ′(yk ; tk ) = ∇ f (yk )T tk = − g (yk )T Hk g (yk ) = g (yk )T Z (yk ) tk . (1.17)

This shows that it is useful to maintain Hk positive definite in order that tk will be a descent direction of θ
at yk .

Our main objective in this paper is to design a globally and superlinearly convergent algorithm that
locally reduces to the method (1.9)-(1.10) and that maintains the matrices Hk positive definite. To obtain
this last property, we shall update the matrices Hk by the inverse BFGS formula (see e.g. Dennis and Moré
(1977)):

Hk +1 =
�
�
�
I −

γk
T δk

δk γk
T

�����
�
�
�

Hk

�
�
�
I −

γk
T δk

γk δk
T

�����
�
�
�
+

γk
T δk

δk δk
T

������ , (1.18)

which we shall refer to by Hk +1 = BFGS�����(Hk ,γk ,δk ). In this formula, γk will be the change in the reduced
gradient (a vector in IR n −m ) when making a certain displacement and δk is the corresponding "reduced"
displacement (also a vector in IR n −m ). Then, it is well known that Hk transmits its positive definiteness to
Hk +1 if and only if

γk
T δk > 0 . (1.19)

For us, this property will play a major part because we shall maintain the positive definiteness of Hk , pre-
cisely by trying to satisfy condition (1.19) at each iteration of the algorithm. In this paper, we shall not
use other particular properties of the BFGS update. Therefore, other update formulae having the same pro-
perty, such as those of the restricted Broyden’s class, could be used.

This way of maintaining the positive definiteness of the generated matrices by realizing condition
(1.19) is standard in unconstrained optimization. There, the vector γk is the change in the gradient of the
objective function when the displacement δk = ρk dk is done. Condition (1.19) is then tried to be
satisfied by determining a suitable step-size ρk in the direction dk . Wolfe’s step-size selection criteria are
relevant for this determination. So, in order to realize (1.19) in our problem, we shall propose a generali-
zation of Wolfe’s criteria, which will require a particular design of the search path.

The fact that this strategy for maintaining Hk positive definite succeeds for reduced secant methods
is rather comforting because it does not for SQP methods, in general. The reason for this is that, for these
methods, the local analysis forces γk to be the change in the gradient of the Lagrangian for the displace-
ment ρk dk

SQP , ρk is the step-size. But, the Lagrangian is not necessarily bounded from below and may
have a negative curvature in the direction dk

SQP , even locally. Therefore, γk
T δk may be negative for any

step-size ρk (see Powell (1978,b and 1984)).

The papers analyzing the update of matrices in reduced methods are due to Coleman and Conn
(1984), Nocedal and Overton (1985) and Gilbert (1986,b). In the first paper the analysis is local and, as
we shall see, (1.19) is automatically satisfied close to optimal points satisfying the usual second order
optimality conditions, if the vectors γk and δk are correctly chosen (see below). The analysis of Nocedal
and Overton, which concerns the algorithm studied by Gabay (1982,b), is also local. Finally, the analysis
in Gilbert (1986,b) is global but the reduced matrix is not updated if condition (1.19) is not satisfied. This
does not prevent superlinear convergence from occurring because asymptotically (1.19) may be satisfied.
However, even far from the solution it may be interesting to update the matrix in order to improve con-
vergence. So one possibility would be to use Powell’s (1978,b) modification of γk (as for SQP methods),
another one is proposed in this paper.

The paper is organized as follows. In Section 2, we specify the notation and state the hypotheses.
In Section 3, we discuss the solutions adopted to realize condition (1.19) along the longitudinal displace-
ment governed by the tangent step tk . On the one hand, it is detailed how Wolfe’s step-size selection
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procedure can be used to obtain (1.19) when the displacement is done on the manifold M (yk ). On the
other hand, a counter-example will show that a simple search along the direction tk cannot assure Wolfe’s
criteria to be satisfied in general. However, a median solution can be obtained by extending to our prob-
lem an algorithm proposed by Lemaréchal (1981) to find a Wolfe point in unconstrained optimization.
Here, a change in the direction of search is made each time an unfruitful attempt to realize (1.19) is done.
Therefore, the longitudinal search path becomes piecewise linear, approximating roughly an "ideal" path
on the manifold M (yk ). The analysis in Section 3 is done using a penalty function having the general
form (1.16). In Section 4, however, we insert the longitudinal search of Section 3 in a globally convergent
algorithm by using tools that have been well developed in the specific literature since the paper by Han
(1977). In particular, we motivate our choice of a nondifferentiable augmented Lagrangian

lp (x ,µ) ..= f (x ) + µT c (x ) + p � � c (x ) � � , (1.20)

where � � . � � is a norm on IR m , as a merit function by the necessity to have a unit longitudinal step-size
asymptotically, being inspired in this respect by the work of Bonnans (1984). We shall also be more
specific about the transversal displacement which consists of a simple linear search from xk in the direc-
tion rk , using Armijo’s technique on the same penalty function (1.20). Finally, we give a theorem show-
ing a global convergence result for the algorithm.

2. Hypotheses and notation

We shall suppose that ω is a convex open set of IR n . The convexity of ω is not essential but it is assumed
to discard technical problems when Taylor’s theorem is used. On the other hand, assuming ω open is
essential because we do not consider here a problem with general constraints or inequality constraints. ω
will be the set where f and c have nice properties. Usually, it will not be possible to take ω = IR n .

We shall suppose that on ω, f and c are sufficiently smooth, three times continuously differentiable
will be enough, and that their derivatives are bounded, which can be satisfied if ω is bounded and small
enough. Later, we shall suppose that the sequences (xk ) and (yk ) remain in ω, so, this supposes implicitly
the boundedness of these sequences. We shall also suppose that c is a submersion on ω, i.e. that A (y ) is
surjective for all y in ω. This is a rather strong hypothesis but a useful one because it allows to make the
decomposition of IR n at each point y of ω in Ker A (y ) = R (Z (y )−) (see (1.6)) and Ker Z (y ) = R (A (y )−)
(see (1.8)). Using (1.6), (1.7) and (1.8), we get

I = A (y )− A (y ) + Z (y )− Z (y ) in IR n ×n . (2.1)

We shall also suppose that this decomposition is made in a smooth way. More precisely, the function

y → (A (y )−,Z (y )−)

will be supposed twice continuously differentiable on ω and, as well as its derivatives, bounded on ω.

Because Z (y ) = �
�0 In −m

�
�
�
�A (y )− Z (y )−

�
�
−1

, the function y → Z (y ) will have the same property. This

may also appear as a strong hypothesis if ω is large, but it can be satisfied in a neighborhood of a solution
x

*
if some qualification hypothesis (A (x

*
) surjective) is satisfied. On this question, we refer to Byrd and

Schnabel (1986).

We shall denote by x
*

a solution of problem (1.1), i.e. a local minimizer satisfying the standard
second order sufficient conditions of optimality (see Fletcher (1981), for instance). Therefore we shall
suppose the existence of a Lagrange multiplier λ

*
in IR m such that (1.2) is satisfied and such that the Hes-

sian of the Lagrangian at (x
*
,λ

*
) is positive definite in the tangent space Ker A (x

*
). In other words, G

*
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given in (1.13) will be supposed positive definite.

We shall denote by � � . � � any norm on IR n or IR m (and not necessarily the same norms on both
spaces) and by � � . � � D the dual norm for the Euclidean scalar product, i.e. � � v � � D ..= sup
{ v T u : � � u � � ≤ 1 }. The norm � � . � � 2 will denote the l 2 norm. Matrix norms will be supposed subordi-
nated to the vector norms, i.e. � �A � � ..= sup { � �Au � � : � � u � � ≤ 1 }. If (uk )k ≥0 is a sequence of vectors and
(αk )k ≥0 is a sequence of positive numbers, we shall write uk = O (αk ) when ( � � uk � � /αk )k ≥0 is bounded and
uk = o (αk ) when ( � � uk � � /αk )k ≥0 converges to zero. The i −th component of a vector u will be denoted by
u (i ).

3. The longitudinal displacement

In this section, we shall suppose that yk is a point given in ω with g (yk ) ≠ 0 (if tk = 0, there will be no
longitudinal displacement) and that Hk is positive definite. Therefore, if θ is given by (1.16) with φ con-
vex, we see by (1.17) that θ′(yk ; tk ) is negative.

In unconstrained minimization (min ψ(u )), quasi-Newton methods locally try to approximate the
Hessian of ψ at a solution u

*
. Therefore, the change in the gradient of ψ between two successive iterates

uk and uk +1 gives some information on this Hessian. So, the vectors γk and δk used in the update formu-
lae are usually taken as follows:

γk
..= ∇ψ(uk +1) − ∇ψ(uk ) ,

δk
..= uk +1 − uk = τk vk .

where τk is some step-size in a descent direction vk of ψ at uk . Wolfe’s step-size selection procedure con-
sists in finding a step-size τ = τk such that the following inequalities are satisfied:

ψ(uk +τvk ) ≤ ψ(uk ) + α1 τ ∇ψ(uk )T vk , (3.1)

∇ψ(uk +τvk )T vk ≥ α2 ∇ψ(uk )T vk , (3.2)

where 0 < α1 < α2 < 1 . A step-size τ satisfying both inequalities will be called serious. Condition (3.1)
ensures a sufficient decrease of ψ, while condition (3.2) prevents the step-size τ from being too small. A
global convergence result can be obtained with these conditions, see Wolfe (1969). An important advan-
tage of this way of selecting the step-size in the framework of quasi-Newton methods is that condition
(3.2) automatically ensures the positivity of γk

T δk and, as a result, the positive definiteness of the updated
matrices.

In reduced methods for constrained optimization, an approximation Gk of G
*
, the projected Hessian

of the Lagrangian, is updated. Here, it is the change in the reduced gradient that gives information on G
*
,

as suggested by the following formula (see Stoer (1984), Nocedal and Overton (1985)):

∇g (x
*
) = ∇ (Z (x )−T (∇ f (x ) + A (x )T λ

*
)) (x

*
) = Z (x

*
)−T L

*
, (3.3)

where we used (1.6) and the second optimality condition in (1.2). Comparing (1.13) and (3.3), we see
that G

*
is a part of ∇g (x

*
). This is essentially due to the unfeasibility of the method, because in this

case, the successive iterates do not belong to a particular manifold of dimension n −m , and any function
used to get information on G

*
has to be defined on all IR n . Hence, if, like g , this function takes its values

in IR n −m , its Jacobian is a matrix of dimension (n −m ) × n and not of order n −m , like G
*
. Therefore

accurate information is obtained on G
*

if, asymptotically, the change in the reduced gradient is given for
a displacement along the tangent space R (Z (x

*
)−). This is the basic idea of the update schemes for
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reduced secant methods, as those proposed independently by Nocedal and Overton (1985) and Gilbert
(1986,b and 1988). The scheme proposed by Coleman and Conn (1984) is related, but requires the use of
a multiplier estimate. Following this strategy, when the unit step-size is accepted (and it will be asymp-
totically), the matrix Hk will be updated by the BFGS formula (1.18), with γk = γk

1 and δk = δk
1, where

γk
1 ..= g (xk +1) − g (yk ) ,

δk
1 ..= Z (yk ) tk = Z (yk ) (xk +1 − yk ) .

The step δk
1 is called the reduced longitudinal displacement. Note that another choice is possible but

needs the use of an update criterion: see Nocedal and Overton (1985) for the algorithm of Gabay
(1982,b), and Gilbert (1986,b and 1988) for algorithm (1.9)-(1.10).

Let us show now that the condition (γk
1)T δk

1 > 0 is usually satisfied asymptotically. Using (3.3) and
supposing that the sequence (yk ) converges to a solution x

*
of (1.1) with tk → 0, we have (we use tk =

Z (yk )− δk
1):

γk
1 = Z (x

*
)−T L

*
tk + o ( � � tk � � ) = G

*
δk

1 + o ( � � δk
1 � � ) .

Hence, (γk
1)T δk

1 is positive for large k if G
*

is positive definite. However, this condition (1.19) is not
necessarily satisfied when yk is far from x

*
, even if a step-size τ is introduced to scale the tangent step tk :

γk
τ ..= g (yk +τtk ) − g (yk ) ,

δk
τ ..= τ Z (yk ) tk .

The following counter-example confirms this claim.

Suppose that n = 2, m = 1, f (y ) ..= y (2), c (y ) ..= ( � � y � � 2
2 − 1)/2 and take ω = ωβ

..= βB \ β−1B�� with
β > 1; B denotes the unit open ball. For these data, the unique solution of problem (1.1) is y

*(1) = 0 and
y

*(2) = −1. We have A (y ) = y T . At any point in ωβ, we may use the following orthogonal decomposition
of IR 2:

A (y )− ..= y / � � y � � 2
2 , Z (y )− ..= y∼ ,

where y∼(1)
..= y (2) and y∼(2)

..= − y (1) . To these choices corresponds a unique matrix Z (y ) satisfying (1.7)
and (1.8): it is given by Z (y ) = y∼T / � � y � � 2

2. The hypotheses of Section 2 are satisfied on ωβ for any β > 1.
We have g (y ) = − y (1), t (y ) = H y (1) y∼ and g (y +τt (y )) = − y (1)(1+τHy (2)). As δτ = τ H y (1), if we sup-
pose y (1) and H positive, the positivity of (γτ)T δτ is equivalent to g (y +τt (y )) > g (y ) , i.e.
− τ H y (1) y (2) > 0, which is never satisfied for any positive step-size τ when y (2) is also positive.

On the other hand, Wolfe’s conditions may be satisfied for a certain step-size τ along a search path
yk

M starting from yk and belonging to the manifold M (yk ) ..= c −1(c (y )) (this submanifold of ω exists
because c is a submersion). Let us consider, indeed, the search trajectory yk

M, defined by the following
ordinary differential equation (where the dot stands for a derivative according to τ):

�
�
�
�
�

yk
M(0) = yk .

y
.
k
M(τ) = Z (yk

M(τ))− Z (yk ) tk ,
(3.4)

If we multiply to the left both sides of (3.4) by A (yk
M(τ)), we see that yk

M(τ) ∈ M (yk ). Let us introduce
the function ψ ..= θ ο yk

M, where θ is given in (1.16) with φ convex. We obtain, by a calculation similar to
the one in (1.17):

∇ψ(τ) = θ′(yk
M(τ); Z (yk

M(τ))−Z (yk )tk ) = g (yk
M(τ))T Z (yk ) tk ,
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∇ψ(0) = θ′(yk ; tk ) = g (yk )T Z (yk ) tk .

Then, rewriting Wolfe’s conditions (3.1)-(3.2) with this ψ, uk
..= 0 ∈ IR and vk

..= 1 ∈ IR , we obtain:

θ(yk
M(τ)) ≤ θ(yk ) + α1 τ θ′(yk ; tk ) , (3.5)

g (yk
M(τ))T Z (yk ) tk ≥ α2 g (yk )T Z (yk ) tk . (3.6)

Considering the function τ ∈ IR → ψ(τ) ∈ IR , it is clear that there exists a positive step-size τk such that
(3.5)-(3.6) are satisfied at τ = τk , if the solution of (3.4) exists for sufficiently large τ and if, for example,
f is bounded from below on M (yk ) (see the argument in Wolfe (1969)). Writing inequality (3.6) at
τ = τk , we see that condition (1.19) is satisfied with γk = γk

M and δk given by

γk
M ..= g (yk

M(τk )) − g (yk ) ,

δk
..= τk Z (yk ) tk .

In view of the counter-example and the success of the path yk
M, a possible direction of investigation

could be to try to build an approximation of the path yk
M, using an approximation scheme for the differen-

tial equation (3.4). But, on the one hand, it is very expensive to have an accurate approximation and, on
the other hand, for any τ for which (3.6) would not be satisfied the question of the sharpness of the
approximation would arise as a leitmotiv: as shown by the counter-example, the linear approximation
(yk +τtk ) is sometimes inadequate, so, what about the current one? Fortunately, the situation can be sorted
out by trying to satisfy both inequalities (3.5) and (3.6) in the following way.

Let us remark first that inequality (3.5) is satisfied for small positive τ along the linear path
yk

0(τ) ..= yk +τtk (τ > 0) instead of yk
M(τ):

θ(yk
0(τ)) ≤ θ(yk ) + α1 τ θ′(yk ; tk ) . (3.7)

Indeed, θ′(yk ; tk ) is negative and α1 is less than 1. On the other hand, by continuity and because α2 is less
than 1, the inequality corresponding to (3.6),

g (yk
0(τ))T Z (yk ) tk ≥ α2 g (yk )T Z (yk ) tk , (3.8)

is not satisfied for small positive τ along yk
0(τ). Therefore, we may define τk

1 ..= sup { τ′ > 0 :
\/− τ ∈ [0 , τ′[ , yk

0(τ) ∈ ω, (3.7) is satisfied and (3.8) is not satisfied }. If τk
1 is infinite, which is not possi-

ble if θ is bounded from below − see (3.7), or if yk
1 ..= yk

0(τk
1) ∈/ ω, we shall consider that the algorithm

has failed. Otherwise, (3.7) is satisfied at yk
1 (by continuity). Then, if (3.8) is satisfied at yk

1 (which is the
only possibility in the unconstrained case), τk

1 is a serious step-size. Otherwise, this means, by continuity,
that (3.7) is not satisfied for τ > τk

1 in a neighborhood of τk
1. In this last case, θ(yk

1) = θ(yk ) +
α1 τk

1 θ′(yk ; tk ) and the search to satisfy (3.7) and (3.8) may be pursued from yk
1 in the direction

Z (yk
1)− Z (yk ) tk . To see this, it is enough to remark that, if yk

1(τ) is defined by yk
1(τ) ..= yk

0(τ) for
0 ≤ τ ≤ τk

1 and yk
1(τ) ..= yk

1 + (τ−τk
1) Z (yk

1)− Z (yk ) tk for τ > τk
1, the following inequality holds:

θ(yk
1(τ)) ≤ θ(yk ) + α1 τ θ′(yk ; tk ) ,

for τ > τk
1 in a neighborhood of τk

1. This is true because, on the contrary, we would have a sequence of
τ > τk

1, converging to τk
1, with

θ(yk
1(τ)) − θ(yk

1) > α1 (τ−τk
1) θ′(yk ; tk ) .

Dividing by (τ−τk
1) and taking the limit as τ tends to τk

1 would give:

(θ ο yk
1)′(τk

1; 1) ≥ α1 θ′(yk ; tk ) > α2 θ′(yk ; tk ) = α2 g (yk )T Z (yk ) tk .
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But

(θ ο yk
1)′(τk

1; 1) = ∇ f (yk
1)T Z (yk

1)−Z (yk )tk + φ′(c (yk
1); A (yk

1)Z (yk
1)−Z (yk )tk )

= g (yk
1)T Z (yk ) tk ,

because of (1.6). So, g (yk
1)T Z (yk ) tk > α2 g (yk )T Z (yk ) tk , which is a contradiction, because (3.8) was

supposed to be violated at yk
1 = yk

0(τk
1). Now, we can continue and define τk

2 ..= sup {τ′ > τk
1 : \/− τ ∈

[τk
1 , τ′[ , yk

1(τ) ∈ ω, θ(yk
1(τ)) ≤ θ(yk ) + α1 τ θ′(yk ; tk ) and g (yk

1(τ))T Z (yk ) tk < α2 g (yk )T Z (yk ) tk },
yk

2 ..= yk
1(τk

2), and so on. Therefore, the search can be pursued along a piecewise linear path, as long as a
serious step-size is not met.

To obtain an implementable version of this algorithm, two questions, which constitute our program
up to the end of this section, have to be clarified:

(i) the values τk
i of the step-size at which the search is reoriented are not attainable by calculation and

should be redefined,

(ii) the algorithm should be shown to terminate in a finite number of iterations.

The last question will be the subject of Theorem 3.3, while for the first question, we may refer to
what is done in unconstrained optimization to find a serious step-size in the sense of Wolfe. Indeed, in
this case as well, if the step-size corresponding to our τk

1 solves the problem, it is never calculated but
only approximated and this is possible because there must exist a left neighborhood of τk

1 constituted of
serious step-sizes. For example, Lemaréchal (1981) has proposed an algorithm to find a serious step-size
in unconstrained optimization (see also, Fletcher (1980, Section 2.6), and Dennis and Schnabel (1983,
Algorithm A 6.3.1 mod, p. 328)). Let us recall it here in terms of the function ψ introduced at the begin-
ning of the section.

Line-search Algorithm: (3.9)

1. τ	 ..= 0 ; τ� ..= ∞ ; choose ( τ > 0 ) ;

2. repeat
2.1. if ( (3.1) is not satisfied )

2.2. then { τ� ..= τ ; τ ..= INTERPOL (τ	 , τ�) }

2.3. else {

2.4. if ( (3.2) is satisfied ) then exit /* τ is serious */

2.5. else {

2.6. τ	 ..= τ ;

2.7. if ( τ� = ∞ ) then τ ..= EXTRAPOL (τ	)
2.8. else τ ..= INTERPOL (τ	 , τ�)
2.5. }

2.3. } ;

So, the algorithm tries to trap a step-size like τk
1 in an interval [τ	 , τ�]. The step-size τ� is said to be

too large because it does not satisfy (3.1), hence some step-size like τk
1 must exist in [0 , τ�]. The step-size

τ	 is said to be too small because it is less than τ� and satisfies (3.1) but not (3.2), hence some step-size like
τk

1 must exist in [τ	 , τ�]. The algorithm uses two functions: INTERPOL gives a step-size τ between the two
finite values τ	 and τ� and EXTRAPOL gives a step-size τ greater than τ	. Some conditions on these functions
are required in order to ensure the global convergence of methods using such line-search algorithm.
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We shall adapt this algorithm to our situation by modifying the direction of search each time a
step-size is recognized as too small. These step-sizes will constitute our new τk

i ’s. Note that this change
in the direction of search at a point yk

i is free of charge because an inequality like (3.6) or (3.8) has to be
tested at yk

i and therefore the new basis Z (yk
i )− is available and the new search direction Z (yk

i )− Z (yk ) tk ,
as well. However, the fact to have to linearize the constraints and to compute the basis of the tangent
space at each point yk

i can be rather expensive for certain applications. It is therefore important to show
that the unit step-size is usually accepted asymptotically. This will be done in Section 4. Then, accord-
ing to our experience with the line-search algorithm (3.9) in unconstrained optimization, it is not unrealis-
tic to expect that the unit step-size will be accepted at almost all iterations. Now, even if such is the case,
the algorithm still requires two linearizations of the constraints per iteration (at yk and xk +1), which is
more expensive than implementing an arc-search from yk to yk +1 on the penalty function using Armijo’s
rule as we would find in Gabay (1982,b) or Gilbert (1986,a). This technique does not however guarantee
the positivity of (g (xk +1)−g (yk ))T Z (yk )tk . Therefore, it is important to generalize the algorithm
presented here to reduced secant methods that require only one linearization of the constraints per itera-
tion.

Before stating our algorithm we need to define precisely the search path and to give the properties
required for the interpolation and extrapolation functions.

Being given l positive numbers:

0 = .. τk
0 < τk

1 < . . . < τk
l , (3.10)

we define by induction the points yk
i and the piecewise linear trajectories yk

i (τ), τ ≥ 0 for 0 ≤ i ≤ l . For
i = 0, we define

yk
0 ..= yk , (3.11)

yk
0(τ) ..= yk + τ tk = yk + τ Z (yk )− Z (yk ) tk , for τ ≥ 0 (3.12)

and for 1 ≤ i ≤ l , we define

yk
i ..= yk

i −1(τk
i ) , (3.13)

yk
i (τ) ..=

�
�
�
�
�

yk
i + (τ−τk

i ) Z (yk
i )− Z (yk ) tk , for τ > τk

i .
yk

i −1(τ) , for 0 ≤ τ ≤ τk
i ,

(3.14)

Therefore, if the dot stands for a right derivative, we have

y
.
k
l (τk

i ) = Z (yk
i )− Z (yk ) tk , 0 ≤ i ≤ l .

So, the path yk
l ( . ) may be seen as an explicit Euler approximation of the solution yk

M of (3.4) on [0 , τk
l ]

for the discretization (3.10) in τ.

Lemma 3.1. If (τk
l )l ≥1 is an increasing sequence of positive numbers that converges to some τ�k and

if (yk
l )l ≥0, defined by (3.11)-(3.14), remains in ω, then (yk

l )l ≥0 converges in IR n .

Proof. For l ≥ 1, we have yk
l = yk + S l , with

S l ..=
i =0
Σ
l −1

(τk
i +1−τk

i ) Z (yk
i )− Z (yk ) tk .
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Because yk
i ∈ ω, (Z (yk

i )−)i ≥0 is bounded. Hence, for l 2 > l 1, � � S
l 2−S

l 1 � � ≤ C (τk
l

2−τk
l

1), where C is a posi-
tive constant independent of l 1 and l 2. As (τk

l )l ≥0 converges, (S l )l ≥1 is a Cauchy sequence, hence con-
verges in IR n . And so does (yk

l )l ≥0. 


Wolfe’s criteria are then generalized as follows: find a non negative integer l , l +1 positive numbers
(τk

i )0≤i ≤l verifying (3.10) and a τ > τk
l such that:

θ(yk
l (τ)) ≤ θ(yk ) + α1 τ θ′(yk ; tk ) , (3.15)

g (yk
l (τ))T Z (yk ) tk ≥ α2 g (yk )T Z (yk ) tk , (3.16)

where 0 < α1 < α2 < 1 are given. See (1.17), for the value of θ′(yk ; tk ).

We shall need an interpolation function J : ω × IR + → IR +
..= [0 , ∞[ such that:

(y ,τ) → J (y ,τ) is continuous on ω × IR + , (3.17)

\/− y ∈ ω , \/− τ > 0 : J (y ,τ) ∈ ]0 , τ[ , (3.18)

\/− y ∈ ω , \/− τ > 0 : Jy
p(τ) → 0 as p → ∞ , (3.19)

where Jy
p(τ) ..= (Jy ο . . (p times) . . ο Jy )(τ) and Jy (τ) ..= J (y ,τ). This function will be used when we

shall need a new trial step-size between, say, τk
l and τ > τk

l . Then, we shall take τ′ ..= τk
l + J (yk

l , τ−τk
l ).

By condition (3.18), τ′ ∈ ]τk
l , τ[ (interpolation) and condition (3.19) guarantees that if the operation is

repeated, the new step-sizes will be closer and closer to τk
l . We can deduce from (3.17) and (3.18), that

for y ∈ ω and τ ≥ 0, J (y ,τ) = 0 if and only if τ = 0.

We shall also need an extrapolation function E : ω→ IR + such that:

y → E (y ) is continuous on ω , (3.20)

\/− y ∈ ω : E (y ) > 0 . (3.21)

This function will be used when we shall need a new trial step-size greater than, say, τk
l . Then, we shall

take τk
l + E (yk

l ) > τk
l .

Lemma 3.2. If (y l )l ≥0 is a converging sequence in ω and (τl )l ≥0 is a bounded sequence of positive
numbers such that J (y l ,τl ) converges to zero, then τl converges to zero.

Proof. Let y in ω be the limit point of (y l ) and (τl ′) be a subsequence of (τl ) that converges to
some τ. Then, by (3.17), J (y l ′,τl ′) → J (y ,τ) = 0, hence τ = 0 and all the sequence (τl )l ≥0 converges to
zero. 


We can now state the

Longitudinal Search Algorithm: (3.22)

1. if ( tk = 0 ) then exit ;

2. l ..= 0 ; τk
0 ..= 0 ; choose ( τ > 0 ) ;

3. repeat
3.1. if ( ( yk

l (τ) ∈/ ω ) or ( (3.15) is not satisfied ) )

3.2. then τ ..= τk
l + J (yk

l ,τ−τk
l )
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3.3. else {

3.4. if ( (3.16) is satisfied )

3.5. then { τk
..= τ ; lk ..= l ; exit } /* τ is serious */

3.6. else { l ..= l +1 ; τk
l ..= τ ; τ ..= τk

l + E (yk
l ) }

3.3. } ;

In statement 2, the choice τ = 1 is recommended if the algorithm is used within the context of secant
methods because in this case the unit step-size is essential to obtain superlinear convergence. We have
added in statement 3.1 another reason to decrease τ: the points yk

l must belong to ω. Therefore a serious
step-size may not be found because ω is too small and the algorithm may loop in statement 3. This is one
of two reasons for looping (see the other one in the theorem below).

Let us remark that the algorithm will not cycle between statement 3.1 and 3.2 because otherwise τ
would decrease to τk

l by hypothesis (3.19); but, yk
l ..= yk

l (τk
l ) is in ω by construction so yk

l (τ) is also in ω
for τ close to τk

l and, on the other hand, inequality (3.15) is satisfied for τ close to τk
l . Therefore the test

3.1 is always rejected after a finite number of loops 3.1-3.2. Consequently, if the algorithm loops in state-
ment 3, a sequence (yk

l )l ≥0 is built in ω.

We have seen that the search path yk
l ( . ) is an Euler approximation of the solution of (3.4). From

the way the discretization points τk
i are built by the algorithm above, we see that this approximation will

be accurate if τ in statement 2 is chosen "small" and if \/− y ∈ ω, E (y ) is "small". However, doing this is
expensive and, in fact, useless because building a good approximation of yk

M is not the aim of the algo-
rithm.

We now give the main result of this section, which shows that, apart from some pathological situa-
tions, a serious step-size is found in a finite number of iterations.

Theorem 3.3. Let θ be the function defined on ω by (1.16) with φ convex and continuous on a
neighborhood of c (ω). Let yk be a point in ω such that g (yk ) ≠ 0. Let Hk be a symmetric positive definite
matrix of order n −m . Then, if the longitudinal search algorithm (3.22) with the definitions (3.10)-(3.14)
and the hypotheses (3.17)-(3.21) is applied from yk , one of the following situations occurs:

(i) the algorithm terminates in a finite number lk of loops 3.1-3.6, with a point xk +1
..= yk

l
k (τk ) satisfying

both inequalities (3.15) and (3.16) with l = lk and τ = τk ,

(ii) the algorithm builds a sequence (yk
l )l ≥0 in ω and either (θ(yk

l ))l ≥0 tends to − ∞ or (yk
l )l ≥0 converges

to a point on the boundary of the open set ω.

Proof. Clearly, by the remark preceding the theorem, if a finite number lk of points yk
l are calcu-

lated, this means that a step-size τk has been found in statement 3.5 and that yk
l
k (τk ) satisfies (3.15) and

(3.16). So let us suppose the contrary, i.e. that a sequence (yk
l )l ≥0 is built in ω. Let us suppose also that

the sequence (θ(yk
l ))l ≥0 is bounded from below and that (yk

l )l ≥0 does not converge to a point on the boun-
dary of ω. We have to prove that these suppositions give a contradiction.

For all l , we have by construction:

θ(yk
l ) ≤ θ(yk ) + α1 τk

l θ′(yk ; tk ) , (3.23)

g (yk
l )T Z (yk ) tk < α2 g (yk )T Z (yk ) tk . (3.24)

Because θ′(yk ; tk ) is negative and (θ(yk
l ))l ≥0 is bounded from below, (3.23) shows that (τk

l )l ≥0 is
bounded. As τk

l increases with l , the sequence converges to some τ�k and by Lemma 3.1, (yk
l )l ≥0
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converges to some y�k in IR n . According to the suppositions, y�k is in ω.

Let us show that

θ(y�k ) = θ(yk ) + α1 τ�k θ′(yk ; tk ) = θ(yk ) + α1 τ�k g (yk )T Z (yk ) tk . (3.25)

In view of (3.23) and by continuity, it is enough to prove that the left hand side of (3.25) is not less than
the right hand side. For this, let us remark that there exists an integer l 0 such that for l ≥ l 0, we have for
some τ�k

l > τk
l +1:

τk
l +1 = τk

l + J (yk
l ,τ�k

l−τk
l ) . (3.26)

Indeed, for sufficiently large l , τk
l +1 is given by (3.26), i.e. by interpolation. Otherwise, we would have

τk
l +1 = τk

l + E (yk
l ) for some subsequence of l ’s and at the limit on those l ’s, we would have, by (3.20),

E (y�k ) = 0, which is in contradiction with hypothesis (3.21). Now, by construction, τ�k
l ≤ τk

l + E (yk
l ). So

(τ�k
l )

l ≥l 0 is also bounded. Then, the limit in (3.26) and Lemma 3.2 show that (τ�k
l )

l ≥l 0 converges to τ�k . As

yk
l (τ�k

l ) = yk
l + (τ�k

l−τk
l ) Z (yk

l )− Z (yk ) tk converges to y�k ∈ ω, yk
l (τ�k

l ) ∈ ω for large l . Therefore, (3.26)
means that (3.15) is not satisfied at yk

l (τ�k
l ), i.e.

θ(yk
l (τ�k

l )) > θ(yk ) + α1 τ�k
l θ′(yk ; tk ) .

The equality (3.25) is proved by taking the limit on l in this last inequality.

Taking the limit on l in (3.24) and using 0 < α1 < α2, we see that there will be a contradiction (and
therefore we shall have proved the theorem) if we show that

g (y�k )T Z (yk ) tk ≥ α1 g (yk )T Z (yk ) tk . (3.27)

For this, we build a sequence (ηp )p ≥0 of positive numbers converging to zero and a sequence
(zk

p)p ≥0 of points in IR n of the form

zk
p ..= y�k + ηp Z (y�k )− Z (yk ) tk , (3.28)

such that:

zk
p ∈ ω ⇒ θ(zk

p) ≥ θ(yk ) + α1 (τ�k +η
p ) g (yk )T Z (yk ) tk . (3.29)

As zk
p ∈ ω for large p , (3.29) and (3.25) give for large p :

ηp
θ(zk

p) − θ(y�k )������������ ≥ α1 g (yk )T Z (yk ) tk .

Hence, (3.27) will follow by taking the limit on p in this inequality.

The sequences (ηp )p ≥0 and (zk
p)p ≥0 are built by induction together with an increasing sequence of

indices (l p )p ≥0 such that for p ≥ 0 and l ≥ l p , either zk
p ,l ..= yk

l (τk
l+ηp ,l ) = yk

l + ηp ,l Z (yk
l )− Z (yk ) tk ∈/ ω,

where ηp ,l ..= J
yk

l
p (E (yk

l )), or (3.15) is not satisfied at zk
p ,l, i.e. for τ = τk

l + ηp ,l . In other words, for p ≥ 0

and l ≥ l p :

zk
p ,l ∈ ω ⇒ θ(zk

p ,l) > θ(yk ) + α1 (τk
l+ηp ,l ) g (yk )T Z (yk ) tk . (3.30)

We begin with η0, zk
0 and l 0. We have already seen in getting (3.26) that we may find a positive index l 0

such that for l ≥ l 0, τk
l is obtained by interpolation, which means that either zk

0,l = yk
l (τk

l+η0,l ) ∈/ ω or
(3.15) is not satisfied at zk

0,l. This is precisely (3.30) for p = 0. Similarly, for p ≥ 1, we may find an
index l p ≥ l p −1 (defined by induction) such that for all l ≥ l p , either zk

p ,l ∈/ ω or (3.15) is not satisfied at
zk

p ,l. Indeed, otherwise, l p being greater than l p −1, we would have for a subsequence of l ’s:
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τk
l +1 = τk

l + J
yk

l
p (E (yk

l ))

and the limit on l , would give

(J
y�k

ο . . (p times) . . ο J
y�k

)(E (y�k )) = 0 .

This would imply E (y�k ) = 0, in contradiction with (3.21). Therefore, for l ≥ l p , (3.30) is still satisfied.
As (zk

p ,l)l ≥0 converges to zk
p given by (3.28) with

ηp ..= J
y�k

p (E (y�k )) ,

the limit in (3.30) gives (3.29). Moreover, (ηp )p ≥0 converges to zero because of property (3.19). 


Remarks 3.4. A consequence of Theorem 3.3 is that if θ is bounded below, ω = IR n and the
hypotheses of the theorem are satisfied, then the longitudinal search algorithm (3.22) will find a point

xk +1
..= yk

l
k (τk ) satisfying both inequalities (3.15) and (3.16). The situations in which the longitudinal

search algorithm fails are similar to those posing problem to algorithm (3.9) for finding Wolfe points in
unconstrained optimization. The first situation of Theorem 3.3 (ii) corresponds to the case where a local
minimum of an unbounded from below function f is searched. With the notation from the beginning of
the section, the second situation of Theorem 3.3 (ii) corresponds to the case where the objective function
ψ : ]0 , ∞[ → IR has positive derivative and negative curvature on, say ]0 , 1[. If uk ∈ ]0 , 1[, algorithm
(3.9) will search in ]0 , uk [, where no Wolfe point can be found (Lemaréchal (1984)). The algorithm we
propose cannot face correctly such situations, either. 


Below, we shall need the following inequality.

Proposition 3.5. With the hypotheses of Theorem 3.3, if starting from a point yk in ω, the longitu-
dinal search algorithm (3.22) gives a point xk +1 in ω and a step-size τk , we have

� � xk +1−yk � � ≤ C τk � � tk � � , (3.31)

where C is a positive constant that depends only on a bound of Z ( . ) and Z ( . )− on ω.

Proof. We have

xk +1−yk =
i =0
Σ

lk −1

(τk
i +1−τk

i ) Z (yk
i )− Z (yk ) tk ,

from which (3.31) follows. 


4. The algorithm

In secant methods, it is commonly considered that a globalizing technique is successful if the unit step-
size is asymptotically accepted by the search algorithm, because then the superlinear convergence of the
local method is not prevented from occurring. This means that the longitudinal search algorithm (3.22)
should set lk = 0 and τk = 1 for all sufficiently large k . In fact, this depends on three factors: the search
direction tk , i.e. the matrix Hk , the penalty function θ and the constants α1 and α2 in (3.15)-(3.16).
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Because Gk is updated to be a good approximation of the projected Hessian of the Lagrangian,
which is a condition imposed by the local analysis, the point (yk +tk ) will be asymptotically a good
approximation of a minimizer of the Lagrangian in the tangent plane yk +R (Z (yk )−). Note, indeed, that if
Gk = Z (yk )−T L (yk ,λ) Z (yk )− , we have tk ..= argmin { l (yk ,λ) + ∇x l (yk ,λ)T t + t T L (yk ,λ) t /2 :
t ∈ R (Z (yk )−) }, for any λ. Therefore, the unit step-size has some chance of being accepted if θ is close
to the Lagrangian. Finally, in addition to 0 < α1 < α2 < 1, we need to impose the condition α1 < 1/2,
because then condition (3.15) accepts the minimum of a quadratic function.

We choose as penalty function the nondifferentiable augmented Lagrangian:

lp (x ,µ) ..= f (x ) + µT c (x ) + p � � c (x ) � � , (4.1)

where � � . � � is a norm on IR m . This penalty function is exact, i.e. a solution x
*

of problem (1.1) is a local
minimizer (here strict) of lp ( . ,µ), if p > � �µ−λ

*
� � D , where λ

*
is the multiplier associated to x

*
and � � . � � D

is the dual norm of � � . � � on IR m . This result may be derived as a variant of a result of Han and Man-
gasarian (1979) by considering the problem min { f (x ) + µT c (x ) : x ∈ ω , c (x ) = 0 }, which is
equivalent to problem (1.1) or it may be directly obtained as in Bonnans (1984), where the penalty func-
tion (4.1) has been used in connection with the SQP method to obtain the admissibility of the unit step-
size.

Another possibility could have been to use the differentiable augmented Lagrangian, obtained by
replacing p � � c (x ) � � by (p /2) � � c (x ) � � 2

2 in (4.1), which is exact if µ = λ
*

and if p is greater than some posi-
tive threshold p	 (see Bertsekas (1982), for example). The advantage of lp defined by (4.1) is that it can
be exact with µ different from λ

*
and that the threshold for p is easy to calculate. This is important,

because, as we have said it, we shall need to make lp close to the Lagrangian function. With the penalty
function (4.1), this will be done simply by improving the estimate µ of λ

*
as the iterates progress to a

solution x
*

and by decreasing p if necessary and if the requirement p > � �µ−λ
*
� � D allows it.

The path from yk to xk +1, given by Theorem 3.3, may be obtained by using lp ( . ,µ) as penalty func-
tion in algorithm (3.22). From (1.17), the directional derivative of lp with respect to x in the direction tk
is given at (yk ,µ) by:

lp′(yk ,µ; tk ) = ∇ f (yk )T tk = g (yk )T Z (yk ) tk . (4.2)

When Hk is non singular, g (yk ) = − Gk Z (yk ) tk , where Gk
..= Hk

−1. In this case, we shall also use:

∇ f (yk )T tk = g (yk )T Z (yk ) tk = − tk
T Z (yk )T Gk Z (yk ) tk . (4.3)

Now, it remains to give conditions for the feasibility of a linear search on lp starting at xk in the
direction rk . The directional derivative of lp with respect to x in the direction rk

..= − A (xk )− c (xk ) is
given at (xk ,µ) by:

lp′(xk ,µ; rk ) = (λ(xk )−µ)T c (xk ) − p � � c (xk ) � � , (4.4)

where we used the multiplier estimate λ(x ) given in (1.15). Remark that for the derivative of the last
term of (4.1), noting ν(z ) ..= � � z � � , we have (ν ο c )′(xk ; rk ) = ν′(c (xk ); − c (xk )) = − ν(c (xk )), by definition
of the directional derivative. Therefore, from (4.4), rk is a descent direction of lp ( . ,µ) at xk , if p >
� � λ(xk )−µ � � D . This shows that p will have to be adapted sometimes in order to preserve this inequality
before doing the transversal step. We shall denote by pk the value of the penalty parameter at iteration k .
In the same way, we shall see that µ will have to be modified at some iterations and we shall denote by µk
its value at iteration k . Therefore, a condition to satisfy at each iteration (from xk to xk +1) is:

pk ≥ � � λ(xk )−µk � � D + p	k , (4.5)
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where p	k is some positive number.

Let ρk denote the step-size along the transversal displacement rk :

yk
..= xk + ρk rk . (4.6)

We shall determine ρk by Armijo’s (1966) procedure. Two parameters, α and β, are chosen in ]0 , 1[ and
ρk is taken in the form

ρk
..= β

bk , (4.7)

where bk is the smallest non negative integer such that

xk + ρk rk ∈ ω

and

lpk
(xk +ρk rk ,µk ) ≤ lpk

(xk ,µk ) + α ρk lpk

′ (xk ,µk ; rk ) . (4.8)

If (4.5) is satisfied and xk is in ω (an open set), such a bk always exists.

We can now outline our reduced secant algorithm.

Algorithm RSA: (4.9)

1. Choose the constants: 0 < α < 1, 0 < β < 1, 0 < α1 < 1/2, α1 < α2 < 1, 0 < ε,
1 < ai (i = 1,2,3) .

2. Choose a point x 0 in ω and H 0, a symmetric positive definite matrix of order n −m .

3. Calculate λ(x 0) by (1.15), choose p	 0 > 0, set µ0
..= λ(x 0) and p 0

..= S (p	 0) and set the indices
k ..= 0 (iterations), i ..= 0 (adaptation of p	k ), j ..= 0 (adaptation of pk and µk ).

4. Select a transversal step-size ρk by Armijo’s procedure (4.7)-(4.8) and set yk
..= xk + ρk rk .

5. Execute the longitudinal search algorithm (3.22), starting with τ = 1 and using the penalty
function lpk

( . ,µk ) instead of θ( . ) in (3.15) to determine a step-size τk and a point xk +1, if pos-
sible.

6. Calculate εk
..= � � g (yk ) � � + � � c (xk +1) � � . If εk < ε then stop.

7. Update Hk : γk
..= g (xk +1)−g (yk ), δk

..= τk Z (yk ) tk , Hk +1
..= BFGS�����(Hk ,γk ,δk ) .

8. Calculate λ(xk +1) by (1.15).

9. Adapt p	k → p	k +1 .

10. Adapt pk → pk +1 and µk → µk +1 .

11. Set k ..= k +1 and go to statement 4.

The algorithm calls for some comments. In statement 1, ε is a positive convergence threshold and is
used in statement 6. The positive constants a 1, a 2 and a 3 will be used in the adaptation rules for p	k , pk
and µk (statements 9 and 10) given below. In statement 2, H 0 can be chosen as the identity matrix but
this does not take into account the scaling of the problem. Therefore, a possible choice is to take H 0 = I
in the first longitudinal search (statement 5) and to calculate H 1 by updating h 0 I rather than I , where
h 0

..= γ0
T δ0 / γ0

T γ0. This term minimizes in h the condition number of BFGS�����(hI ,γ0,δ0), the inverse BFGS

update of h I (see Oren and Spedicato (1976)), and seems to give good numerical results (see Shanno and
Phua (1978)). In statement 3, p	 0 should be taken large enough and the function S : ]0 , ∞[ → ]0 , ∞[ is
supposed to satisfy the following properties:

S is nondecreasing on ]0 , ∞[ and S (a ) ≥ a , \/− a ∈ ]0 , ∞[ , (4.10)
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for 0 < a	 ≤ a� < ∞ , S ([a	 , a�]) is finite , (4.11)

S (a ) → 0 as a → 0+ . (4.12)

This function S will be used again in the adaptation rules for p	k , pk and µk and these properties will be
useful to prove a global convergence result for the algorithm. For example, we may follow Bonnans
(1984) and take S (a ) ..= min { 10q : a ≤ 10q , q integer }. Statement 4 will always succeed because ine-
quality (4.5) will be guaranteed by the adaptation rules for p	k , pk and µk (statements 9 and 10) and
because if statement 5 succeeds, the point xk is in ω. Note that if rk = 0, ρk = 1 is always accepted in
statement 4! On the other hand, statement 5 may not succeed, as described in Theorem 3.3 (ii) and com-
mented in Remark 3.4. In order not to prevent superlinear convergence from occurring we suppose that
the initial τ in the longitudinal search algorithm is chosen equal to 1. In statement 7, the inverse BFGS for-
mula (1.18) is always well defined because, by construction, γk

T δk is positive.

Before stating the adaptation rules for p	k , pk and µk in statements 9 and 10, we need to examine
under what conditions the unit step-sizes ρk and τk are accepted in both the transversal and longitudinal
displacements. These are the contents of the following two propositions.

Proposition 4.1. Suppose that Algorithm RSA (4.9) produces bounded sequences (µk ) and (pk ) and
a sequence (xk ) in ω that converges to a solution x

*
of problem (1.1). Then, we have for large k :

lpk
(xk +rk ,µk ) − lpk

(xk ,µk ) − α lpk

′ (xk ,µk ; rk )

= (1−α) lpk

′ (xk ,µk ; rk ) + o ( � � rk � � ) . (4.13)

Proof. For large k , the segment [xk , xk +rk ] is in ω. Then, f and c being twice differentiable on
ω, Taylor’s expansions give

f (xk +rk ) = f (xk ) + λ(xk )T c (xk ) + o ( � � rk � � )

and c (xk +rk ) = o ( � � rk � � ) . Consequently, (pk ) and (µk ) being bounded, we get (4.13). 


Proposition 4.2. Suppose that Algorithm RSA (4.9) produces a bounded sequence (pk ), a sequence
(xk ) in ω that converges to a solution x

*
of problem (1.1), a sequence (µk ) that converges to the associ-

ated multiplier λ
*

and a bounded sequence of non singular reduced matrices (Hk ) such that (1.12) is
satisfied with Gk = Hk

−1. Then, we have for large k :

lpk
(yk +tk ,µk ) − lpk

(yk ,µk ) − α1 lpk

′ (yk ,µk ; tk )

≤ (
2
1��−α1) lpk

′ (yk ,µk ; tk ) + pk O ( � � tk � � 2) + o ( � � tk � � 2) , (4.14)

α2 g (yk )T Z (yk ) tk − g (yk +tk )T Z (yk ) tk

= α2 g (yk )T Z (yk ) tk + o ( � � tk � � 2) . (4.15)

Proof. As the sequence (yk ) converges also to x
*

and (Hk ) is bounded, the segment [yk , yk +tk ] is
in ω for large k . Then, f and c being C 2 on ω, Taylor’s expansions give:

f (yk +tk ) = f (yk ) + ∇ f (yk )T tk + 2
1�� f ′′(x

*
) . tk

2 + o ( � � tk � � 2) ,

c (yk +tk ) = c (yk ) +
2
1�� c ′′(x

*
) . tk

2 + o ( � � tk � � 2) .
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Hence, using µk → λ
*

and the boundedness of (pk ), we get

lpk
(yk +tk ,µk )

≤ lpk
(yk ,µk ) + ∇ f (yk )T tk + 2

1�� tk
T L

*
tk + pk O ( � � tk � � 2) + o ( � � tk � � 2) .

But, as y → Z (y )− is continuous, tk = Z (yk )− Z (yk ) tk = Z (x
*
)− Z (yk ) tk + o ( � � tk � � ). So, with (4.3), the

last inequality becomes

lpk
(yk +tk ,µk ) − lpk

(yk ,µk ) − α1 ∇ f (yk )T tk

≤ (
2
1��−α1) ∇ f (yk )T tk −

2
1�� tk

T Z (yk )T (Gk −G
*
) Z (yk ) tk

+ pk O ( � � tk � � 2) + o ( � � tk � � 2) .

From this inequality, (4.2) and (1.12), we deduce (4.14).

On the other hand, as y → Z (y )− is C 1 on ω and f is C 2 on ω, g is C 1 on ω and, by a Taylor’s
expansion and (3.3), we get

g (yk +tk ) = g (yk ) + Z (x
*
)−T L

*
tk + o ( � � tk � � ) = g (yk ) + G

*
Z (yk ) tk + o ( � � tk � � ) .

Hence, using again (4.3) and (1.12), we obtain

g (yk +tk )T Z (yk ) tk = g (yk )T Z (yk )tk + tk
TZ (yk )T G

*
Z (yk )tk + o ( � � tk � � 2)

= − tk
T Z (yk )T (Gk −G

*
) Z (yk ) tk + o ( � � tk � � 2)

= o ( � � tk � � 2) ,

hence (4.15). 


Propositions 4.1 and 4.2 enable us to give conditions on the admissibility of the unit step-sizes ρk
and τk , i.e. on the non positivity of the left hand side of (4.13), (4.14) and (4.15). These conditions will
guide us in the design of the adaptation rules for p	k , pk and µk .

We have rk = O ( � � c (xk ) � � ) and inequality (4.5) implies that lpk

′ (xk ,µk ; rk ) ≤ − p	k � � c (xk ) � � . Under

this condition (4.5) and α < 1, the estimate (4.13) becomes

lpk
(xk +rk ,µk ) − lpk

(xk ,µk ) − α lpk

′ (xk ,µk ; rk ) ≤ − (1−α) [ p	k − ηk ] � � c (xk ) � � ,

where ηk → 0. Therefore, the step-size ρk = 1 will be accepted asymptotically if, in addition to the
hypotheses of Proposition 4.1, α < 1, (4.5) is satisfied at each iteration and (p	k ) is bounded away from
zero.

To exploit the estimates (4.14) and (4.15), let us remark that, under the hypotheses of Proposition
4.2, there exists constants C 1, C 2 and C 3 (independent of k ), such that � �Hk � � 2 ≤ C 1 and � � tk � � ≤
C 2 � �Hk g (yk ) � � ≤ C 3 � � Z (yk ) tk � � 2. Therefore, using (4.3) and the positive definiteness of Gk , we obtain

g (yk )T Z (yk ) tk ≤ − � �Hk � � 2
−1 � � Z (yk ) tk � � 2

2 ≤ − C 1
−1 C 3

−2 � � tk � � 2 .

This shows that the left hand side of (4.15) will be negative asymptotically if, in addition to the
hypotheses of Proposition 4.2, α2 > 0 and Hk is positive definite. Whereas, the left hand side of (4.14)
will be negative asymptotically if, in addition to the hypotheses of Proposition 4.2, we have α1 < 1/2, Hk
positive definite and pk sufficiently small. But, because pk has to satisfy inequality (4.5), this means that
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p	k must be small enough, although nonzero as we have just seen.

On the other hand, by modifying µk and pk , we change the merit function at each iteration, which
can prevent convergence. So, we have to proceed with caution, and, as in Bonnans (1984), we shall
change µk and pk only when the convergence progresses sufficiently. To test convergence, we shall need
(εk is defined in statement 6 of Algorithm RSA):

ε∼k
..= min { εi : 0 ≤ i ≤ k } . (4.16)

We can now make precise statements 9 and 10 of Algorithm RSA. Indices k , i and j are initialized
in statement 3 of the algorithm. Index k is updated in statement 11, while indices i and j are updated in
statements 9 and 10 respectively (see below).

Adaptation of p	kp	k (statement 9 of Algorithm RSA): (4.17)

if ( ( ε∼k ≤ ε∼i /a 1 ) and ( ( lk ≠ 0 ) or ( τk ≠ 1 ) ) )

then { i ..= k ; p	k +1
..= p	k /a 2 } (4.18)

else p	k +1
..= p	k . (4.19)

Adaptation of pkpk and µkµk (statement 10 of Algorithm RSA): (4.20)

if ( ε∼k ≤ ε∼j /a 3 )

then { j ..= k ; µk +1
..= λ(xk +1) ; pk +1

..= S (p	k +1) } (4.21)

else { µk +1
..= µk ; pk +1

..= max (pk , S ( � � λ(xk +1)−µk +1 � � D +p	k +1) } . (4.22)

We recall that the properties of function S have been given in (4.10)-(4.12). We see that, as long as
ε∼k does not decrease sufficiently, p	k and µk are not changed; only pk can be increased by (4.22) so as to
satisfy (4.5). This procedure is recommended by Mayne and Polak (1982) for the globalization of SQP

methods using the l∞ exact penalty function. In our case, however, we have seen that it is necessary to
have the penalty function close to the Lagrangian. Therefore, if ε∼k decreases sufficiently, we adapt µk
and pk in (4.21), and we decrease p	k in (4.18) if, furthermore, the unit step-size is not accepted.

The next theorem shows how these rules work in case of convergence of (xk ).

Theorem 4.3. Suppose that Algorithm RSA (4.9) with the adaptation rules (4.17) and (4.20) pro-
duces a sequence (xk ) in ω converging to a solution x

*
of problem (1.1) and a bounded sequence of posi-

tive definite matrices (Hk ). Suppose, as well, that condition (1.12) is satisfied with Gk
..= Hk

−1. Then, we
have ρk = 1, lk = 0 and τk = 1 for k large enough.

Proof. As xk → x
*
, we have c (xk ) → 0, hence yk → x

*
, g (yk ) → 0, εk → 0 and, by (4.21),

µk → λ
*
.

We begin with the longitudinal displacement. Suppose that lk ≠ 0 or τk ≠ 1 infinitely often. Then,
by (4.18), we would have p	k → 0 and by (4.21), (4.22) and (4.12), pk → 0. Therefore, using Proposition
4.2 (and the comments after its proof), we see that the left hand sides of (4.14) and (4.15) become nega-
tive for large k , and therefore lk = 0 and τk = 1 for large k : a contradiction.
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Hence, lk = 0 and τk = 1 for large k and from (4.19) we see that p	k = p	 > 0, for large k . By using
Proposition 4.1 (and the comments after the proof of Proposition 4.2), we see that the left hand side of
(4.13) becomes negative for large k , hence ρk = 1. 


We now prove a global convergence result for Algorithm RSA.

Theorem 4.4. Suppose that Algorithm RSA (4.9) with the adaptation rules (4.17) and (4.20) pro-
duces sequences (xk ) and (yk ) in ω and a bounded sequence of positive definite matrices (Hk ) with
bounded inverses. Then, one of the following situations occurs:

(i) lim ε∼k = 0 ,

(ii) µk = µ for large k , (pk ) is unbounded and � � λ(xk ) � � D → ∞ when k → ∞ in { k : pk > pk −1 } ,

(iii) µk = µ for large k , pk = p for large k and either lp (xk ,µ) → − ∞ or for some subsequence
dist (xk ,ωc ) → 0 .

Remarks 4.5. Because the sequences (xk ) and (yk ) are generated by the algorithm, it is implicitly
supposed that the longitudinal search algorithm succeeds at each iteration, which will occur if, for
instance, lp is bounded below and ω = IR n (see Remarks 3.4). The situation (i) means that for a subse-
quence of indices k , c (xk ) → 0 and g (yk ) → 0. Therefore, if ω is bounded, there exists a subsequence of
(xk ) that converges to a solution of problem (1.1). The situation (ii) means that either { xk : pk > pk −1 } is
unbounded or has accumulation points x� on the boundary of ω at which λ(x�) is not well defined by
(1.15), for instance, because A (x�) has not full rank. In (iii), dist (xk ,ωc ) is the distance from xk to the
complementary set of ω. 


Proof of Theorem 4.4. Let us suppose that situation (i) does not occur. Then, lim ε∼k
..= ε∼∞ > 0

and, by (4.19) and (4.22), p	k = p	 for large k , µk = µ for large k and (pk ) is a nondecreasing sequence for
large k . Then, either (pk ) is unbounded or (pk ) is bounded! In the first case, this means by (4.22) and
(4.10) that ( � � λ(xk ) � � D ) is unbounded, and more precisely,

� � λ(xk ) � � D → + ∞ for k → ∞ in { k : pk > pk −1 } ,

which is the conclusion (ii) of the theorem.

On the other hand, if (pk ) is bounded, (4.22) and (4.11) show that pk changes finitely often. So,
pk = p for large k . We prove the rest of (iii) by contradiction, supposing that lp (xk ,µ) is bounded from
below and that (xk ) remains away from ωc .

We have from Theorem 3.3, (4.8) and (4.5):

lp (xk +1,µ) ≤ lp (yk ,µ) ≤ lp (xk ,µ) .

Therefore, the sequences (lp (xk ,µ)) and (lp (yk ,µ)) converge to the same value.

According to the longitudinal displacement (i.e. to inequalities (3.15) and (3.16)), (4.2), the positive
definiteness of Hk and the boundedness of (Hk

−1), we have

lp (xk +1,µ) − lp (yk ,µ) ≤ α1 τk lp′(yk ,µ; tk )

= − α1 τk g (yk )T Hk g (yk )

≤ − α1 τk � �Hk
−1 � � 2

−1 � � g (yk ) � � 2
2

≤ − α1 τk C � � g (yk ) � � 2 , (4.23)
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(g (xk +1) − g (yk ))T Z (yk ) tk ≥ (1−α2) g (yk )T Hk g (yk ) ≥ (1−α2) C � � g (yk ) � � 2 . (4.24)

Here and below, C denotes a positive constant independent of k . From (4.23) and the convergence of
(lp (yk ,µ)) and (lp (xk ,µ)) to the same value, we deduce that τk � � g (yk ) � � 2 → 0. From (4.24), the bounded-
ness of (Hk ), the Lipschitz continuity of g (with the hypotheses of Section 2, g ′ is bounded on the convex
set ω) and Proposition 3.5, we get

� � g (yk ) � � 2 ≤ C � � xk +1−yk � � � � g (yk ) � � ≤ C τk � � g (yk ) � � 2 .

Hence, g (yk ) → 0 .

Now, from the transversal search (i.e. from (4.8)), (4.4) and (4.5), we have

lp (yk ,µ) − lp (xk ,µ) ≤ α ρk [ (λ(xk ) − µ)T c (xk ) − p � � c (xk ) � � ] ≤ − α p	 ρk � � c (xk ) � � .

Hence, ρk � � c (xk ) � � → 0 . We are going to show that (ρk ) is bounded away from zero. This will prove
(iii) because then c (xk ) → 0 and, with g (yk ) → 0, we have εk → 0, which gives the expected contradic-
tion with the initial assumption (ε∼k ≥ ε∼∞ > 0). Again, we set about it by contradiction. So, let us suppose
ρk < 1 and ρk → 0 for k in a subsequence IK . We may consider that ρk /β is not accepted by the line
search because Armijo’s criterion (4.8) is not satisfied. Indeed, otherwise it would mean that for a subse-
quence IK ′ of IK , x∼k

..= xk + (ρk /β) rk ∈/ ω for k ∈ IK ′. But ρk � � c (xk ) � � → 0 implies that (ρk /β) rk → 0
((A (xk )− ) is bounded) and therefore (xk )

k ∈ IK ′
would go closer and closer to a point x∼k not in ω, a situa-

tion that has been discarded by hypothesis. So, for k in IK , we have

lp (xk + β
ρk���rk ,µ) − lp (xk ,µ) > α

β
ρk��� [ (λ(xk )−µ)T c (xk ) − p � � c (xk ) � � ] . (4.25)

Expanding lp (xk + β
ρk���rk ,µ) about xk gives

lp (xk + β
ρk���rk ,µ) ≤ f (xk ) +

β
ρk��� λ(xk )T c (xk ) + ρk

2 C � � rk � � 2

+ µT c (xk ) −
β
ρk��� µT c (xk ) + p (1−

β
ρk���) � � c (xk ) � �

≤ lp (xk ,µ) +
β
ρk��� [ (λ(xk )−µ)T c (xk ) − p � � c (xk ) � � ] + ρk

2 C � � rk � � 2 .

Therefore, with (4.25) and (4.5), this leads to

(1−α)
β
ρk��� p	 � � c (xk ) � � < C ρk

2 � � c (xk ) � � 2 .

Therefore ρk � � c (xk ) � � is positive for k in IK and dividing by this factor in this inequality, we obtain a
contradiction with the fact that ρk � � c (xk ) � � → 0. 


Remark 4.6. The fact that, in situation (i) of the theorem, only a subsequence of (εk ) converges to
0 (instead of all the sequence) does not come from the hypotheses of the theorem that are rather strong.
The boundedness of (Hk ) and (Hk

−1) is usually enough to imply the convergence of all the sequence (εk )
to zero, as this may be also observed in unconstrained optimization, see Wolfe (1969, Theorem 1). But it
comes from the way the convergence is checked in statements 9 and 10 of the algorithm, using the nonin-
creasing sequence (ε∼k )k ≥0 defined in (4.16). Indeed, suppose that, instead of being calculated by (4.16),
ε∼k is given by

ε∼k
..= Φ ( { εi : 0 ≤ i ≤ k } ) , (4.26)
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where the function Φ is such that, for any sequence (εk )k ≥0 of positive numbers, ε∼k is positive, (ε∼k )k ≥0 is
nonincreasing and

( εk → 0 ) ⇒ ( ε∼k → 0 ) . (4.27)

The function min in (4.16) is just an example of such Φ. Then, it can be shown that Theorems 4.3 and 4.4
remain true. Therefore, we would have a better convergence result in Theorem 4.4 (i), if it were possible
to find a function Φ such that we have also

( ε∼k → 0 ) ⇒ ( εk → 0 ) . (4.28)

Unfortunately, this is not possible. To see this, let us consider the following algorithm where εk +1 is cal-
culated by observing ε∼k :

1. l ..= 1 ; j ..= 1 ; ε0
..= 1 ;

2. for ( k ≥ 0 ) do {

2.1. ε∼k
..= Φ ( { εi : 0 ≤ i ≤ k } ) ;

2.2. if ( ε∼k ≥ 1/l )

2.3. then { j ..= j +1 ; εk +1
..= 1/ j }

2.4. else { l ..= l +1 ; εk +1
..= 1 }

2. }

Let us show that if Φ satisfies (4.27), the sequences (εk ) and (ε∼k ) generated by this algorithm are
such that (εk ) does not converge to zero and ε∼k → 0. Therefore, Φ does not satisfy (4.28).

The sequence (ε∼k ) converges to zero, because, otherwise, (ε∼k ) being nonincreasing, there would
exist a positive integer l 0 such that ε∼k ≥ 1/l 0, \/− k ≥ 0, which would mean that statement 2.4 is executed at
most l 0 times. Therefore, for large k , statement 2.3 would be executed and εk → 0, which would be in
contradiction with (4.27). Therefore, ε∼k → 0. But then, statement 2.4 is executed infinitely often, so (εk )
does not converge to zero. 


5. Conclusion

We have presented an algorithm for equality constrained optimization of the reduced type in which the
projected Hessian of the Lagrangian is approximated by updating at each iteration a matrix Hk using the
BFGS formula and two vectors: γk , the change in the reduced gradient, and δk , the corresponding reduced
displacement.

The main purpose of the paper has been to show the possibility of obtaining the positivity of γk
T δk ,

which is essential to guarantee the positive definiteness of the reduced matrices Hk . This feature is due to
a particular design of the longitudinal displacement which minimizes the objective function f while
roughly maintaining constant the value of the constraint function c . For this, we introduce a step-size τk
scaling the reduced displacement in IR n −m , while the longitudinal displacement in IR n becomes piece-
wise linear. Wolfe’s criteria are used to determine the step-size τk .

The algorithm is made globally convergent by using a nondifferentiable augmented Lagrangian
function. Another feature of the algorithm is to separate completely the longitudinal and transversal dis-
placements: the step-sizes of both displacements are determined by two different searches on the penalty
function.



- 23 -

The technique used here to maintain the positive definiteness of the matrices Hk may be seen as a
generalization to equality constrained optimization of Wolfe’s step-size selection procedure in uncon-
strained optimization. It is well known that this technique cannot be used in the framework of quasi-
Newton or SQP methods. As the technique works well in unconstrained optimization, this may be seen as
an advantage of the reduced framework over the SQP methods. However, the algorithm proposed here
always requires at least two (and exactly two, asymptotically) linearizations of the constraints for each
superlinear step, which can be an important overcost in some applications. Therefore, the developed
technique should be extended to those reduced methods that require only one linearization of the con-
straints per iteration.

As mentioned in the text, a weak point of the algorithm lies in the way the multipliers and the
penalty parameters are adapted to improve the penalty function. Indeed, it requires from the algorithm to
feel the closeness of a solution and therefore impoverishes the global convergence result (see Remark
4.6). We think that some progress might be obtained on this topic as well.
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C. Lemaréchal, "A view of line-searches", in: A. Auslender, W. Oettli, J. Stoer, eds., Lecture Notes in
Control and Information Science 30 (Springer, 1981) pp. 59-78.
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