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Homotopy Transfer Theorem and minimal models for
pre-Calabi-Yau algebras

Marion Boucrot

Abstract

In this article we prove that given quasi-isomorphic dg vector spaces and a pre-Calabi-Yau
structure on one of them there exists a pre-Calabi-Yau structure on the other as well as a pre-
Calabi-Yau morphism between the two. This extends the Homotopy Transfer Theorem proved
by T. Kadeishvili and a similar result of D. Petersen. Moreover, we show that a pre-Calabi-Yau
morphism whose first component is an isomorphism of dg vector spaces is a pre-Calabi-Yau
isomorphism, i.e. the inverse of the isomorphism of dg vector spaces extends to an inverse of the
pre-Calabi-Yau morphism. We incidentally show that any pre-Calabi-Yau algebra has a minimal
model. Finally, we prove that any quasi-isomorphism of pre-Calabi-Yau algebras admits a quasi-
inverse.

Mathematics subject classification 2020: 16E45, 18G70, 14A22
Keywords: A∞-algebras, pre-Calabi-Yau algebras, homotopy transfer, minimal models

1 Introduction

Pre-Calabi-Yau algebras were introduced by M. Kontsevich and Y. Vlassopoulos in the last decade.
In the finite dimensional case, these structures have also appeared in [12] under the name of V∞-
algebras and P. Seidel called them A∞-algebras with boundary in [9]. They also appear under the
name of weak Calabi-Yau structures in [4]. These references show that pre-Calabi-Yau structures
play an important role in homological algebra, symplectic geometry, string topology, noncommu-
tative geometry and even in Topological Quantum Field Theory.

The notion of pre-Calabi-Yau algebras is strongly related to the notion A∞-algebras. Actually,
for d ∈ Z, a d-pre-Calabi-Yau structure on a finite dimensional graded vector space A is equivalent
to a cyclic A∞-structure on A⊕A∗[d− 1] that restricts to A.

In 1980, T. Kadeishvili proved in [3] the following theorem:

Theorem 1.1. (Homotopy Transfer Theorem) For any dg algebra C such that Hi(C) is free for i ≥ 0, there
exists an A∞-structure on H(C) with vanishing differential and an A∞-morphism f : H(C) → C such
that f1 is a quasi-isomorphism.

In 2020, D. Petersen published in [8] a direct proof of the following theorem, which is a refor-
mulation of the Homotopy Transfer Theorem:
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Theorem 1.2. Let R be a ring, (V, dV ) and (W,dW ) dg R-modules and f : V → W a chain map. Let
ν be a square-zero coderivation of C(W ) of degree −1 whose arity 1 term is dW . Assume that f induces a
quasi-isomorphism HomR(C(V ), V ) → HomR(C(W ),W ). Then, there exists noncanonically a square-
zero coderivation µ of C(V ) of degree −1 whose arity 1 term is dV and a morphism F : C(V ) → C(W ) of
coalgebras whose arity 1 term is f and which is a chain map with respect to µ and ν.

The converse statement also holds, namely, if V is endowed with a square-zero coderivation
then we can construct one on W . The Homotopy Transfer Theorem has been proved in several
different ways and we refer the reader to the introduction of [8] and the references therein for a
more complete account about this result.

In [7], J. Leray and B. Vallette show that the notion of curved homotopy double Poisson ge-
bras and what they call curved pre-Calabi-Yau algebras are equivalent if the underlying graded
vector space is locally finite dimensional. Using their paper [2] with E. Hoffbeck on properadic ho-
motopical calculus, they obtain homotopical properties of locally finite dimensional curved pre-
Calabi-Yau algebras. This includes a version of the Homotopy Transfer Theorem, namely, they
show that a curved pre-Calabi-Yau structure on a locally finite dimensional dg vector space gives
rise to a curved pre-Calabi-Yau structure on any of its contraction together with extensions of the
chain maps into ∞-morphisms. We remark that ∞-morphisms in the previous result are expected
to be the same as curved versions of pre-Calabi-Yau morphisms. Moreover, the previous authors
show that an ∞-morphism whose first component is an isomorphism is invertible and deduce that
∞-quasi-isomorphisms are quasi-invertible.

The aim of this article is to give direct proofs of various versions of the Homotopy Transfer
Theorem for pre-Calabi-Yau algebras (see Theorems 4.13 and 4.14), by adapting the techniques
of [8]. There are however other noticeable differences with the results that can be deduced from
those in [2, 7]. First, we do not need to impose any locally finite dimensional assumption on the
pre-Calabi-Yau algebras in our results. Furthermore, as expected, the definition of pre-Calabi-Yau
algebra in [5] is not precisely the same as that of curved pre-Calabi-Yau algebra in [7]. We note that
in the case of A∞-algebras the presence of curvature produces a rather different theory, which in
principle cannot be excluded for pre-Calabi-Yau algebras as well.

Let us briefly present the contents of this paper. Section 2 is devoted to present the conventions
we follow and notations we will use throughout this paper. In section 3 we recall the notions of
A∞-algebras and A∞-morphisms. We also recall well-known results including the ones appearing
in [8], giving proofs entirely in terms of the structure of the A∞-algebra, instead of the associated
bar constructions, as it is the case in the mentioned article. This is done in order to allow the com-
parison with the case of pre-Calabi-Yau algebras. We do not claim any originality in this regards.
Section 4 is the core of the article. After recalling the definition of d-pre-Calabi-Yau algebras given
in [5], we prove that a d-pre-Calabi-Yau morphism whose first component is an isomorphism is
an isomorphism in the category of d-pre-Calabi-Yau algebras (see Lemma 4.9). Then, we prove
Theorems 4.13 and 4.14 by generalizing the proofs of the case of A∞-algebras. Those results state
that given dg vector spaces and a quasi-isomorphism between them, if one carries a d-pre-Calabi-
Yau structure then we can construct such a structure on the other, as well as a d-pre-Calabi-Yau
morphism between the two. We deduce that there exists minimal models for d-pre-Calabi-Yau al-
gebras. Finally, using Lemma 4.9 and Theorems 4.13 and 4.14, we show that a quasi-isomorphism
of d-pre-Calabi-Yau algebras has a quasi-inverse (see Theorem 4.18).

Acknowledgements. This work is part of a PhD thesis supervised by Estanislao Herscovich
and Hossein Abbaspour. The author thanks them for the useful advice and comments about this
paper. She also thanks J. Leray and B. Vallette for explaining their results, their availability to
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discuss and all the advice concerning the present paper. This work was supported by the French
National Research Agency in the framework of the “France 2030” program (ANR-15-IDEX-0002)
and the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

2 Notations and conventions

In what follows k will be a field of characteristic 0 and to simplify we will denote ⊗ for ⊗k. We
will denote by N = {0, 1, 2, . . . } the set of natural numbers and define N∗ = N \ {0}. For i, j ∈ N,
we define the interval of integers Ji, jK = {n ∈ N|i ≤ n ≤ j}. We also define T =

⊔
k>0 Tk where

Tk = Nk for k > 1 and T1 = N∗ and given n̄ = (n1, . . . , nk) ∈ Tk, we denote N(n̄) = n1 + · · ·+ nk.
Given a (cohomologically) graded vector space V = ⊕i∈ZV

i, we define the graded vector space
V [n] given by V [n]i = V n+i for i ∈ Z and consider, for n ∈ Z, the map sV,n : V → V [n] whose
underlying set theoretic map is the identity. We will denote sV,n simply by sn when there is no
possible confusion, and s1 just by s.

We now recall the Koszul sign rules, that are the ones we use to determine the signs appearing
in this paper. If V,W are graded vector spaces, we have a map τV,W : V ⊗W → W ⊗ V defined as

τV,W (v ⊗ w) = (−1)|w||v|w ⊗ v

where v ∈ V is a homogeneous element of degree |v| and w ∈ W is a homogeneous element of
degree |w|. More generally, given graded vector spaces V1, . . . , Vn and σ ∈ Sn, we have a map

τσV1,...,Vn
: V1 ⊗ · · · ⊗ Vn → Vσ−1(1) ⊗ · · · ⊗ Vσ−1(n)

sending an element v1 ⊗ · · · ⊗ vn to (−1)ϵ(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)) with

ϵ =
∑
i>j

σ−1(i)<σ−1(j)

|vσ−1(i)||vσ−1(j)|

where vi ∈ Vi is a homogeneous element of degree |vi| for i ∈ J1, nK.
All the products in this paper will be products in the category of graded vector spaces. Given

graded vector spaces (Vi)i∈I , we thus have
∏

i∈I Vi =
⊕

n∈Z
∏

i∈I V
n
i where the second product is

the usual product of vector spaces.
Given two graded vector spaces V,W we denote by Homk(V,W ) the vector space of k-linear

maps f : V → W and by homd
k(V,W ) the vector space of homogeneous k-linear maps f : V → W

of degree d, i.e. f(v) ∈ Wn+d for all v ∈ V n. We assemble them in the graded vector space
Homk(V,W ) =

⊕
d∈Z hom

d
k(V,W ) ⊆ Homk(V,W ). We define the graded dual of a graded vector

space V =
⊕

n∈Z V
n as V ∗ = Homk(V,k). Moreover, given graded vector spaces V , V ′, W , W ′

and homogeneous elements f ∈ Homk(V, V
′) and g ∈ Homk(W,W ′), we have that

(f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w)

for homogeneous elements v ∈ V and w ∈ W . Throughout this paper, when we consider an
element v of degree |v| in a graded vector space V , we mean a homogeneous element v of V . Also,

3



we will denote by id the identity map of every space of morphisms, without specifying it. Recall
that given a dg vector space (A, dA) its cohomology is the graded vector space

H(A) =
⊕
n∈Z

Hn(A) =
⊕
n∈Z

ker(dnA)/ im(dn−1
A )

In this paper, we will often make the use of the diagrammatic calculus introduced in [5]. We refer
the reader to [1] for a detailed account of the involved definitions and terminology, which we shall
follow in this article. Using the convention of that reference, we remark that, for this article, the
type of a diagram will be just a tuple of integers instead of a tuple of objects, since we work with
pre-Calabi-Yau algebras instead of pre-Calabi-Yau categories. Moreover, given a diagram, we will
often omit the corresponding bold arrow, i.e. the bold arrow can be any of the outgoing arrows of
the diagram.

3 Transferring A∞-structures

This section is devoted to recall the notions of A∞-algebras and A∞-morphisms. For convenience
of the reader, we also present the results appearing in [8], and we give proofs entirely in terms of
the structure of the A∞-algebra, instead of the associated bar constructions, which is the case of
[8]. This is merely done in order to allow the comparison with the case of pre-Calabi-Yau algebras
appearing in the next section. We do not claim any originality in this regard.

Definition 3.1. Given graded vector spaces A and B, we define the graded vector space C(A,B) as
C(A,B) =

∏
n∈N∗ Cn(A,B) where Cn(A,B) = Homk(A[1]⊗n, B[1]). We will denote C(A,A) sim-

ply by C(A).

Remark 3.2. If (A, dA) and (B, dB) are dg vector spaces, C(A,B) becomes a dg vector space whose differ-
ential is given by dC(A,B)F = dB[1] ◦ F − (−1)|F |F ◦ dA[1]⊗n for a homogeneous element F ∈ Cn(A,B).

Definition 3.3. An A∞-structure on a graded vector space A is an element mA ∈ C(A) of degree 1
satisfying the Stasheff identities introduced by J. Stasheff in [10] and given by∑

r+s+t=n
s>0

mr+1+t
A ◦ (id⊗r ⊗ms

A ⊗ id⊗t) = 0 (SIn)

for each n ∈ N∗. This is tantamount to [mA,mA]G = 0 where [−,−]G denotes the Gerstenhaber bracket.
In terms of diagrams, this reads

∑
E(D) = 0 where the sum is over all the filled diagrams Dof type n ∈ N∗

and of the form

mAmA

A graded vector space endowed with an A∞-structure is called an A∞-algebra.

Remark 3.4. Note that the identity (SI1) is simply m1
A ◦m1

A = 0, meaning that an A∞-algebra (A,mA)
gives rise to a dg vector space (A,m1

A[−1]), whose cohomology will be denoted by H(A).

The following definition is due to M. Sugawara (see [11]).

4



Definition 3.5. Let (A,mA), (B,mB) be two A∞-algebras. An A∞-morphism F from A to B is an
element F ∈ C(A,B) of degree 0 satisfying the identities∑

r+s+t=n
s>0

F r+1+t ◦ (id⊗r ⊗ms
A ⊗ id⊗t) =

∑
r1+···+ri=n

mi
B ◦ (F r1 ⊗ · · · ⊗ F ri) (MIn)

for each n ∈ N∗. This tantamount to F ◦
G
mA −mB ◦

M
F = 0 where ◦

G
denotes the Gerstenhaber product

and ◦
M

denotes the composition appearing on the right hand side of (MIn). In terms of diagrams, this reads∑
E(D) =

∑
E(D′) where the sums are over all the filled diagrams D and D′ of type n ∈ N∗ and of the

form

F and mBmA

F

F

F

respectively.

Definition 3.6. Given A∞-algebras (A,mA), (B,mB), (C,mC) and A∞-morphisms F : A → B and
G : B → C, the composition of F and G is the element (G ◦ F ) ∈ C(A,C) defined by

(G ◦ F )n =
∑

r1+···+ri=n

Gi ◦ (F r1 ⊗ · · · ⊗ F ri)

for every n ∈ N∗.

Lemma 3.7. The data of A∞-algebras together with A∞-morphisms and their composition give rise to a
category denoted A∞. Moreover, given an A∞-algebra (A,mA), the A∞-identity morphism on A is the
one whose n-th component (idA)n : A[1]⊗n → A[1] is idA[1] if n = 1 and 0 if n > 1. It will be denoted idA
or simply by id when there is no possible confusion.

Definition 3.8. Given A∞-algebras (A,mA) and (B,mB), an A∞-morphism F : A → B is a quasi-
isomorphism if F 1 : (A[1],m1

A) → (B[1],m1
B) is a quasi-isomorphism of dg vector spaces. Moreover, F

is an isomorphism if there exists an A∞-morphism G : B → A such that G ◦ F = idA and F ◦G = idB .

We now recall the following result and give a proof of it without using the bar construction.

Lemma 3.9. Let (A,mA), (B,mB) be A∞-algebras and F : A → B be an A∞-morphism. Suppose that
F 1 : (A[1],m1

A) → (B[1],m1
B) is an isomorphism of dg vector spaces. Then, F is an isomorphism of

A∞-algebras.

Proof. Since F 1 : (A[1],m1
A) → (B[1],m1

B) is an isomorphism of dg vector spaces, it has an inverse
G1 : (B[1],m1

B) → (A[1],m1
A) which is a chain map. To simplify, we will denote F 1 = f and

G1 = g. Consider n > 1 and suppose that we have constructed maps Gi : B[1]⊗i → A[1] satisfying
that (G ◦ F )i = 0 for i < n. We have that

(G ◦ F )n = Gn ◦ f⊗n +
∑

r1+···+ri=n
i<n

Gi ◦ (F r1 ⊗ · · · ⊗ F ri)
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We thus define
Gn = −

∑
r1+···+ri=n

i<n

Gi ◦ (F r1 ⊗ · · · ⊗ F ri) ◦ g⊗n

Therefore, we have constructed a collection G of maps Gi : B[1]⊗i → A[1] for each i ∈ N∗ such
that G ◦ F = idA. Note that we did not use the fact that F is an A∞-morphism. Thus, there exists
a collection H of maps Hi : A[1]⊗i → B[1] such that H ◦ G = idB . Using the associativity of the
composition, we get that H = F and thus G ◦ F = idA and F ◦G = idB .

It remains to show that G is an A∞-morphism. It is clear that g satisfies the identity (MI1).
Consider n > 1 and suppose that G satisfies the identities (MIi) for all i < n. Since F is an A∞-
morphism, we have that F ◦

G
mA = mB ◦

M
F and then (F ◦

G
mA) ◦

M
G = (mB ◦

M
F ) ◦

M
G. Therefore, we

have that G◦
G

(
(F ◦

G
mA) ◦

M
G
)
= G◦

G

(
(mB ◦

M
F ) ◦

M
G
)
. It is clear that the right member of this equality

is G ◦
G
mB since F ◦G = id. We now show that G ◦

G

(
(F ◦

G
mA) ◦

M
G
)
= mA ◦

M
G. We have that

G ◦
G

(
(F ◦

G
mA) ◦

M
G
)n

=
∑

r+s+t=n
s>0

∑
q1+···+qp=s

∑
u+v+w=p

v>0

Gr+1+t ◦ (id⊗r ⊗
(
Fu+1+w ◦ (id⊗u ⊗mv

A ⊗ id⊗w) ◦ (Gq1 ⊗ · · · ⊗Gqp)
)
⊗ id⊗t)

=
∑

r+s+t=n
s>0

∑
q1+···+qp=s

∑
u+v+w=p

v>0

Gr+1+t ◦ (id⊗r ⊗Fu+1+w ⊗ id⊗t)

◦ (id⊗r ⊗Gq1 ⊗ · · · ⊗Gqu ⊗ (mA ◦
M

G)qu+1+···+qu+v ◦Gqu+v+1 ⊗ · · · ⊗Gqp ⊗ id⊗t)

= (mA ◦
M

G)n +
∑

r+s+t=n
s>0

∑
q1+···+qp=s

qu+1+···+qu+v<n

∑
u+v+w=p

v>0

Gr+1+t ◦ (id⊗r ⊗Fu+1+w ⊗ id⊗t)

◦ (id⊗r ⊗Gq1 ⊗ · · · ⊗Gqu ⊗ (G ◦
G
mB)

qu+1+···+qu+v ◦Gqu+v+1 ⊗ · · · ⊗Gqp)⊗ id⊗t)

= (mA ◦
M

G)n +
∑

r+s+t=n
s>0

∑
q1+···+qp=s

qu+1+···+qu+v<n

∑
u+v+w=p

v>0

∑
qu+1+···+qu+v

=x+y+z

Gr+1+t ◦ (id⊗r ⊗Fu+1+w ⊗ id⊗t)

◦ (id⊗r ⊗Gq1 ⊗ · · · ⊗Gqu ⊗Gx+1+z ◦ (id⊗x ⊗my
B ⊗ id⊗z) ◦Gqu+v+1 ⊗ · · · ⊗Gqp)

)
⊗ id⊗t)

for every n ∈ N∗. Finally, we have that∑
r+s+t=n

s>0

∑
q1+···+qp=s

qu+1+···+qu+v<n

∑
u+v+w=p

v>0

∑
qu+1+···+qu+v

=x+y+z

Gr+1+t ◦ (id⊗r ⊗Fu+1+w ⊗ id⊗t)

◦ (id⊗r ⊗Gq1 ⊗ · · · ⊗Gqu ⊗Gx+1+z ◦ (id⊗x ⊗my
B ⊗ id⊗z) ◦Gqu+v+1 ⊗ · · · ⊗Gqp)

)
⊗ id⊗t) = 0

since F ◦G = id. This finishes the proof.

Definition 3.10. Let A and B be two graded vector spaces and consider F ∈ C(A,B). Given elements
m ∈ C(B) and h ∈ C(A,B) we define the composition of m and h with respect to F as the element
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m ◦
F
h ∈ C(A,B) given by

(m ◦
F
h)n =

∑
u1+···+ui=n

i∑
j=1

mi ◦ (Fu1 ⊗ · · · ⊗ Fuj−1 ⊗ huj ⊗ Fuj+1 ⊗ · · · ⊗ Fui)

for every n ∈ N∗. In terms of diagrams, (m ◦
F
h)n =

∑
E(D) where the sum is over all the filled diagrams

D of type n and of the form

m

FF

h

F
F

Lemma 3.11. Let A and B be two graded vector spaces. Consider mA ∈ C(A) and mB ∈ C(B) of degree
1 and F ∈ C(A,B) of degree 0. Then, the following identities hold.

mA ◦
G
(mA ◦

G
mA) = (mA ◦

G
mA) ◦

G
mA (3.1)

(mB ◦
M
F ) ◦

G
mA = mB ◦

F
(F ◦

G
mA) (3.2)

Proof. We first show (3.1). For every n ∈ N∗, we have that(
(mA ◦

G
mA) ◦

G
mA

)n
=

∑
r+s+t=n

s>0

(mA ◦
G
mA)

r+1+t ◦ (id⊗r ⊗ms
A ⊗ id⊗t)

=
∑

r+s+t=n
s>0

∑
u+v+w=r+1+t

v>0

mu+1+w
A ◦ (id⊗u ⊗mv

A ⊗ id⊗w) ◦ (id⊗r ⊗ms
A ⊗ id⊗t)

=
∑

r+s+t=n
s>0

∑
u+v+w=r+1+t

v>0
r≥u+v

mu+1+w
A ◦ (id⊗u ⊗mv

A ⊗ id⊗(r−u−v) ⊗ms
A ⊗ id⊗t)

−
∑

r+s+t=n
s>0

∑
u+v+w=r+1+t

v>0
r<u

mu+1+w
A ◦ (id⊗r ⊗ms

A ⊗ id⊗(u−r−1) ⊗mv
A ⊗ id⊗w)

+
∑

r+s+t=n
s>0

∑
u+v+w=r+1+t

v>0
r≥u

r<u+v

mu+1+w
A ◦ (id⊗u ⊗mv

A ◦ (id⊗(r−u) ⊗ms
A ⊗ id⊗(t−w))⊗ id⊗w)

=
∑

r+s+t=n
s>0

∑
u+v+w=r+1+t

v>0
r≥u

r<u+v

mu+1+w
A ◦ (id⊗u ⊗mv

A ◦ (id⊗(r−u) ⊗ms
A ⊗ id⊗(t−w))⊗ id⊗w)
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On the other hand, we have that(
mA ◦

G
(mA ◦

G
mA)

)n
=

∑
r+s+t=n

s>0

mr+1+t
A ◦ (id⊗r ⊗(mA ◦

G
mA)

s ⊗ id⊗t)

=
∑

r+s+t=n
s>0

∑
u+v+w=s

v>0

mr+1+t
A ◦ (id⊗r ⊗(mu+1+w

A ◦ (id⊗u ⊗mv
A ⊗ id⊗w))⊗ id⊗t)

=
∑

r+s+t=n
s>0

∑
u+v+w=s

v>0

mr+1+t
A ◦ (id⊗r ⊗mu+1+w

A ⊗ id⊗t) ◦ (id⊗r+u ⊗mv
A ⊗ id⊗(w+t))

Now, we show (3.2). For every n ∈ N∗, we have that(
(mB ◦

M
F ) ◦

G
mA

)n
=

∑
r+s+t=n

s>0

(mB ◦
M

F )r+1+t ◦ (id⊗r ⊗ms
A ⊗ id⊗t)

=
∑

r+s+t=n
s>0

∑
r+1+t=u1+···+ui

mi
B ◦ (Fu1 ⊗ · · · ⊗ Fui) ◦ (id⊗r ⊗ms

A ⊗ id⊗t)

=
∑

r+s+t=n
s>0

∑
r=u1+···+uj−1+u1

j

t=u2
j+···+ui

mi
B ◦ (Fu1 ⊗ · · · ⊗ Fuj (id⊗u1

j ⊗ms
A ⊗ id⊗u2

j )⊗ · · · ⊗ Fui)

On the other hand, we have that

(
mB ◦

M
(F ◦

G
mA)

)n
=

∑
u1+···+ui=n

i∑
j=1

mi
B ◦ (Fu1 ⊗ · · · ⊗ (F ◦

G
mA)

uj ⊗ · · · ⊗ Fui)

=
∑

u1+···+ui=n

i∑
j=1

∑
r+s+t=uj

s ̸=0

mi
B ◦ (Fu1 ⊗ · · · ⊗ F r+1+t ◦ (id⊗r ⊗ms

A ⊗ id⊗t)⊗ · · · ⊗ Fui)

This finishes the proof.

Remark 3.12. It is also possible to prove Lemma 3.11 using diagrammatic calculus. For the convenience of
the reader, we present the method here since we will prove the results in the case of pre-Calabi-Yau algebras
in a similar manner. For every n ∈ N∗, we have that

(mA ◦
G
(mA ◦

G
mA))

n =
∑

E(D)

where the sum is over all the filled diagrams D of type n and of the form

mA mA mA

On the other hand, ((mA ◦
G
mA) ◦

G
mA)

n =
∑

E(D1) +
∑

E(D2)−
∑

E(D3) where the sum
is over all the filled diagrams D1, D2 and D3 of type n and of the form
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mA mA mA mA mA

mA

,

mA mA

mA
and

respectively. The minus sign comes from the fact that the order of the first outgoing arrows of the two sources
filled with mA is reversed and |mA| = 1. Thus, the identity (3.1) is satisfied since

∑
E(D2) =

∑
E(D3)

and
∑

E(D) =
∑

E(D1).
We now show (3.2). For n ∈ N∗ we have that (mB ◦

F
(F ◦

G
mA))

n =
∑

E(D) where the sum is over all
the filled diagrams D of type n and of the form

mB

F

F

F

mA

It is clear that ((mB ◦
M
F ) ◦

G
mA)

n =
∑

E(D).

Corollary 3.13. Let A and B be two graded vector spaces. Consider mA ∈ C(A) and mB ∈ C(B) of
degree 1 and F ∈ C(A,B) of degree 0. Suppose that mB satisfies the Stasheff identities (SIn) for every
n ∈ N∗. Then, the following holds.

F ◦
G
(mA ◦

G
mA) = (F ◦

G
mA −mB ◦

M
F ) ◦

G
mA +mB ◦

F
(F ◦

G
mA −mB ◦

M
F ) (3.3)

Proof. Rewrite the equation (3.3) as

F ◦
G
(mA ◦

G
mA) = (F ◦

G
mA) ◦

G
mA − (mB ◦

M
F ) ◦

G
mA +mB ◦

F
(F ◦

G
mA)−mB ◦

F
(mB ◦

M
F )

By Lemma 3.11, we already have that (mB ◦
M
F ) ◦

G
mA = mB ◦

F
(F ◦

G
mA). Moreover, one can prove

in the same way as we did for (3.1) that F ◦
G
(mA◦

G
mA) = (F ◦

G
mA)◦

G
mA. Finally, since mB satisfies the

Stasheff identities, mB ◦
F
(mB ◦

M
F ) = (mB ◦

G
mB) ◦

F
F = 0.

We now recall the Homotopy Transfer Theorem written in terms of A∞-algebras and give a
proof which do not use the bar construction inspired by the one in [8].

Theorem 3.14. Let (A, dA), (B, dB) be dg vector spaces and f : A → B be a quasi-isomorphism of dg
vector spaces. Let mB ∈ C(B) be an element of degree 1 with m1

B = dB [1] that turns B into an A∞-
algebra. Then, there exists an A∞-structure mA on A with m1

A = dA[1] as well as an A∞-morphism
F ∈ C(A,B) such that F 1 = f [1].

Proof. We will construct the A∞-structure and the A∞-morphism inductively. We already have
that m1

A = dA[1] and F 1 = f [1] satisfy the identities (SI1) and (MI1). Consider n > 1 and
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suppose that we have constructed mA ∈ C(A) of degree 1 and F ∈ C(A,B) of degree 0 such that
the identities (SIi) and (MIi) are satisfied for every i < n.

Since (mA ◦
G
mA)

i vanishes for i < n by assumption, the n-th term of the identity (3.1) is simply

dA[1] ◦ (mA ◦
G
mA)

n = (mA ◦
G
mA)

n ◦ dA[1]⊗n

which gives dC(A)(mA ◦
G
mA)

n = 0 i.e. (mA ◦
G
mA)

n is a cycle.
Moreover, since (F ◦

G
mA −mB ◦

M
F )i vanishes for i < n the n-th term of the identity (3.3) is

F 1 ◦ (mA ◦
G
mA)

n = (F ◦
G
mA −mB ◦

M
F )n ◦

M
dA[1]⊗n + dB[1] ◦ (F ◦

G
mA −mB ◦

M
F )n

so F 1 ◦ (mA ◦
G
mA)

n is a boundary. Since (mA ◦
G
mA)

n is a cycle and F 1 is a quasi-isomorphism,
(mA ◦

G
mA)

n is itself a boundary, meaning that there exists e ∈ Cn(A) such that (mA ◦
G
mA)

n = ∂e

where ∂ denotes the differential of C(A,B). We thus define the element µA ∈ C(A) by µi
A = mi

A

for i < n and µn
A = mn

A − e. It satisfies that (µA ◦
G
µA)

i = 0 for i ≤ n.
Moreover, by (3.3) we have that (F ◦

G
mA −mB ◦

M
F )n is a cycle so it can be written as

(F ◦
G
mA −mB ◦

M
F )n = f ◦ e′ + ∂e ′′

where e′ is a cycle of Cn(A) and e ′′ ∈ Cn(A,B).
We set νiA = µi

A, Gi = F i for i < n and νnA = µn
A − e′, Gn = Fn − e ′′. Therefore, since we have

only modified µA by adding a cycle, we have (νA ◦
G
νA)

i = 0 for i ≤ n. Moreover, we have that

(G ◦
G
νA −mB ◦

M
G)n =

∑
n=r+s+t
1<s<n

F r+1+t ◦ (id⊗r ⊗ms
A ⊗ id⊗t) + F 1 ◦ νn

A +
∑

n=r+1+t

Gn ◦ (id⊗r ⊗m1
A ⊗ id⊗t)

+
∑

n=u1+···+ui
i>1

mi
B ◦ (Fu1 ⊗ · · · ⊗ Fui) +m1

B ◦Gn

=
∑

n=r+s+t
1<s<n

F r+1+t ◦ (id⊗r ⊗ms
A ⊗ id⊗t) + F 1 ◦ (µn

A − e′) + (Fn − e ′′) ◦ dA[1]⊗n

+
∑

n=u1+···+ui
i>1

mi
B ◦ (Fu1 ⊗ · · · ⊗ Fui) + dB[1] ◦ (Fn − e ′′)

=
∑

n=r+s+t
s ̸=0

F r+1+t ◦ (id⊗r ⊗µs
A ⊗ id⊗t)− F 1 ◦ e′ − e ′′ ◦dA[1]⊗n

+
∑

n=u1+···+ui
i>1

mi
B ◦ (Fu1 ⊗ · · · ⊗ Fui)− dB[1] ◦ e ′′

= (F ◦
G
mA −mB ◦

M
F )n − F 1 ◦ e′ − ∂e ′′ = 0

so G satisfies the morphism identities (MIi) for every i ≤ n. This finishes the proof.

As proved in [8] we also have the statement in the other direction, namely, we have the follow-
ing theorem:
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Theorem 3.15. Let (A, dA), (B, dB) be dg vector spaces and f : A → B be a quasi-isomorphism of
dg vector spaces. Let mA ∈ C(A) be an element of degree 1 with m1

A = dA[1] that turns A into an
A∞-algebra. Then, there exists an A∞-structure mB ∈ C(B) on B with m1

B = dB [1] as well as an
A∞-morphism F ∈ C(A,B) such that F 1 = f [1].

Proof. As in the proof of Theorem 3.14, we will construct the A∞-structure and the A∞-morphism
inductively. We already have that m1

B = dB [1] and F 1 = f [1] satisfy the identities (SI1) and
(MI1). Suppose that we have constructed mB of degree 1 and F ∈ C(A,B) of degree 0 such that
the identities (SIi) and (MIi) are satisfied for every i < n.

The n-th term of the identity (3.1) applied with mB instead of mA is just

dB[1] ◦ (mB ◦
G
mB)

n = (mB ◦
G
mB)

n ◦ dB[1]⊗n

since (mB ◦
G
mB)

i vanishes for i < n which gives that (mB ◦
G
mB)

n is a cycle in C(B). Moreover,
the n-th term of the identity

(mB ◦
G
mB) ◦

M
F = (mB ◦

M
F − F ◦

G
mA) ◦

G
mA +mB ◦

F
(mB ◦

M
F − F ◦

G
mA)

gives that (mB ◦
G
mB)

n ◦
M
F 1 is a boundary. As before, since (mB ◦

G
mB)

n is a cycle and F 1 is a
quasi-isomorphism, (mB ◦

G
mB)

n is itself a boundary, meaning that there exists e ∈ Cn(B) such
that (mB ◦

G
mB)

n = ∂e where ∂ denotes the differential of C(A,B). We thus define µi
B = mi

B for
i < n and µn

B = mn
B − e and get (µB ◦

G
µB)

i = 0 for i ≤ n. Again, (µB ◦
M
F − F ◦

G
mA)

n is a cycle
and we can write

(µB ◦
M
F − F ◦

G
mA)

n = e′ ◦ (F 1)⊗n + ∂e ′′

with e′ a cycle of Cn(B) and e ′′ ∈ Cn(A,B). Define νiB = µi
B , Gi = F i for i < n and νnB = µn

B − e′,
Gn = Fn−e ′′. Therefore, since we have only modified µ by adding a cycle, we have (νA ◦

G
νA)

i = 0

for i ≤ n. By the same argument as for Theorem 3.14, we have that (G ◦
G
mA − νB ◦

M
G)n = 0 so G

satisfies the morphism identities (MIi) for every i ≤ n. This finishes the proof.

We now recall the definition of a minimal model of an A∞-algebra.

Definition 3.16. An A∞-algebra (B,mB) is minimal if m1
B = 0. Given an A∞-algebra (A,mA), a

minimal model of A is a minimal A∞-algebra (B,mB) together with a quasi-isomorphism P : A → B of
A∞-algebras.

We remark the well-known fact that minimal models of A∞-algebras always exist. Indeed,
given an A∞-algebra (A,mA), let p : A → H(A) be any quasi-isomorphism of dg vector spaces.
By Theorem 3.15, there exists an A∞-structure on H(A) and a morphism of A∞-algebras P : A →
H(A) such that P 1 = p[1]. Moreover, we recall the following result.

Lemma 3.17. Let (A,mA) be an A∞-algebra. Given any two quasi-isomorphisms of dg vector spaces
p : A → H(A) and i : H(A) → A, the A∞-structures mi and mp on H(A) given in theorems 3.14 and
3.15 are isomorphic. In particular, given quasi-isomorphisms p, p′ : A → H(A) (resp. i, i′ : H(A) → A)
the A∞-structures mp and mp′ (resp. mi, mi′ ) on H(A) given in Theorem 3.15 (resp. in Theorem 3.14)
are isomorphic.
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Definition 3.18. Let (A,mA) and (B,mB) be A∞-algebras. We consider quasi-isomorphisms of complexes
iA : H(A) → A and pB : B → H(B). Then, by Theorem 3.14 H(A) is endowed with an A∞-structure
miA and iA extends to an A∞-morphism IA : H(A) → A. Moreover, by Theorem 3.15 H(B) is endowed
with an A∞-structure mpB

and pB extends to an A∞-morphism PB : B → H(B). Given an A∞-
morphism F : A → B, we define an A∞-morphism H(F ) : H(A) → H(B) as H(F ) = PB ◦ F ◦ IA.

Using the previous results, we deduce the following well-known theorem appearing for exam-
ple in [6].

Theorem 3.19. Let (A,mA), (B,mB) be two A∞-algebras and F : (A,mA) → (B,mB) be an A∞-
morphism. Consider quasi-isomorphisms iA : H(A) → A and pB : B → H(B) and the associated A∞-
morphism H(F ) : (H(A),miA) → (H(B),mpB

) given in Definition 3.18. Then, if F is a quasi-isomor-
phism, there exists a quasi-isomorphism G : (B,mB) → (A,mA) of A∞-algebras and quasi-isomorphisms
iB : H(B) → B, pA : A → H(A) such that pA ◦ iA = idH(A), pB ◦ iB = idH(B) and whose associated
H(G) in the sense of Definition 3.18 is the inverse of H(F ).

4 Transferring pre-Calabi-Yau structures

4.1 Pre-Calabi-Yau algebras

In this subsection, we recall the notions of pre-Calabi-Yau structures and morphisms introduced
in [5] and show that a d-pre-Calabi-Yau morphism whose first component is an isomorphism is an
isomorphism in the category of d-pre-Calabi-Yau algebras.

Definition 4.1. Given graded vector spaces A and B and d ∈ Z, we denote by Multid(A,B) the graded
vector space

Multid(A,B) =
∏
k∈N∗

∏
(n1,...,nk)∈Tk

Multin1,...,nk

d (A,B)

where Multin1,...,nk

d (A,B) = Homk(A[1]⊗n1 ⊗ · · · ⊗ A[1]⊗nk , B[−d]⊗k). To simplify, we will denote
Multid(A,A) simply by Multid(A).

The action of σ = (σn)n∈N∗ ∈
∏

n∈N∗ Cn on F = (Fn1,...,nk)(n1,...,nk)∈Tk
∈ Multid(A,B) is the

element σ · F ∈ Multid(A,B) given by

(σ · F )n1,...,nk = τσ
−1

B[−d],...,B[−d] ◦ F
σ(n1,...,nk) ◦ τσA[1]⊗n1 ,...,A[1]⊗nk

for (n1, . . . , nk) ∈ Tk. We denote Multid(A,B)C• the space of elements of Multid(A,B) that are invariant
under the action of

∏
n∈N∗ Cn.

Remark 4.2. If (A, dA) and (B, dB) are dg vector spaces, Multid(A,B) becomes a dg vector space, with dif-
ferential given by dMultid(A,B)F = dB[−d]⊗k◦F−(−1)|F |F◦dA[1]⊗(n1+···+nk) for F ∈ Multin1,...,nk

d (A,B).

Definition 4.3. A d-pre-Calabi-Yau structure on a graded vector space A is an element of degree 1
sd+1MA ∈ Multid(A)C• [d + 1] satisfying the identities (SIn1,...,nk) given by

∑
E(D) +

∑
E(D′) = 0

where the sums are over all the filled diagrams D and D′ of type (n1, . . . , nk) and of the form
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MAMA and MAMA

for every (n1, . . . , nk) ∈ Tk. This is tantamount to [sd+1MA, sd+1MA]nec = 0 where [−,−]nec denotes the
necklace bracket given as the graded commutator of the necklace product ◦

nec
introduced in [5]. A graded

vector space endowed with a d-pre-Calabi-Yau structure is called a d-pre-Calabi-Yau algebra.

We now recall the definition of pre-Calabi-Yau morphisms as given in [5].

Definition 4.4. Let (A, sd+1MA), (B, sd+1MB) be two d-pre-Calabi-Yau algebras. A d-pre-Calabi-Yau
morphism F : (A, sd+1MA) → (B, sd+1MB) is an element sd+1F ∈ Multid(A,B)C• [d+ 1] of degree 0
satisfying the identities (MIn1,...,nk) given by

∑
E(D) =

∑
E(D′) where the sums are over all the filled

diagrams D and D′ of type (n1, . . . , nk) and of the form

F

F

F

MA

and MB

F

F
F

for every (n1, . . . , nk) ∈ Tk. This is tantamount to sd+1F ◦
multinec

sd+1MA − sd+1MB ◦
pre

sd+1F = 0 where
the compositions ◦

multinec
and ◦

pre
denote the right hand side and left hand side of the equation respectively.

Remark 4.5. The identities (SIn) for n ∈ N∗ are just the Stasheff identities given in Definition 3.3.
Then, if (A, sd+1MA) is a d-pre-Calabi-Yau algebra the collection of maps (Mn

A)n∈N∗ turns A into an
A∞-algebra and as before, (A[1],M1

A) is a dg vector space. Moreover, a d-pre-Calabi-Yau morphism F :
(A, sd+1MA) → (B, sd+1MB) induces an A∞-morphism between the underlying A∞-algebras.

Definition 4.6. Let (A, sd+1MA), (B, sd+1MB) and (C, sd+1MC) be d-pre-Calabi-Yau algebras and con-
sider sd+1F : (A, sd+1MA) → (B, sd+1MB) and sd+1G : (B, sd+1MB) → (C, sd+1MC) two d-pre-
Calabi-Yau morphisms. The composition of sd+1F and sd+1G is by definition the element sd+1G◦sd+1F
of Multid(A,B)C• [d+1] given by (sd+1G ◦ sd+1F )n1,...,nk =

∑
E(D) where the sum is over all the filled

diagrams D of type (n1, . . . , nk) and of the form

G
F

F
F

G
F

G

F
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Lemma 4.7. The data of d-pre-Calabi-Yau algebras together with d-pre-Calabi-Yau morphisms and their
composition give rise to a category denoted pCYd. Given a d-pre-Calabi-Yau algebra (A, sd+1MA), the d-
pre-Calabi-Yau identity morphism on A is the element of Multid(A)[d+1] given for (n1, . . . , nk) ∈ Tk
by idA[1] if k = 1, n1 = 1 and by 0 otherwise. It will be denoted idA or simply by id when there is no
possible confusion.

Definition 4.8. Given d-pre-Calabi-Yau algebras (A, sd+1MA) and (B, sd+1MB), we say that a d-pre-
Calabi-Yau morphism sd+1F : (A, sd+1MA) → (B, sd+1MB) is a quasi-isomorphism if the map
sd+1F

1 : (A[1],M1
A) → (B[1],M1

B) is a quasi-isomorphism of dg vector spaces. Moreover, sd+1F is
an isomorphism if there exists a d-pre-Calabi-Yau morphism sd+1G : (B, sd+1MB) → (A, sd+1MA)
such that sd+1G ◦ sd+1F = idA, and sd+1F ◦ sd+1G = idB .

Lemma 4.9. Let (A, sd+1MA), (B, sd+1MB) be d-pre-Calabi-Yau algebras and consider a d-pre-Calabi-
Yau morphism sd+1F : (A, sd+1MA) → (B, sd+1MB). If sd+1F

1 : (A[1], sd+1M
1
A) → (B[1], sd+1M

1
B)

is an isomorphism of dg vector spaces, then sd+1F is an isomorphism of d-pre-Calabi-Yau algebras.

Proof. By Lemma 3.9, we have already constructed maps Gn : B[1]⊗n → A[1] for every n ∈ N∗.
We now construct maps Gn1,...,nk : B[1]⊗n1 ⊗ · · · ⊗ B[1]⊗nk → A[−d]⊗k for every k > 1 and
(n1, . . . , nk) ∈ Tk. Consider k > 1 and suppose that we have defined the maps Gi1,...,ij : B[1]⊗i1 ⊗
· · · ⊗ B[1]⊗ij → A[−d]⊗k satisfying that (sd+1G ◦ sd+1F )i1,...,ij = 0 = (sd+1F ◦ sd+1G)i1,...,ij for
every (i1, . . . , ij) ∈ Tj , j < k. We have

(sd+1F ◦ sd+1G)0,...,0 = (sd+1F
1)⊗k ◦ sd+1G

0,...,0 + sd+1χ
0,...,0

where χ0,...,0 is a sum of maps k → A[−d]⊗k such that the only components of sd+1G that appear
are sd+1G

u1,...,ur where r < k. We thus define sd+1G
0,...,0 = −(sd+1G

1)⊗k ◦ sd+1χ
0,...,0. Consider

n̄ ∈ Tk and suppose that we have defined the maps Gi1,...,ik : B[1]⊗i1 ⊗ · · · ⊗ B[1]⊗ik → A[−d]⊗k

satisfying that (sd+1G ◦ sd+1F )i1,...,ik = 0 = (sd+1F ◦ sd+1G)i1,...,ik for every ī = (i1, . . . , ik) ∈ Tk
with N (̄i) < N(n̄). We have that (sd+1G ◦ sd+1F )n̄ = E(D1) +

∑
E(D2) where D1 is the unique

diagram of type n̄ containing a disc of type n̄ filled with G whose incoming arrows are shared with
discs of type 1 filled with F and where the sum is over all the filled diagrams D2 of type n̄ and of
the form

G

G

F

F

F

F

F

F

respectively. Note that D1 is the only diagram containing a disc of type n̄ filled with G. Moreover,
diagrams involved in the previous sum

∑
E(D2) contain either only discs filled with F having

one outgoing arrow or at least one disc filled with F with several outgoing arrows. In the first
case, the terms only contain discs filled with G of type ī ∈ Tk with N (̄i) < N(n̄). Indeed, the discs
filled with F only have one outgoing arrow but there is at least one of them having more that one
incoming arrow. Then, there is at least one j ∈ J1, kK such that ij < nj . In the second case, they
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only contain discs filled with G of type (i1, . . . , ij) ∈ Tj and j < k since the total number of outputs
is k. This allows us to define sd+1G

n̄ = −
∑

E(D) where the sum is over all the filled diagrams D

of type n̄ and of the form

G

G

F

F

F

F

F

F

where the dotted arrows represent the map g. Note that we did not use the fact that F is a d-
pre-Calabi-Yau morphism. Thus, there exists an element sd+1H ∈ Multid(A,B)C• [d+ 1] such that
sd+1H ◦ sd+1G = idB . Using the associativity of the composition, we get that H = F and thus
sd+1G ◦ sd+1F = idA and sd+1F ◦ sd+1G = idB .

It remains to check that sd+1G is a d-pre-Calabi-Yau morphism. By Lemma 3.9 the identities
(MIn) are satisfied for n ∈ N∗. We now consider k > 1 and suppose that the identities (MI ī) are
satisfied for every ī ∈ Tj for j < k and consider n̄ ∈ Tk. Since sd+1F is a d-pre-Calabi-Yau mor-
phism, we have that sd+1F ◦

multinec
sd+1MA = sd+1MB ◦

pre
sd+1F which gives

∑
E(D) =

∑
E(D′)

where the sums are over all the diagrams D and D′ of type n̄ and of the form

MB and

F
F

F

G

G

G
G

G

G

F

F

F

G

G

G

G

G

G

MA
F

F

G

G

G

G

G

respectively. Since sd+1F ◦ sd+1G = id, we have that
∑

E(D) = M n̄
B . Therefore, we have that

(sd+1G ◦
multinec

sd+1MB)
n̄ =

∑
E(D′

1) +
∑

E(D′
2) where the sums are over all the diagrams of type

n̄ and of the form
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MA and

GG

F

F

F

G

G

G

G

G

G

MA

G

G

G

G

G

G

G

G

G
G

G

G F

F

G

respectively. We now show that
∑

E(D′
2) = 0. Suppose that the identity (MI ī) is also satisfied

for every ī ∈ Tj with j = k and N (̄i) < N(n̄). We then have that
∑

E(D′
2) =

∑
E(D′

3) where the
second sum is over all the filled diagrams D′

3 of type n̄ and of the form

F

F

F

G

G
G

G

G

G

MB

G

G

G

G
G

G G

F

G

Note that for the diagrams of type (0, . . . , 0) ∈ Tk we only used the identities (MI ī) for ī ∈ Tj with
j < k. Then, by induction and since (sd+1F ◦ sd+1G)ī = 0 for ī ̸= 1, we have that

∑
E(D′

3) = 0 so
sd+1G is a d-pre-Calabi-Yau morphism.

4.2 Transferring pre-Calabi-Yau structures

In this subsection, we generalize the results of [8] to the case of d-pre-Calabi-Yau algebras. We
first define two different ways of composing maps and then give useful identities for the proof of
Theorem 4.13 and Theorem 4.14.

Definition 4.10. Let A and B be two graded vector spaces and consider sd+1F ∈ Multid(A,B)[d + 1].
Given sd+1M ∈ Multid(B)[d+ 1] and sd+1H ∈ Multid(A,B)[d+ 1] we define the lower composition
of sd+1M and sd+1H with respect to sd+1F as the element (sd+1M ◦

sd+1F
sd+1H) ∈ Multid(A,B)[d+1]

such that
(sd+1M ◦

sd+1F
sd+1H)n1,...,nk =

∑
E(D)

where the sum is over all the filled diagrams D of type (n1, . . . , nk) and of the form
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M

F

H

F

F

Moreover, given sd+1M
′ ∈ Multid(A)[d+1] we define the upper composition of sd+1M

′ and sd+1H
with respect to sd+1F as the element sd+1H

sd+1F

◦ sd+1M
′ ∈ Multid(A,B)[d+ 1] such that

(sd+1H
sd+1F

◦ sd+1M
′)n1,...,nk =

∑
E(D)

where the sum is over all the filled diagrams D of type (n1, . . . , nk) and of the form

M

F

F

H

Lemma 4.11. Let sd+1MA ∈ Multid(A)[d + 1], sd+1MB ∈ Multid(B)[d + 1] be two elements of degree
1 and consider sd+1F ∈ Multid(A,B)[d+ 1]. Then,

sd+1MA ◦
nec

(sd+1MA ◦
nec

sd+1MA) = (sd+1MA ◦
nec

sd+1MA) ◦
nec

sd+1MA (4.1)

Moreover, we have that

(sd+1MB ◦
pre

sd+1F )
sd+1F

◦ sd+1MA = sd+1MB ◦
sd+1F

(sd+1F ◦
multinec

sd+1MA) (4.2)

and
(sd+1F ◦

multinec
sd+1MA)

sd+1F

◦ sd+1MA = sd+1F ◦
multinec

(sd+1MA ◦
nec

sd+1MA)

Proof. We first show (4.1). For every k ∈ N∗ and n̄ ∈ Tk left hand term is given by

(sd+1MA ◦
nec
(sd+1MA ◦

nec
sd+1MA))

n̄

=
∑

E(D1) +
∑

E(D2)−
∑

E(D3) +
∑

E(D4) +
∑

E(D5) +
∑

E(D6)

where the sums are over all the filled diagrams Di of type n̄ and of the form

MA MA MA MA MAMA, MA MAMA,
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MA MA MA MA MAMA, MA MA MAand

respectively. The minus sign before
∑

E(D3) comes from the fact that the order of the first outgo-
ing arrows of the discs filled with MA have changed their order and that sd+1MA of degree 1. We
have that

∑
E(D3) =

∑
E(D2). Moreover,

∑
E(D5) = 0. Indeed, the two discs sharing an arrow

with the one with the bold arrow are filled with MA and are ordered by the labeling of their outgo-
ing arrows. There are two different cases: either the first disc is filled with the first MA appearing
in the identity (4.1) or with the second one. Since sd+1MA is of degree 1, the second case gives rise
to a minus sign and the two cases then cancel each other.

We thus get

(sd+1MA ◦
nec

(sd+1MA ◦
nec

sd+1MA))
n̄ =

∑
E(D1) +

∑
E(D4) +

∑
E(D6)

On the other hand, the right hand term is given by

((sd+1MA ◦
nec
sd+1MA) ◦

nec
sd+1MA))

n̄

=
∑

E(D′
1) +

∑
E(D′

2) +
∑

E(D′
3) +

∑
E(D′

4) +
∑

E(D′
5)−

∑
E(D′

6)

where the sums are over all the filled diagrams D′
i of type n̄ and of the form

MA MA MA MA MAMA, MA MA MA,

MA MA

MA

MA MA MA, MA MA

MA
and

Again, the minus before E(D′
6) comes from the exchange of the order of two sd+1MA. Moreover,

E(D′
6) = E(D′

4) and E(D′
2) = 0 for the same reason as E(D5) = 0. We thus get

((sd+1MA ◦
nec

sd+1MA) ◦
nec

sd+1MA))
n̄ =

∑
E(D′

1) +
∑

E(D′
3) +

∑
E(D′

5)

Since E(D1) = E(D′
1), E(D4) = E(D′

5) and E(D6) = E(D′
3), the identity (4.1) is proved.

We now prove (4.2). First, note that ((sd+1MB ◦
pre

sd+1F )
sd+1F

◦ sd+1MA)
n̄ =

∑
E(D) where the

sum is over all the filled diagrams D of type n̄ and of the form
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MB

F

F

F

MA

F

F

It is easy to check that
(
sd+1MB ◦

sd+1F
(sd+1F ◦

multinec
sd+1MA)

)n̄
=

∑
E(D) which proves

(4.2). Finally, we have that

((sd+1F ◦
multinec

sd+1MA)
sd+1F

◦ sd+1MA)
n̄ =

∑
E(D1) +

∑
E(D2) +

∑
E(D3) +

∑
E(D4)−

∑
E(D5)

where the sums are over all the filled diagrams of type n̄ and of the form

MA MA

F
F

F
F

, MA MA

F
F

F
F

, FMA

F

F

F

F

MA ,

FMA

F

F

F

F

MA and
FMA

F

F

F

F

MA

respectively. Note that
∑

E(D4) =
∑

E(D5) and
∑

E(D3) = 0, so that

((sd+1F ◦
multinec

sd+1MA)
sd+1F

◦ sd+1MA)
n̄ =

∑
E(D1) +

∑
E(D2)

It is clear that

(sd+1F ◦
multinec

(sd+1MA ◦
nec

sd+1MA))
n̄ =

∑
E(D1) +

∑
E(D2)

This finishes the proof.

Corollary 4.12. Let sd+1MA ∈ Multid(A)[d+1], sd+1MB ∈ Multid(B)[d+1] be two elements of degree
1 and consider sd+1F ∈ Multid(A,B)[d + 1] of degree 0. Suppose that sd+1MB satisfies the identities
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(SI n̄) for each n̄ ∈ T . Then, the following holds.

sd+1F ◦
multinec

(sd+1MA ◦
nec

sd+1MA) = (sd+1F ◦
multinec

sd+1MA − sd+1MB ◦
pre

sd+1F )
sd+1F

◦ sd+1MA

+ sd+1MB ◦
sd+1F

(sd+1F ◦
multinec

sd+1MA − sd+1MB ◦
pre

sd+1F )
(4.3)

Proof. It suffices to show that sd+1MB ◦
sd+1F

(sd+1MB ◦
pre

sd+1F ) = 0. By definition, for n̄ ∈ T we
have (sd+1MB ◦

sd+1F
(sd+1MB ◦

pre
sd+1F ))n̄ =

∑
E(D) where the sum is over all the filled diagrams

D of type n̄ and of the form

MB

F

F

F

MB

F

F

Then, sd+1MB ◦
sd+1F

(sd+1MB ◦
pre

sd+1F ) = (sd+1MB ◦
G
sd+1MB) ◦

pre
sd+1F which vanishes since

sd+1MB satisfies the Stasheff identites by assumption.

Theorem 4.13. Let (A, dA), (B, dB) be dg vector spaces and f : A → B be a quasi-isomorphism of dg
vector spaces. Let sd+1MB ∈ Multid(B)[d + 1] be an element of degree 1 with sd+1M

1
B = dB [1] that

turns B into a d-pre-Calabi-Yau algebra. Then, there exists a d-pre-Calabi-Yau structure sd+1MA on A
such that sd+1M

1
A = dA[1] as well as a d-pre-Calabi-Yau morphism sd+1F ∈ Multid(A,B)[d + 1] such

that sd+1F
1 = f [1].

Proof. We will construct the d-pre-Calabi-Yau structure and the d-pre-Calabi-Yau morphism induc-
tively. We already have the maps for k = 1 by Theorem 3.14. Consider k > 1, n̄ ∈ Tk and suppose
that we have constructed sd+1MA ∈ Multid(A)[d+ 1] of degree 1 and sd+1F ∈ Multid(A,B)[d+ 1]

of degree 0 such that the identities (SI ī) and (MI ī) are satisfied for every ī ∈ Tj for j < k and such
that N (̄i) < N(n̄) if j = k. Note that if n̄ = (0, . . . , 0) we only assume that the identities (SI ī) and
(MI ī) are satisfied for every ī ∈ Tj for j < k. Since (sd+1MA ◦

nec
sd+1MA)

ī vanishes for ī ∈ Tj if j < k

or j = k and N (̄i) < N(n̄), the term indexed by n̄ in the identity (4.1) is simply

dA[−d]⊗(k−1)⊗A[1] ◦ (sd+1MA ◦
nec

sd+1MA)
n̄ = (sd+1MA ◦

nec
sd+1MA)

n̄ ◦ dA[1]⊗N(n)

and we thus have that ∂(sd+1MA ◦
nec

sd+1MA)
n̄ = 0, where we have denoted by ∂ the differential

of Multid(A,B)[d+ 1], i.e. (sd+1MA ◦
nec

sd+1MA)
n̄ is a cycle.

Moreover, the term indexed by n̄ of the identity (4.3) is

(f [1])⊗k ◦ (sd+1MA ◦
nec

sd+1MA)
n̄ = (sd+1F ◦

multinec
sd+1MA − sd+1MB ◦

pre
sd+1F )n̄ ◦ dA[1]⊗N(n)

+ dA[−d]⊗(k−1)⊗A[1] ◦ (sd+1F ◦
multinec

sd+1MA − sd+1MB ◦
pre

sd+1F )n̄

since (sd+1F ◦
multinec

sd+1MA − sd+1MB ◦
pre

sd+1F )ī vanishes for ī ∈ Tk if N (̄i) < N(n̄).
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Then, (f [1])⊗k ◦ (sd+1MA ◦
nec

sd+1MA)
n̄ is a boundary, and since (sd+1MA ◦

nec
sd+1MA)

n̄ is a cycle
and f is a quasi-isomorphism, (sd+1MA ◦

nec
sd+1MA)

n̄ is itself a boundary, meaning that there exists
E ∈ Multin̄d (A) such that (sd+1MA ◦

nec
sd+1MA)

n̄ = ∂(sd+1E). We thus define µī
A = M ī

A for ī ∈ Tj
with j < k or j = k and N (̄i) < N(n̄) and µn̄

A = M n̄
A −E. Then, (sd+1µA ◦

nec
sd+1µA)

ī = 0 for ī ∈ Tj
with j < k or j = k and N (̄i) ≤ N(n̄).

Moreover, by (3.3) we have that (sd+1F ◦
multinec

sd+1MA − sd+1MB ◦
pre

sd+1F )n̄ is a cycle so it
can be written as

(sd+1F ◦
multinec

sd+1MA − sd+1MB ◦
pre

sd+1F )n̄ = (f [1])⊗n ◦ sd+1E
′ + ∂(sd+1E

′′)

where E′ is a cycle of Multid(A) and E ′′ ∈ Multid(A,B).
We set ν īA = µī

A, Gī = F ī for ī ∈ Tj with j < k and for j = k and N (̄i) < N(n̄) and set
νn̄A = νn̄A − E′, Gn̄ = F n̄ − E ′′. Therefore, since we have only modified µA by adding a cycle, we
have (sd+1νA ◦

nec
sd+1νA)

ī = 0 for ī ∈ Tj with j < k or j = k and N (̄i) ≤ N(n̄). It is straightforward
to check that (sd+1G ◦

multinec
sd+1νA − sd+1MB ◦

pre
sd+1G)n̄ = 0.

Theorem 4.14. Let (A, dA), (B, dB) be dg vector spaces and f : A → B be a quasi-isomorphism of dg
vector spaces. Let sd+1MA ∈ Multid(A)[d + 1] be an element of degree 1 with sd+1M

1
A = dA[1] that

turns A into a d-pre-Calabi-Yau algebra. Then, there exists a d-pre-Calabi-Yau structure sd+1MB on B
such that sd+1M

1
B = dB [1] as well as a d-pre-Calabi-Yau morphism sd+1F ∈ Multid(A,B)[d + 1] such

that sd+1F
1 = f [1].

Proof. We will construct the d-pre-Calabi-Yau structure and the d-pre-Calabi-Yau morphism in-
ductively. We already have the maps for k = 1 by Theorem 3.15. Consider k > 1.

Suppose that we have constructed an element sd+1MB ∈ Multid(B)[d + 1] of degree 1 and
sd+1F ∈ Multid(A,B)[d + 1] such that the identities (SI ī) and (MI ī) are satisfied for every ī ∈ Tj
such that j < k or j = k and N (̄i) < N(n̄).

The term indexed by n̄ of the identity (4.1) applied with sd+1MB shows as before that the ele-
ment (sd+1MB ◦

nec
sd+1MB)

n̄ is a cycle.
We now consider the following identity.

(sd+1MB ◦
nec

sd+1MB) ◦
pre

sd+1F =(sd+1MB ◦
pre

sd+1F − sd+1F ◦
multinec

sd+1MA)
sd+1F

◦ sd+1MA

+ sd+1MB ◦
sd+1F

(sd+1MB ◦
pre

sd+1F − sd+1F ◦
multinec

sd+1MA)
(4.4)

Its term indexed by n̄ is

(sd+1MB ◦
nec

sd+1MB)
n̄ ◦ (f [1])⊗(N(n̄)) = (sd+1MB ◦

pre
sd+1F − sd+1F ◦

multinec
sd+1MA)

n̄ ◦ dA[1]⊗N(n̄)

+ dA[−d]⊗(k−1)⊗A[1] ◦ (sd+1MB ◦
pre

sd+1F − sd+1F ◦
multinec

sd+1MA)
n̄

since (sd+1MB ◦
pre

sd+1F − sd+1F ◦
multinec

sd+1MA)
ī vanishes for ī ∈ Tj if j < k or j = k and

N (̄i) < N(n̄).
Then, (sd+1MB ◦

nec
sd+1MB)

n̄ ◦ (f [1])⊗(N(n̄)) is a boundary, and since (sd+1MB ◦
nec

sd+1MB)
n̄ is a

cycle and f is a quasi-isomorphism, (sd+1MB ◦
nec

sd+1MB)
n̄ is itself a boundary, meaning that there
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exists E ∈ Multin̄d (B) such that (sd+1MB ◦
nec

sd+1MB)
n̄ = ∂(sd+1E). We thus define µī

B = M ī
B for

ī ∈ Tj with j < k or j = k and N (̄i) < N(n̄) and µn̄
B = M n̄

B − E. Then, (sd+1µB ◦
nec

sd+1µB)
ī = 0

for ī ∈ Tj with j < k or j = k and N (̄i) < N(n̄) .
Moreover, by (4.4) we have that (sd+1MB ◦

pre
sd+1F − sd+1F ◦

multinec
sd+1MA)

n̄ is a cycle so it
can be written as

(sd+1MB ◦
pre

sd+1F − sd+1F ◦
multinec

sd+1MA)
n̄ = sd+1E

′ ◦ (F 1)⊗N(n̄) + ∂(sd+1E
′′)

where E′ is a cycle of Multid(B) and E ′′ ∈ Multid(A,B).
We set ν īB = µī

B for ī ∈ Tj with j < k or j = k and N (̄i) < N(n̄), νn̄B = νn̄B −E′ and Gī = F ī for
i < n, Gn̄ = F n̄ −E ′′. Therefore, since we have only modified sd+1µB by adding a cycle, we have
(sd+1νB ◦

nec
sd+1νB)

ī = 0 for ī ∈ Tj with j < k or j = k and N (̄i) < N(n̄). It is straightforward to
check that (sd+1νB ◦

pre
sd+1G− sd+1G ◦

multinec
sd+1MA)

n̄ = 0. This finishes the proof.

4.3 Minimal models and quasi-isomorphisms of pre-Calabi-Yau algebras

We now remark that the previous results leads to the existence of minimal models for pre-Calabi-
Yau algebras and prove that any quasi-isomorphism of d-pre-Calabi-Yau algebras admits a quasi-
inverse.

Definition 4.15. A d-pre-Calabi-Yau algebra (B, sd+1MB) is minimal if M1
B = 0. Given a d-pre-Calabi-

Yau algebra (A, sd+1MA), a minimal model of A is a minimal d-pre-Calabi-Yau algebra (B, sd+1MB)
together with a quasi-isomorphism P : A → B of d-pre-Calabi-Yau algebras.

As for the case of A∞-algebras we deduce from the previous results that minimal models of
pre-Calabi-Yau algebras always exist. Indeed, given a d-pre-Calabi-Yau algebra (A, sd+1MA), let
p : A → H(A) be any quasi-isomorphism of dg vector spaces. By Theorem 4.14, there exists an
d-pre-Calabi-Yau structure on H(A) and a morphism of d-pre-Calabi-Yau algebras P : A → H(A)
such that P 1 = p[1] is a quasi-isomorphism.

Lemma 4.16. Let (A, sd+1MA) be a d-pre-Calabi-Yau algebra. Given quasi-isomorphisms of dg vector
spaces p : A → H(A) and i : H(A) → A, the d-pre-Calabi-Yau structures Mi and Mp on H(A) given in
Theorem 4.13 and 4.14 are isomorphic. In particular, given quasi-isomorphisms p, p′ : A → H(A) (resp.
i, i′ : H(A) → A), the d-pre-Calabi-Yau structures Mp and Mp′ (resp. Mi and Mi′ ) on H(A) given in
Theorem 4.14 (resp. in Theorem 4.13) are isomorphic.

Proof. Consider quasi-isomorphisms p : A → H(A) and i : H(A) → A. By Theorem 4.13, one
can define a d-pre-Calabi-Yau structure Mp on H(A) as well as a d-pre-Calabi-Yau morphism PA :
A → H(A) such that P 1 = p[1]. Moreover, by Theorem 4.14, one can construct a d-pre-Calabi-Yau
structure Mi on H(A) and a d-pre-Calabi-Yau morphism I : H(A) → A such that I1 = i[1]. Those
two constructions give isomorphic structures. Indeed, the composition P ◦ I : (H(A),Mi) →
(H(A),Mp) is a d-pre-Calabi-Yau morphism such that (P ◦ I)1 is an isomorphism since H(A) is
minimal so P ◦ I is an isomorphism of d-pre-Calabi-yau algebras by Lemma 4.9.

Definition 4.17. Let (A, sd+1MA) and (B, sd+1MB) be d-pre-Calabi-Yau algebras. We consider quasi-
isomorphisms of complexes iA : H(A) → A and pB : B → H(B). Then, by Theorem 4.13 H(A) is
endowed with a d-pre-Calabi-Yau structure MiA and iA extends to a d-pre-Calabi-Yau morphism IA :
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H(A) → A. Moreover, by Theorem 4.14 H(B) is endowed with a d-pre-Calabi-Yau structure MpB
and

pB extends to a d-pre-Calabi-Yau morphism PB : B → H(B). Given a d-pre-Calabi-Yau morphism
F : A → B we define a d-pre-Calabi-Yau morphism H(F ) : H(A) → H(B) as H(F ) = PB ◦ F ◦ IA.

Using the previous results, we deduce that any quasi-isomorphism of d-pre-Calabi-Yau alge-
bras admits a quasi-inverse.

Theorem 4.18. Let (A, sd+1MA) and (B, sd+1MB) be d-pre-Calabi-Yau algebras and consider a d-pre-
Calabi-Yau morphism F : (A, sd+1MA) → (B, sd+1MB). Consider quasi-isomorphisms iA : H(A) → A
and pB : B → H(B) and H(F ) : (H(A),MiA) → (H(B),MpB

) given in Definition 4.17. Then, if F is
a quasi-isomorphism, there exists a quasi-isomorphism G : (B, sd+1MB) → (A, sd+1MA) of d-pre-Calabi-
Yau algebras as well as quasi-isomorphisms iB : H(B) → B, pA : A → H(A) such that pA ◦ iA = idH(A),
pB ◦ iB = idH(B) and whose associated H(G) in the sense of Definition 4.17 is the inverse of H(F ).

Proof. Since F is a quasi-isomorphism, it induces by Lemma 4.9 an isomorphism of d-pre-Calabi-
Yau algebras H(F ) : (H(A),MiA) → (H(B),MpB

) which has an inverse denoted here by K :
(H(B),MpB

) → (H(A),MiA). Consider iB : H(B) → B, pA : A → H(A) such that pA◦iA = idH(A)

and pB ◦ iB = idH(B). By Theorem 4.13 and Theorem 4.14, those maps extend to d-pre-Calabi-Yau
morphisms IA : H(A) → A, PA : A → H(A), IB : H(B) → B and PB : B → H(B) such
that (PA ◦ IA)

1 = idH(A)[1] and (PB ◦ IB)
1 = idH(B)[1]. Moreover, up to an automorphism of the

d-pre-Calabi-Yau algebra H(A) (resp. H(B)), it is possible to assume that PA ◦ IA = id (resp.
PB ◦ IB = id). Then G = IA ◦K ◦ PB gives a quasi-inverse for F since by definition we have that
H(G) = PA ◦G ◦ IB = PA ◦ IA ◦K ◦ PB ◦ IB = K.

References
[1] Marion Boucrot, Morphisms of pre-Calabi-Yau categories and morphisms of cyclic A∞-categories, 2023. arXiv:2304.13661

[math.KT]. ↑4

[2] Eric Hoffbeck, Johan Leray, and Bruno Vallette, Properadic homotopical calculus, Int. Math. Res. Not. IMRN 5 (2021),
3866–3926. MR4227587 ↑2
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[6] Kenji Lefèvre-Hasegawa, Sur les A-infinies catégories (2003). ↑12

[7] Johan Leray and Bruno Vallette, Pre-Calabi–Yau algebras and homotopy double poisson gebras, arXiv, 2022.
arXiv:2203.05062 [math.QA]. ↑2

[8] Dan Petersen, A closer look at Kadeishvili’s theorem, High. Struct. 4 (2020), no. 2, 211–221. MR4133168 ↑1, 2, 4, 9, 10, 16

[9] Paul Seidel, Fukaya A∞-structures associated to Lefschetz fibrations. II, Algebra, geometry, and physics in the 21st century,
2017, pp. 295–364. MR3727564 ↑1

[10] James Dillon Stasheff, Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108
(1963), 293–312. MR0158400 ↑4

[11] Masahiro Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math.
33 (1960/61), 257–269. MR120645 ↑4

[12] Thomas Tradler and Mahmoud Zeinalian, Algebraic string operations, K-Theory 38 (2007), no. 1, 59–82. MR2353864 ↑1

23

https://math.berkeley.edu/~auroux/miami2013-notes/
https://math.berkeley.edu/~auroux/miami2013-notes/


MARION BOUCROT: Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France
E-mail adress : marion.boucrot@univ-grenoble-alpes.fr

24


	Introduction
	Notations and conventions
	Transferring-A-infinity-structures
	Transferring pre-Calabi-Yau structures
	Pre-Calabi-Yau algebras
	Transferring pre-Calabi-Yau structures
	Minimal models and quasi-isomorphisms of pre-Calabi-Yau algebras


