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Abstract. Planetary cores are the seat of rich and complex fluid dynamics, in which the effects of
rotation and magnetic field combine. The equilibria governing the strength of the magnetic field
produced by the dynamo effect, the organisation and amplitude of the flow, and those of the density
field, remain debated despite remarkable progress made in their numerical simulation. This paper
proposes a new approach based on the explicit consideration of the variation of time scales τ with
spatial scales ` for the different physical phenomena involved. The τ-` diagrams thus constructed
constitute a very complete graphic summary of the dynamics of the object under study. They reveal the
domains of validity of the different possible dynamic regimes. Several scenarios are thus constructed
and discussed for the Earth’s core, shedding new light on the width of convective columns and on
the force equilibria to be considered. A QG-MAC scenario adapted from Aubert [2019] gives a good
account of the observations. A diversion to Venus reveals the subtlety and relativity of the notion
of ’fast rotator’. A complete toolbox is provided, allowing everyone to construct a τ-` diagram of a
numerical simulation, a laboratory experiment, a theory, or a natural object.

Supplementary material for this article is supplied as a separate archive Nataf_Schaeffer_SupMat.zip,
the related data is displayed in document Nataf_Schaeffer_SupMat.pdf.

Résumé. Les noyaux planétaires sont le siège d’une dynamique des fluides riche et complexe où se
combinent les effets de la rotation et du champ magnétique. Les équilibres gouvernant l’intensité
du champ magnétique produit par effet dynamo, l’organisation et l’amplitude de l’écoulement, et
celles du champ de densité, demeurent débattus, malgré les progrès remarquables de leur simulation
numérique. Cet article propose une nouvelle approche qui repose sur la prise en compte explicite
de la variation des échelles de temps τ avec les échelles spatiales ` pour les différents phénomènes
physiques impliqués. Les diagrammes τ-` ainsi construits constituent un résumé graphique très
complet de la dynamique de l’objet étudié. Ils révèlent les domaines de validité des différents régimes
dynamiques possibles. Plusieurs scenarios sont ainsi construits et discutés pour le noyau terrestre,
apportant un nouvel éclairage sur la largeur des colonnes convectives et sur les équilibres de force
à considérer. Un scenario QG-MAC adapté de Aubert [2019] rend bien compte des observations.
Un détour par Vénus révèle la subtilité et la relativité de la notion de ‘rotateur rapide’. Une boîte à
outils complète est fournie, permettant à chacun de construire le diagramme τ-` d’une simulation
numérique, d’une expérience de laboratoire, d’une théorie, ou d’un objet naturel.
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1. Introduction

Enormous progress has been achieved in the modeling and understanding of the magnetic dynamo at work
in the core of the Earth and other planets since the first 3D numerical simulations of Glatzmaier and Roberts
[1995] and Kageyama et al. [1995]. It rapidly appeared that the magnetic fields produced by such numerical
simulations met the main characteristics of the long-term magnetic field observed on Earth, such as its
dipolarity, the presence of high-flux patches at high latitudes, and symmetry properties [Christensen et al.,
1999, Olson and Christensen, 2006, Christensen et al., 2010]. Magnetic intensity scaling laws for planetary and
stellar dynamos were obtained by combining an analysis of the dominant terms of the governing equations
with results of an extensive survey of numerical simulations [Christensen and Aubert, 2006, Christensen, 2010].

In the meantime, shorter timescale manifestations of the geodynamo were unveiled, such as a large-
scale off-centered anticyclone [e.g., Pais and Jault, 2008], and torsional waves (geostrophic Alfvén waves)
with periods of a few years [Gillet et al., 2010]. These new observations prompted efforts to run numerical
simulations at more extreme parameter values [Schaeffer et al., 2017, Aubert et al., 2017], increasing the role
of rotation by decreasing the Ekman number down to Ek = 10−7, and increasing the convective forcing up to
Ra/Rac = 6300, where Ra is the Rayleigh number, and Rac its critical value. These extreme simulations of the
geodynamo successfully account for fast dynamics retrieved from observations.

In view of this remarkable progress, it might seem that most problems are solved. In fact, hot debates
are still roaming on several crucial issues. One of them concerns the dominant length-scale of convective
structures in Earth’s core. Column widths of 100 m are suggested by Yan and Calkins [2022] while Guervilly et al.
[2019] advocate 30 km. Extrapolating force-balances from numerical simulations and laboratory experiments
to natural systems is another issue [Aurnou and King, 2017, Schwaiger et al., 2019, Teed and Dormy, 2023]. The
relevance of scenarios with weak and strong magnetic field branches is also hotly debated [Dormy, 2016]. One
extreme viewpoint being expressed by Cattaneo and Hughes [2022] who claim that Earth would not have been
able to produce a strong magnetic field as today without Moon’s help.

There is room for such diverging views because the distance from numerically accessible parameters to
expected planetary values remains vertiginous. Laboratory experiments somewhat enlarge the accessible range
but are limited to non-dynamo regimes, making the link with numerics and observations difficult.

This is the motivation for exploring a different route: instead of extrapolating available simulations to core
conditions, start from the actual expected properties of the core, and patch scenarios of turbulence that
correspond to different regimes encountered at different scales. This leads to the construction of τ-` regime
diagrams of turbulence, as introduced by Nataf and Schaeffer [2015].

Our experience is that this approach is an excellent intuition-booster. It provides a simple graphical support
that can greatly help deciphering and testing more mathematically-motivated approaches. However, we con-
sider that it has not received enough attention, perhaps because it clearly advocates a ‘fuzzy physics’ method,
and also because it was originally published in a limited-access collection.

In this article, we present an improved version of τ-` regime diagrams. We detail the steps for constructing
such diagrams, providing examples of application to numerical simulations and laboratory experiments. Key
properties of τ-` diagrams are highlighted and illustrated by simple examples.

The central part of the article is devoted to an application to the Earth’s core. We propose scenarios
for a non-magnetic rotating convective core, and for a dynamo-generating rotating convective core. The
resulting diagrams are compared with the predictions of several scaling analyses [Christensen and Aubert, 2006,
Christensen, 2010, Davidson, 2013, Aubert et al., 2017].
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One important novelty is that our τ-` diagrams are constructed to satisfy a given constraint on the convec-
tive power available to drive the dynamo. Indeed, planets are thermal machines and their thermal evolution
is probably what we can estimate best. Liquid cores of planets cool down on geological timescales, generating
convective motions. Convective power, which can be estimated from the planet’s thermal history [e.g., Steven-
son et al., 1983, Lister, 2003, Nimmo, 2015, Landeau et al., 2022, Driscoll and Davies, 2023], sustains fluid flow
and magnetic field. Dissipation of this power by either momentum or magnetic diffusion, or both, controls the
regimes of turbulence the system experiences. This should facilitate the construction of τ-` diagrams for plan-
ets, exoplanets and stars for which no direct observation of the large-scale flow velocity and magnetic field is
available.

We present and illustrate the construction rules and key properties of τ-` regime diagrams of turbulence in
Section 2. Section 3 introduces the physical phenomena at work in planetary cores, and relates τ-` diagrams
to classical dimensionless numbers. Section 4 presents τ-` regime diagrams for a non-magnetic core. τ-`
diagrams of the present-day geodynamo are built in Section 5 and discussed in Section 6. Limitations and
perspectives are outlined in Section 7, and we conclude in Section 8. Appendices A and B provide rules for
converting spectra and force balances in τ-` language. Simple Python programs used to build τ-` diagrams
are given as supplementary material, together with additional examples from numerical simulations and
laboratory experiments.

2. Construction rules and key properties of τ-` diagrams

This section presents the rules used to construct τ-` diagrams. Turbulent systems display a wide range of
length-scales and timescales. Timescales of physical phenomena such as diffusion or wave propagation de-
pend upon the length-scale at which they operate. For example, timescale τν of momentum diffusion at
length-scale ` can be written as τν(`) = `2/ν. Similarly, turnover time τu of a vortex of radius ` is given by
τu(`) = `/u(`), where u(`) is the vortex fluid velocity. We build τ-` regime diagrams by plotting timescales τx

as a function of length-scale ` in a log-log plot, for all the different physical phenomena x that govern the fluid
flow in a given system.

Construction rules of τ-` regime diagrams

τ-` regime diagrams are ‘object-oriented’. They are built following these steps:

• Identify physical phenomena that play an important role in the object under study.
• Document relevant physical properties (viscosity, thermal diffusivity, rotation rate, etc).
• Build and draw lines τ(`) that control dissipative and wave propagation phenomena.
• Identify different turbulence regimes the object might experience.
• Construct and draw lines τ(`) of fields (velocity, buoyancy, magnetic field) that describe the

object’s turbulent behaviour, given a dissipated power Pdi ss .
• Compare predictions with observables such as large-scale flow velocity and magnetic field, when

available.

2.1. A simple example: Kolmogorov’s universal turbulence

We present the τ-` diagram of Kolmogorov’s universal turbulence [Kolmogorov, 1941] in Figure 1 to illustrate
the construction of τ-` diagrams. With applications to the dynamics of the Earth’s core in mind, we consider a
range of length-scales from 1 cm to Ro = 3480 km, the radius of the core. Timescales span a range from 10 s to
32000 years.
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Figure 1. τ-` regime diagram for Kolmogorov’s universal turbulence [Kolmogorov, 1941]. Teal line la-
beled ν is viscous dissipation line τν(`) = `2/ν. Thick blue line is eddy turnover time τu(`) = ε−1/3`2/3

inferred from Kolmogorov’s law, assuming that energy is injected at core radius length-scale ` = Ro . In-
tersection of these two lines occurs for Re(`) ∼ 1 and is marked by a circle. Total energy dissipation rate
Pdi ss can be read at this intersection (horizontal dashed line), using square markers drawn and labelled
along the viscous line. Markers are a factor of 103 apart, the 1 TW marker being filled.

2.1.1. τν(`) line

We pick a viscosity value ν= 10−6 m2 s−1 and draw the τν(`) viscous dissipation line:

τν(`) = `2/ν. (1)

2.1.2. τu(`) line

In Kolmogorov’s universal turbulence, kinetic energy cascades down from large length-scales to small-
scales, from the energy injection scale down to the viscous dissipation scale. The range in between is called
the inertial range. The kinetic energy density spectrum E(k) in the inertial range obeys Kolmogorov’s law:

E(k) =CK ε
2/3k−5/3, (2)

where k is the wavenumber, ε is the energy injection rate per unit mass, and CK is Kolmogorov’s dimensionless
constant, of order 1.

To build line τu(`), we need to convert kinetic energy density into velocity. It is common to define an ‘eddy
turnover time’ as τu(`) = `/u(`), with u2(`) ∼ E(k)k and `∼ 1/k (see Appendix A.1). This translates into:

τu(`) ' `3/2 [
E(`−1)

]−1/2
. (3)

Droping prefactor CK , Kolmogorov’s law yields:

τu(`) ' ε−1/3`2/3. (4)



Henri-Claude Nataf and Nathanaël Schaeffer 5

We draw this τu(`) line in Figure 1, assuming that the energy injection length-scale is Ro , and choosing an
injection timescale, which will be discussed later. Note that we will use another rule to convert energy spectra
into τu(`) in the rest of this article, as explained in Appendix A.

2.1.3. `-scale Reynolds number

We terminate line τu(`) where it hits viscous line τν(`). This intersection yields Kolmogorov microscales
(`K ,τK ), for which τu(`K ) = `2

K /ν, i.e., u(`K )`K
ν = 1. Defining an `-scale Reynolds number Re(`) = u(`)`

ν , we note
that the intersection of the eddy turnover time line τu(`) with the viscous line τν(`) occurs at Re(`) = 1. It marks
the transition from the inertial cascade at large scale to the viscous dissipation regime at small scale.

2.1.4. Power dissipation markers

In Kolmogorov’s theory, the energy injected at large scale cascades down with no loss to small scales at
which viscous dissipation takes place. This dissipation range starts at the intersection of lines τu and τν, where
Re(`) ∼ 1, which defines Kolmogorov microscales (`K ,τK ). From equations (1) and (4), we deduce:

ε= `2
K

τ3
K

= ν

τ2
K

= u2(`K )

τK
, (5)

where the last expression shows that dissipation rate per unit mass ε equals kinetic energy at the microscale
divided by eddy turnover time at that scale. We also see that we can attribute to each τν value a dissipation rate
per unit mass. Multiplying by the mass of the system, we obtain the total dissipated power. In Figure 1, we thus
draw power markers along the viscous dissipation line, using the mass of the outer core Mo = 1.835 1024 kg.
Markers are a factor of one thousand apart and are labeled.

2.1.5. Energy

In Kolmogorov’s universal turbulence, kinetic energy is dominated by large length-scales. In τ-` diagrams,
we retrieve kinetic energy E from the square of the inverse of τu(Ro) since:

E = 1

2

∫
Vo

ρU 2dV ∼ Mou2(Ro) = MoR2
o

τ2
u(Ro)

, (6)

where Vo is the volume of the liquid core. We use this property to compare the amplitudes of the various energy
reservoirs when dealing with planetary cores. Note that this applies as long as the τu(`) slope is less than 1, in
order for large-scale energy to dominate.

Key properties of τ-` regime diagrams

• τ-` regime diagrams gather in a simple graphical representation many of the ingredients that
control the dynamics of a turbulent fluid system.

• In τ-` regime diagrams, intersections of lines τx (`) and τy (`) of physical phenomena x and y

occur where `-scale dimensionless number Z (`) = τy (`)
τx (`) equals 1. They mark a change in the

system’s dynamical regime.
• Usual integral-scale values of dimensionless numbers are obtained from the ratio of relevant
τx (`) and τy (`) times at integral scale `= Ro .

• Total dissipated power can be marked along τ(`) lines of dissipative phenomena.
• Energies of different types (kinetic, gravitational, magnetic) are represented by the inverse square

of corresponding τ(Ro).
• τ-` regime diagrams are a useful tool to infer or test turbulence scenarios. They are not a theory

of turbulence.
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Figure 2. τ-` regime diagram template for the Earth’s core. Wavy lines pinned to tΩ and to tAl f ven are
τRossby (`) and τAl f ven(`), respectively. Their expressions are given in Table I, together with those of
diffusion lines labeled χ, ν, κ and η. Thick lines pinned to tSV and tAl f ven along right y-axis mark large-
scale observed values and trends of core flow and magnetic field, respectively. Property values used to
draw the diagram are given in Table II. Markers along lines τν, τRossby and τη indicate power dissipation.
Markers are a factor of 1000 apart, the 1 TW marker being filled. Circles labeled Ek, Ekκ, Ekη, Lu and λ at
line intersections mark scales at which the corresponding `-scale dimensionless number (see Table III)
equals 1.

3. Physical phenomena in planetary cores and dimensionless numbers

We now turn our attention to planetary cores. Flow within planetary cores are mostly powered by thermal or
thermo-compositional convection. They often produce a magnetic field. Most importantly, these flows occur
in a rotating spherical system.

In this section, we introduce the τ-` lines these physical phenomena contribute. We illustrate the resulting
τ-` regime diagram template, using values pertaining to Earth’s core, and relate the diagram to various
dimensionless numbers used to characterize planetary core dynamics.

3.1. Physical phenomena and their τ-` expressions

Table I gives the expressions of major τ(`) times pertaining to planetary cores. τν(`) and τu(`) times have
been introduced in section 2.1. Convection adds thermal diffusion and buoyancy scales. Rotation, spherical
boundaries, and magnetic field contribute key additional timescales.

We discuss the origin and meaning of these various τ(`) scales, and illustrate the τ-` template they provide
in Earth’s core example (Figure 2), using its properties listed in Table II.
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time expression phenomenon

τν(`) `2/ν viscous dissipation

τκ(`) `2/κ thermal diffusion

τχ(`) `2/χ compositional diffusion

τη(`) `2/η magnetic dissipation

tΩ 1/Ω rotation

τRossby (`) Ro/Ω` Rossby wave propagation

τAl f ven(`) `
p
ρµ/B0 Alfvén wave propagation

τρ(`)
√

`
g

ρ
|∆ρ(`)| buoyancy (or free-fall)

τu(`) `/u(`) eddy turnover

τb(`) `
p
ρµ/b(`) magnetic collision

Table I. Notation and expression of τ(`) times of relevant physical phenomena for planetary cores. Fluid
properties: density ρ; kinematic viscosity ν; thermal and compositional diffusivities κ and χ, respectively;
magnetic diffusivity η; magnetic permeability µ. System properties: radius Ro ; gravity g ; rotation rate Ω;
large-scale magnetic field B0. Turbulent flow properties:∆ρ(`), u(`) and b(`) are `-scale density anomaly,
eddy velocity, and magnetic field intensity, respectively. We also write τη(Ro) as Tη for short. Adapted from
Table 1 of Chapter 8.06 of Treatise on Geophysics [Nataf and Schaeffer, 2015] with permission.

symbol value unit property

ν 10−6 m2 s−1 kinematic viscosity

κ 5 10−6 m2 s−1 thermal diffusivity

χ 10−9 m2 s−1 composiitonal diffusivity

η 1 m2 s−1 magnetic diffusivity

ρ 10.9 103 kg m−3 density

α 1.2 10−5 K−1 thermal expansion coefficient

CP 850 J kg−1 K−1 specific heat capacity

Ro 3.48 106 m core radius

Ri 1.22 106 m inner core radius

Mo 1.835 1024 kg outer core mass

g 8 m s−2 gravity

tΩ 1.38 104 s Earth’s rotation time (i.e. 1/2π day)

Pdi ss 3 1012 W available convective power

tSV 9 109 s Ro-scale core flow time (i.e. ' 300 years)

tAl f ven 1.4 108 s Ro-scale Alfvén wave time (i.e. ' 4 years)

Table II. Properties of Earth’s core. See Olson [2015] for details and uncertainties. Adapted from Table 3
of Chapter 8.06 of Treatise on Geophysics [Nataf and Schaeffer, 2015] with permission.
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3.1.1. diffusion

Ttimescales of diffusive phenomena all share the same form τ(`) = `2/D , where diffusivity D is ν, κ, χ or η
depending upon which field diffuses: momentum, temperature, composition or magnetic field, respectively.

3.1.2. convection

We introduce a ‘buoyancy’ or ‘free-fall’ timescale τρ(`) =
√

`
g

ρ
|∆ρ(`)| , which is the time it takes for a parcel of

fluid with density anomaly ∆ρ(`) to rise or sink a distance ` in the absence of diffusion. τρ(`) relates to density
anomaly ∆ρ at length-scale `. Density anomaly, flow velocity and magnetic field constitute the three fields for
which we seek an adequate turbulent description.

We have shown in section 2.1 that the value of τu at integral scale Ro measures the kinetic energy of the flow.
Similarly, gravitational energy Eg is measured by τρ(Ro) (as long as τρ(`) slope is less than 1) since:

Eg = 1

2

∫
Vo

g∆ρr dV ∼ Mo g Ro
∆ρ(Ro)

ρ
= MoR2

o

τ2
ρ(Ro)

. (7)

3.1.3. rotation

Rotation is a crucial ingredient of planetary core dynamics. It adds one important time in our τ-` regime
diagram: the rotation time tΩ =Ω−1, i.e., one day divided by 2π. Physical phenomena operating at timescales
smaller than tΩ are not influenced by planet’s spin, while those with longer timescales feel the effect of rotation.
We thus draw a horizontal line at tΩ in the diagram of Figure 2. The intersection of this line with the viscous line
yields Ekman layer’s thickness `E =p

ν/Ω. It is the only length-scale one can build from ν and Ω alone, and it
controls friction, hence viscous dissipation, that takes place at boundaries. It turns out that boundaries bring
up new important dynamical constraints and scales.

3.1.4. rotation and spherical boundaries

We will not review here the vast literature on rotating fluids in containers. The book of Greenspan [1968]
remains amazingly central. At this stage, let us simply recall that Navier-Stokes equation reduces to geostrophic
equilibrium when Coriolis acceleration dominates:

2ρΩ×u =−∇P, (8)

where u and P are fluid velocity and pressure, respectively. Taking the curl of this equation yields Proudman-
Taylor constraint:

∂u

∂z
= 0, (9)

where z coordinate is parallel toΩ. Reintroducing acceleration term ρ∂t u allows for the propagation of inertial
waves.

Proudman-Taylor constraint would inhibit all fluid motions in a rotating fluid bounded by a solid container.
Quasi-geostrophic (QG) fluid motions are instead observed, which approximately satisfy Proudman-Taylor
constraint (i.e., z-invariance) in the bulk (at least for one component, typically the azimuthal velocity), and
connect to boundaries via thin Ekman layers in which viscous forces balance Coriolis.

It is important to note that Proudman-Taylor constraint is established by the propagation of inertial waves
in the fluid, and is effective only when they had time to reach a boundary. Thus, a localized eddy of radius `
grows into a columnar vortex at a speed equal toΩ` [Davidson et al., 2006]. This means that large eddies rapidly
form quasi-geostrophic columns, while it takes more time for small eddies to form core-size columns. Time for
reaching quasi-geostrophy is thus given by:

τRossby (`) = Ro

Ω`
, (10)

as written in Table I. This line is drawn as a wavy line in Figure 2. It is pinned to time tΩ at `= Ro , and we extend
it until it reaches viscous line τν(`).
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Note that τRossby (`) also equals the time it takes for a Rossby wave of wavelength ` to propagate one
wavelength (hence its name) [Nataf and Schaeffer, 2015]. The intersection of the τu(`) line with the Rossby
line has ` = p

u(`)/Ω, which defines a Rhines scale (originally more precisely defined as ` = √
u/β, where

β= 2Ωsinθ/Ro is the northward gradient of Coriolis frequency at colatitude θ [Rhines, 1975]).
Flow is quasi-geostrophic for scales above τRossby line. In the triangle formed by Rossby, viscous and tΩ lines,

flow structures are elongated parallel to spin axis but not enough to reach both boundaries. Flow is 3D beneath
tΩ line.

3.1.5. Quasi-geostrophic dissipation

Quasi-geostrophic vortices dissipate kinetic energy by Ekman friction at boundaries of the liquid core. We
approximate energy loss rate p` of a single QG vortex of radius ` by:

p` = ρν
u2(`)

`2
E

`E`
2. (11)

Summing contributions of all `-scale QG vortices filling the entire core, we obtain the total power dissipated by
Ekman friction PQG . Dividing by the mass of the core, we obtain the QG viscous dissipation rate per unit mass
εQG at `-scale as:

εQG = νu2(`)

Ro`E
(12)

Ekman friction matters for QG vortices. We therefore draw the corresponding power markers on the Rossby
line, above which flow is quasi-geostrophic. Time τQG for which total viscous dissipation by Ekman friction
equals PQG is then obtained from equation (12) as:

τQG =
[

MoRo

PQG

√
ν

Ω3

]1/4

. (13)

This provides markers drawn in Figure 2 as diamonds along Rossby line, a factor of one thousand apart, the TW
marker being filled.

3.1.6. magnetic field, magnetic dissipation, magnetic energy

Magnetic fields are often produced and sustained by dynamo action within planetary cores. Presence of
a magnetic field allows the propagation of magnetohydrodynamic waves called Alfvén waves [Alfvén, 1942].
In a uniform magnetic field B0, these waves propagate at speed VA = B0/

p
ρµ, where µ is fluid’s magnetic

permeability.
We construct time τAl f ven = `pρµ/B0, the time it takes for an Alfvén wave to propagate distance `, with B0

the large-scale magnetic field. It is drawn as a red wavy line in Figure 2.
To describe magnetic field turbulent scales, we define a similar timescale, replacing B0 by `-scale magnetic

field b(`). Magnetic dissipation markers are labeled along τη magnetic diffusion line, following the same rule
as in equation (5).

Note that τb(Ro) = τAl f ven(Ro) provides the magnitude of magnetic energy Em (as long as τb(`) slope is less
than 1), since:

Em = 1

2µ

∫
Vo

B 2dV ∼ Mo

ρµ
b2(Ro) = MoR2

o

τ2
b(Ro)

. (14)

3.2. Dimensionless numbers

In order to connect to the huge literature pertaining to geophysical and astrophysical fluid dynamics, it is
important to relate our τ-` regime diagrams to widely used dimensionless numbers. These numbers are
dimensionless combinations of properties and field variables that appear when the equations governing the
dynamics of the system under study are made dimensionless by normalizing their various terms by ‘typical
scales’.
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number expression time ratio name

Re(`) u(`)`
ν

τν(`)
τu (`) Reynolds

Ra(`)
g`3|∆ρ(`)|/ρ

κν
τκ(`)τν(`)
τ2
ρ(`)

Rayleigh

Ek(`) ν
Ω`2

tΩ
τν(`) Ekman

Ekκ(`) κ
Ω`2

tΩ
τκ(`) thermal Ekman

Ekη(`)
η

Ω`2
tΩ

τη(`) magnetic Ekman

Ro(`) u(`)
Ω`

tΩ
τu (`) Rossby

Ro f f (`)

p
g`|∆ρ(`)|/ρ
Ω`

tΩ
τρ(`) free-fall Rossby

Rm(`) u(`)`
η

τη(`)
τu (`) magnetic Reynolds

Lu(`)
`B0
η
p
ρµ

τη(`)
τAl f ven (`) Lundquist

Λ(`)
b(`)B0

ρµu(`)Ω`
τu (`) tΩ

τb (`)τAl f ven (`) Elsasser

λ(`)
B0p
ρµΩ`

tΩ
τAl f ven (`) Lehnert

Table III. Expressions of `-scale dimensionless numbers. These numbers are also expressed as ratios of
characteristic `-scale times, which are defined in Table I. One recovers the classical expression of these
numbers at integral scale by setting `= Ro . Adapted from Table 2 of Chapter 8.06 of Treatise on Geophysics
[Nataf and Schaeffer, 2015] with permission.

For example, Reynolds number for a system of size L will be written: Re = U L
ν , where U is a typical fluid

velocity, and ν kinematic viscosity. Usually, it is when this dimensionless number is of order 1 that a change
of regime occurs. In this example: a change between a regime where momentum diffusion dominates over
advection when Re < 1 to one where advection dominates for Re > 1.

Most dimensionless numbers can be written as the ratio of two times. In our approach, we define length-
scale dependent dimensionless numbers, constructed as the ratios of the timescales of the relevant physical
phenomena. We thus define `-scale Reynolds number as: Re(`) = τν(`)

τu (`) , where τν(`) is momentum diffusion
timescale at length-scale `, while τu(`) is the overturn time of a vortex of radius `. Table III gives the expressions
of `-scale dimensionless numbers pertaining to planetary liquid core dynamics.

In τ-` regime diagrams, intersection of lines τx (`) and τy (`) of physical phenomena x and y occurs where

`-scale dimensionless number Z (`) = τy (`)
τx (`) equals 1. Each such intersection marks a change in the system’s

dynamic regime.

In Figure 2, we have labeled several line intersections, where specific dimensionless numbers equal 1. The
intersections of tΩ line and ν, κ and η lines indicate where corresponding `-scale Ekman numbers equal 1 in
the τ-` plane. Intersection of Alfvén line and magnetic diffusion line defines where `-scale Lundquist number
equals 1, marking a change from propagating Alfvén waves at larger scales to damped waves at smaller scales.
Similarly, intersection of Alfvén line and tΩ line yieldsλ(`) ∼ 1, whereλ is Lehnert number [Lehnert, 1954, Jault,
2008]. System rotation favors quasi-geostrophic Alfvén waves at timescales above this intersection.

More dimensionless numbers, such as Re, Rm, Ra, Ro, Ro f f , etc, will appear when we plot lines of system
fields (buoyancy, velocity, magnetic field) for the different turbulence scenarios we will explore.
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3.3. A word on Earth’s core properties

Most properties listed in Table II are taken from Peter Olson’s review in Treatise on Geophysics [Olson, 2015].
Some of them are known with great precision (to about 1‰ for core radius Ro and liquid core mass Mo), but
others are poorly constrained (to about 1 or 2 orders of magnitude for viscosity ν and compositional diffusivity
χ). In addition, most physical properties are expected to vary with radius. None of these (important) subtleties
are taken into account in the ‘fuzzy’ approach we advocate for building τ-` regime diagrams. Note that we
systematically drop all numerical prefactors, including 2π.

As noted in section 1, power available to drive the dynamics of the system under study is a key ingredient.
It largely controls the different turbulence regimes the system will experience. Thermal evolution of the Earth
has received considerable attention (see Nimmo [2015], Landeau et al. [2022], Driscoll and Davies [2023] for
reviews). It is now well established that the dynamics of Earth’s core today is powered by its slow cooling,
enhanced by the resulting growth of the solid inner core. As iron-nickel alloy crystallizes at its surface, it releases
latent heat and light elements that drive convection and power the geodynamo.

Despite uncertainties on isentropic heat flux, the available convective power is found to be in the range
0.8−5×1012 W for present-day core [Nimmo, 2015, Landeau et al., 2022]. We adopt value Pdi ss = 3 TW.

Last two rows in Table II are not used to build τ-` diagrams, but instead to test their relevance. Large-scale
vortex turnover time tSV ' 300 years is retrieved from core flow inversions of magnetic secular variation [e.g.,
Pais and Jault, 2008]. Large-scale Alfvén wave propagation time tAl f ven ' 4 years is deduced from the discovery
and analysis of ‘torsional oscillations’ in Earth’s core [Gillet et al., 2010].

It is also observed that the Lowes-Mauersberger spectrum of magnetic energy is flat at the core-mantle
boundary up to harmonic degree 13 [e.g., Langlais et al., 2014]. This means that energy is independent of length
scale in this scale-range, which translates into a τb(`) ∝ ` trend at large-scale (see Appendix A.2.1). Similarly,
core flow inversions favor an almost flat harmonic spectrum of kinetic energy up to degree 13 [Aubert, 2013,
Gillet et al., 2015, Baerenzung et al., 2016]. These trends are sketched in Figure 2.

4. τ-` regime diagrams for non-magnetic rotating core

We first present a reference model of rapidly rotating convection in a sphere, which we illustrate with the τ-`
diagram of an actual numerical simulation. We then propose an idealized scenario of turbulent convection in
Earth’s core in the absence of a magnetic field.

4.1. turbulence regimes for rotating convection

Many different turbulence regimes can occur in rotating convection, depending upon which forces are dom-
inant in Navier-Stokes equation (see Gillet and Jones [2006], Julien et al. [2012], Gastine et al. [2016], Guzmán
et al. [2021] for reviews). In Appendix B, we present the main relevant force balances for planetary cores, and
their τ-` translation.

We focus here on rapid rotation regimes, for which leading order balance is quasi-geostrophic (small Rossby
number), implying that convection is organized in columnar vortices aligned with planet’s spin axis. Next order
balance controls turbulence in planes perpendicular to the spin axis. In the absence of a magnetic field, the
relevant balance is between vortex advection, vortex stretching and vortex generation by buoyancy, the so-
called QG-CIA balance (see Jones [2015], Schwaiger [2020]).

Introducing scales `∥ ∼ Ro the height of convective columns, and `⊥ their radius in QG-CIA equilibrium, we
get (see Appendix B.3):

tΩτu(`∥) ∼ τ2
ρ(`⊥) ∼ τ2

u(`⊥). (15)

Further assuming τu(`) ∝ ` between `⊥ and Ro , one obtains:

`⊥ ∼ Ro
tΩ

τu(`⊥)
=

√
u(`⊥)Ro

Ω
, (16)



12 Henri-Claude Nataf and Nathanaël Schaeffer

which means that the system is in a Rhines state at `⊥, and thus that τu(`⊥) lies on Rossby line.
This scenario is well supported by the study of Guervilly et al. [2019], who performed numerical simulations

of thermal convection at low Prandtl number in a sphere, at Ekman numbers down to Ek(Ro) = 10−8 in 3D and
to Ek(Ro) = 10−11 in quasi-geostrophic 2D.

They find that dominant convective scale `⊥ obeys a QG-CIA balance, and they derive simple scaling laws,
which translated in τ-` terms (assuming their Ur ms ' u(`⊥)) yield:

`⊥/Ro = 8.5 Ro f f (Ro) (17)

and:

Ro(`⊥) = 0.6
Ro

`⊥

(
Ro f f (Ro)

)2 , (18)

where Ro(`) and Ro f f (`), are `-scale Rossby and free-fall Rossby numbers, respectively, as defined in Table III.
Combining equations (17) and (18), and dropping prefactors, one recovers equation (16).

Figure 3a displays the τ-` diagram of Guervilly et al. [2019]’s most extreme 3D simulation. We use radius Ro

and tΩ (rotation rate’s inverse) of the actual Earth core as length-scale and timescale, respectively, from which
we draw lines tΩ and τRossby . Input dimensionless parameters of the simulation (Ek(Ro) = 10−8, Pr = 10−2)
provide values needed to build lines τν and τκ. Gravity is obtained from Rayleigh number Ra(Ro) = 2.5×1010.
Power dissipation markers are drawn, using outer core mass Mo .

Volumetric averages of azimuthal order m-spectra of a snapshot of this simulation are converted in τu(`)
and τρ(`) lines, following equations (42) and (44) of Appendix A.2.2. Flow becomes anisotropic at large length-
scale, as shown by the additional τur (`) line of radial velocities. This line displays a sharp timescale minimum,
defining length-scale `⊥, which coincides with the length-scale given by power dissipation occurring in Ekman
layers (horizontal dashed line pinned to the Rossby line), which is slightly larger than bulk viscous dissipation
(marked by a dashed line attached to line τν(`)). QG-CIA balance seems satisfied within one order of magnitude
with τRossby (`⊥) ∼ τu(`⊥) ∼ τρ(`⊥). Note that line τu(`) stays above Rossby line at all length-scales, in line with
the high degree of z-invariance observed in this simulation.

4.2. τ-` diagram for a non-magnetic Earth core

We now have all elements to start building a τ-` scenario for rotating convection in a non-magnetic Earth’s core,
which we present in Figure 3b. Adopting a QG-CIA balance, we further require that viscous dissipation mainly
occurs in Ekman layers, at the ‘optimum’ radius of convective columns `⊥ = `∗, which lies on the Rossby line.

From power dissipation markers along the Rossby line, we place the optimum at time τ∗ =
[

Mo Ro
Pdi ss

√
ν
Ω3

]1/4
,

which provides requested Pdi ss .
While the second term of QG-CIA balance in equation (58) predicts τρ(`⊥) = τu(`⊥), Guervilly et al. [2019]’s

results indicate τρ(Ro) = τu(`⊥). Rather arbitrarily, we stick to QG-CIA balance and assume that density
anomalies do not depend on length-scale, which translates into τρ(`) ∝ `1/2.

It remains to draw line τu(`) for ` smaller and larger than `⊥. Figure 3 of Guervilly et al. [2019] shows that
kinetic energy cascades steeply to small scales below `⊥ scale, with a spectrum E(m) ∝ m−5, where m is the
azimuthal wavenumber, which we translated into τu(`) ∝ `−3/2 following equation (42) of Appendix A.2.2 1.
Flow becomes anisotropic for `> `⊥, with radial velocities decreasing as ` increases, while azimuthal velocities
increase with `. We loosely prescribe τur (`) ∝ `3/2 and τuaz (`) ' τu(`) ∝ `1/2 for `> `⊥.

Reading the τ-` diagram of Figure 3b, we see that core flow in a non-magnetic Earth would be quasi-
geostrophic at all scales, with azimuthal velocities reaching 3 m s−1, much larger than present-day core flow
velocities represented by its tSV value and trend. The radius of dominant columnar vortices would be around
200 km. Ekman layer viscous dissipation would dominate over bulk viscous dissipation by many orders of
magnitude.

1Note that τu (`) scales as `−1 and plots along the Rossby line if we use equation (33) instead, as in Rhines [1975].



Henri-Claude Nataf and Nathanaël Schaeffer 13

(a) 3D simulation from Guervilly et al. [2019]. (b) QG-CIA scenario for a non-magnetic Earth core.

Figure 3. τ-` diagrams for non-magnetic rapidly rotating convection. Same conventions as in Figures
1 and 2. The thick orange line is τρ(`). Radial flow velocities ur (pale blue) are smaller than azimuthal
velocities at large length scales. (a) 3D numerical simulation from Guervilly et al. [2019] scaled to Earth
parameters. Blue horizontal dashed lines mark viscous dissipation in the bulk (pinned to line τν(`)) and
in Ekman layers (pinned to Rossby line). (b) Scenario for the Earth assuming a QG-CIA force balance. The
dominant vortex radius at ` = `⊥ = `∗ is pinned to dissipation time τ∗ (blue dashed line) on the Rossby
line. Line τu(`) splits in two lines for `> `⊥, with stronger azimuthal velocities than radial velocities (label
ur ). Flow and density time- and length-scales at convection threshold are marked by black and orange
triangles, respectively (see text).

We observe that relations between `⊥, τu(`⊥) and τρ(`⊥) ressemble those between `c , τc and τρc , where `c

is the critical wavelength of convective instability at convection onset, τc the corresponding period, and τρc the
critical density threshold, as defined in Supplementary Material ’s section S1. In Figure 3b, we plot (`c ,τc ) and
(Ro ,τρc ) as black and orange triangles, respectively. Starting from (`c ,τc ), convective optimum ‘slides’ along
Rossby line as more power is given to the system, towards larger Ekman layer dissipation, which gradually
dominates over bulk viscous dissipation.

5. τ-` regime diagrams for Earth’s core

In this section, we examine which τ-` regime diagrams to expect for the Earth’s core. Our goal is not to come up
with an optimal or accurate scenario, but rather to illustrate how τ-` diagrams can help inventing and testing
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(a) S2 DNS of Schaeffer et al. [2017]. (b) A simple MAC-balance scenario for Earth core.

Figure 4. τ-` diagrams for rapidly rotating convective dynamo. Same conventions as in Figure 2. Blue,
red and orange lines are τu(`), τb(`) and τρ(`), respectively. Red and blue stars on the right y-axis mark
magnetic intensity and velocity amplitude, respectively, predicted by Christensen and Aubert [2006]’s
scaling laws. Blue cross from Davidson [2013]’s velocity scaling law. (a) 3D numerical simulation S2 of
Schaeffer et al. [2017], scaled to Earth parameters. Red and blue horizontal dashed lines mark ohmic
and viscous dissipation, respectively, as measured in the simulation. Dotted lines indicate approximated
values discussed in Appendix A.3. (b) Scenario for the Earth assuming a MAC force balance. Ohmic
dissipation of available convective power Pdi ss is marked by a blue horizontal dashed line pinned to line
τη(`). It controls length scale `∗ (indicated by a red vertical dash-dot line) at which turbulence regime
changes. Circles labeled Re and Rm at the intersections of line τu with lines τν(`) and τη(`) mark the
scales at which the corresponding `-scale dimensionless number (see Table III) equals 1.

such scenarios. We now consider the presence of a magnetic field and try to document Earth’s core τ-` diagram,
for which we presented a template in Figure 2.

Let us start by building and discussing the τ-` regime diagram (Figure 4a) of one of the most extreme
dynamo simulation available today: the S2 DNS of Schaeffer et al. [2017]. We use radius Ro and tΩ of the
actual Earth core as length-scale and timescale, respectively, from which we draw lines tΩ and τRossby (`). Input
dimensionless parameters of the simulation (Ek(Ro −Ri ) = 10−7, Pr = 1, Pm = 0.1) provide values needed to
build lines τν(`), τκ(`) and τη(`). Power dissipation markers are drawn, using outer core mass Mo .

Lines τu(`) and τb(`) are the τ-` translation of the magnetic and velocity energy n-degree spectra (time-
averaged volumetric average), as obtained by applying equations (42) and (43) of Appendix A.2.3, respectively,
replacing Ro by the volumetric average of radius (0.77Ro). tSV and tAl f ven are deduced from their largest
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scale values (spherical harmonic degree n = 1). The simulated acceleration of gravity g at the top boundary
is obtained from:

g = Ra∗Ro κν

(Ro −Ri )4 , (19)

with Ra∗ = Ra/βRo = 2.4 × 1013, where Ra is the classical large-scale Rayleigh number, and β the imposed
codensity gradient at the top boundary. We then obtain line τρ(`) by applying equation (44) to the codensity
spectrum multiplied by Pr2. Ohmic and viscous dissipations Dη and Dν of Table 2 of Schaeffer et al. [2017] are
scaled to Earth’s core by: P = Dρν3/(Ro −Ri ), and are shown as horizontal dashed lines attached to lines τη(`)
and τν(`), respectively (see Appendix A.3 for discussion).

Reading the resulting τ-` diagram, we see that: magnetic energy largely dominates over kinetic energy
(tAl f ven ¿ tSV ); Ohmic dissipation dominates over viscous dissipation (compare dissipation powers indi-
cated by horizontal dashed lines pinned to lines τη(`) and τν(`), respectively); flow should be largely quasi-
geostrophic, since the τu(`) line stays above the Rossby line down to dissipation length-scales. We also observe
that both lines τu(`) and τb(`) have slopes close to 1 at large length-scale, while τρ(`) line is nearly horizontal,
and that the intersection of lines τη(`) and tAl f ven is close to that of lines τη(`) and tΩ.

We now examine different scenarios for Earth’s core, testing several of the force balances defined in Appendix
B.

5.1. A simple MAC-balance scenario

Figure 4b proposes a first attempt to document the template of Figure 2. Because magnetic diffusivity is much
larger than viscosity, dissipation in the core is expected to be mostly Ohmic. We formulate the ansatz that
available convective power Pdi ss is dissipated by Joule heating, which means that τb(`) line should get down
to (but not below) time τ∗ = √

Moη/Pdi ss that yields a dissipation equal to Pdi ss . This time is drawn as a
horizontal dashed line pinned to line τη(`) in Figure 4b.

We now need to guess at which ` = `∗ the τb line should hit that line. For a maximum Ohmic dissipation
to be obtained at that level, τb line should rise up for ` < `∗. We infer that this change should be caused by a
flow modification. Once τu line crosses τη line, flow enters a regime of low Rm magnetohydrodynamic (MHD)
turbulence in presence of a strong magnetic field, in which the intensity of the induced magnetic field b is
severely reduced. This suggests Rm(`∗) ∼ 1, which implies:

Rm(`∗) = τη(`∗)

τu(`∗)
= 1. (20)

This first condition links velocity field to magnetic field but is not sufficient to provide `∗. We need another
hypothesis. In this simple scenario, we assume that the system achieves a MAC force balance (see Appendix
B.4) at dissipation scale `∗.

We deduce that `-scale Elsasser number is also equal to 1 at `= `∗.

Λ(`∗) = τu(`∗)tΩ
τb(`∗)τAl f ven(`∗)

= 1. (21)

Further assuming τb(`∗) = τAl f ven(`∗), meaning that `∗ lies on the Alfvén line, we combine equations (20)
and (21) and obtain:

τ∗ ≡ τb(`∗) =
√

tΩτη(`∗). (22)

Graphically, this means that `∗ is such that distance between τη(`∗) and τ∗ equals distance between τ∗ and tΩ.
Length-scale `∗ is obtained by: (

`∗
Ro

)2

= τ∗
tΩ

τ∗
Tη

= 1

tΩT 2
η

MoR2
o

Pdi ss
, (23)

where Tη = τη(Ro). MAC balance also provides τρ(`∗) = τb(`∗) = τ∗. Assuming that τρ(`) does not depend upon
` provides the orange horizontal line in Figure 4b.
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The regime of MHD turbulence in the presence of a strong magnetic field for ` < `∗ is characterized by
steep energy spectra: E(k) ∝ k−3 and Em(k) ∝ k−5 [Alemany et al., 1979], yielding the slopes drawn for τu(`)
and τb(`), respectively, in Figure 4b (see Appendix A.1). Adding rotation further reduces turbulence level [Nataf
and Gagnière, 2008, Kaplan et al., 2018], but we lack constraints on the resulting energy spectra (but see
Supplementary Material’s section S3).

In the dynamo region (`> `∗), we assume a k−1 energy density spectrum (i.,e., τ(`) ∝ `). This is consistent
with our assumption that point (`∗, τ∗) lies on the Alfvén line, and is also suggested by Figure 4a and
observations, as discussed in section 3.3. But the main motivation is pedagogical, as explained below.

At the largest scale, our scenario yields velocity and magnetic amplitudes that are not too far from the
observed tSV and tAl f ven values. They translate into a magnetic to kinetic energy ratio of about 104, according
to equations (6) and (14). Bulk and boundary viscous dissipations have comparable amplitudes, both several
orders of magnitude smaller than Ohmic dissipation, as assumed.

The smallest QG vortices are very sluggish, with a turnover time of about 1 year and a radius of 1 km.
Magnetic diffusion is largest at a length-scale of about 10 km.

It is interesting to observe that our scenario implies that Alfvén line intersects τη line at tΩ, meaning that
all three `-scale dimensionless numbers Ekη, Lu and λ equal 1 at this same scale. This implies that B0 can be
deduced from the intersection of lines τη and tΩ. In other words, even though our scenario has been built to
achieve a given Ohmic dissipation Pdi ss , the actual value of B0 does not depend on Pdi ss . Only the kinetic
energy depends on Pdi ss .

5.2. A simple QG-MAC balance scenario

In our simple MAC-balance scenario, all length-scales ` > `∗ have Λ(`) < 1, while τu(`) velocity line remains
above Rossby line in the dynamo generation domain (Rm(`) > 1). Leading-order force balance should therefore
be quasi-geostrophic, with convective motions forming columnar vortices parallel to the rotation axis, and we
should rather target a QG-MAC force balance to build our τu , τb and τρ lines.

Appendix B.5 recalls that QG-MAC balance for columns of radius `⊥ and length `∥ ∼ Ro writes:

Ωu

`∥
∼ b2

ρµ`2
⊥
∼ ∆ρ

ρ

g

`⊥
, (24)

which translates into:
tΩτu(`∥) ∼ τ2

b(`⊥) ∼ τ2
ρ(`⊥), (25)

One then needs to guess at which scale `⊥ this balance should apply. One cannot choose `⊥ = `∗ as in
our simple MAC scenario, because this would place τu(`∗) very far down, below the tΩ line, breaking quasi-
geostrophy, and yielding E À Em in strong disagreement with observations.

Figure 5a displays the τ-` diagram of a QG-MAC scenario with `⊥ = Ro/10. We retain the same hypotheses
as in our MAC scenario: τu(`) ∝ ` and τb(`) ∝ ` for `∗ < ` < Ro , together with Rm(`∗) = 1 and τb(`∗) = τ∗
fixed by Pdi ss .

QG-MAC balance at scale `⊥ then yields: (
`∗
Ro

)3

=
(
`⊥
Ro

)2 τ∗
tΩ

τ∗
Tη

. (26)

Comparing with Figure 4b, we see that this scenario predicts a larger magnetic over kinetic energy ratio, with
τu above the Rossby line down to scales of a few hundred meters. Another difference is the level of line τρ(`),
now at time τb(`⊥) instead of τ∗ in our MAC scenario.

5.3. A QG-MAC balance scenario à la Aubert

In previous scenario, choosing `⊥ = Ro/10 was borrowed from Aubert et al. [2017] and Aubert [2019], who find
it in good agreement with numerical simulation results. Following Davidson [2013], Aubert [2019] proposes a
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(a) Simple QG-MAC balance scenario. (b) QG-MAC balance scenario à la Aubert

Figure 5. τ-` regime diagrams of two QG-MAC balance scenarios, which only differ by the τu(`) scaling
law chosen for `∗ < ` < `⊥. Blue vertical dash-dot line indicates length scale `⊥. See figure 4b for other
indications.

τu(`) scaling for `∗ < `< `⊥ that differs from the one we used in section 5.2. In that interval, Davidson [2013]
infers that vorticity, rather than velocity, is independent of `. This translates into τu(`) being constant instead
of τu(`) ∝ `.

Keeping our other hypotheses, `∗ is then given by:(
`∗
Ro

)4

=
(
`⊥
Ro

)3 τ∗
tΩ

τ∗
Tη

. (27)

The corresponding τ-` regime diagram is shown in Figure 5b. It agrees amazingly well with observed tSV and
tAl f ven values and trends. The τu(`) line is even higher above Rossby line than in previous scenario. However,
keeping in mind the criterion that defines MAC-balance (τb at mid-distance between tΩ and τu from equation
(60) in Appendix B.4), we observe that magnetic field might damage quasi-geostrophy at a length-scale `M AC

not far below `⊥. In fact, we get:
`M AC

Ro
=

(
`⊥
Ro

)3/2

' 1

32
. (28)

5.4. The interesting case of Venus

The internal structure of Venus is very poorly known, but we know that it does not generate a magnetic field.
This important difference from its sister planet Earth is classically explained by a different thermal history,
leading to a hot mantle convecting beneath a rigid lid, preventing core cooling, hence halting the convective
engine of the dynamo [Stevenson et al., 1983, Nimmo, 2002].



18 Henri-Claude Nataf and Nathanaël Schaeffer

Figure 6. Devil’s advocate τ-` regime diagram for Venus, copied from scenario QG-MAC a la Aubert
of Figure 5b, assuming Earth’s core parameters, except for spin rate taken as the actual one of Venus
(rotation period of 243 days). This diagram predicts a magnetic intensity comparable to that of the Earth,
incompatible with the observed upper bound shown by tAl f ven at the top of right y-axis. It serves as an
illustration of regime changes due to spin rate.

Venus and Earth also differ by their spinning rate: one turn in 243 days instead of one day. This difference
is usually considered as unimportant since rotation still appears overwhelming, with an Ekman number
Ek(Ro) ∼ 10−13 [Russell, 1980].

However, if we adopt for Venus the same physical properties as for Earth, including its available convective
power Pdi ss , but update the spinning rate to the one of Venus, we encounter a problem, illustrated in Figure 6.

While pulling Earth’s core out of the validity region of a QG-MAC regime seems to require very unrealistic
values of convective power, as we discuss in next section, the TW dissipation mark falls below the tΩ line of
Venus, for both Ohmic dissipation and Ekman friction (for which the marker falls beyond `= Ro axis on Rossby
line).

Applying the same QG-MAC scenario as in section 5.3 places the dynamo-generating region well within the
non-quasigeostrophic triangle, defeating the assumed force balance. A difference subsists in the absence of a
magnetic field: we cannot apply the QG-CIA balance of section 4.1 since Pdi ss cannot be dissipated by Ekman
friction alone.

Our exercise is very formal since we recall that there are good reasons to believe that such a Pdi ss is not
available for Venus [Stevenson et al., 1983, Nimmo, 2002]. Nevertheless, our diversion to Venus questions the
notion of ‘rapid rotator’ and shows that for a given convective power Pdi ss , planet’s spin rate might play a
more important role than simply inferred from the low Ekman number it delivers. MAC balance of section 5.1
suggests that a rough condition for rapid rotator dynamo is Pdi ss <Ω2ηMo .
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6. Discussion

We discuss here what can be read from the τ-` diagrams we presented, and how they relate to previous work.

6.1. Scenario validity domain

One goal of our approach is to better appreciate the validity domain of the various regimes encountered
in planetary cores. For example, no dynamo will exist if line τu(`) plots too high in the diagram, yielding
Rm(Ro) ∼ 1. In Earth’s core, this would only happen for Pdi ss values several orders of magnitude smaller
than our reference value of 3 TW. Actually, very low values (even negative) are not excluded by some thermal
history models, before the birth of the inner core (e.g., Landeau et al. [2022]). At the other end, large Pdi ss

values can pull the dynamo generation domain (Rm(`) > 1) partly beneath the Rossby line. Complete columnar
vortices won’t then have time to form at length-scales below the Rossby line, and we might have a somewhat
different turbulence regime. Davidson [2014] proposed an original dynamo scenario that corresponds to such
a situation. Noting that inertial waves are strongly helical, and that flow helicity is a key ingredient for dynamo
action, he suggests that Earth’s dynamo might operate this way. None of the three scenarios we presented
(Figures 4b, 5a, 5b) puts Rm ∼ 1 below the Rossby line. However, it would only take Pdi ss ' 12 TW for the
MAC scenario (Figure 4b) to qualify (remember we only consider orders of magnitude).

Also note that in all three scenarios, dynamo gets closer to equipartition (τu(`) = τb(`)) as Pdi ss increases.
While Earth’s core turbulence regime seems relatively immune to convective power variations, Venus’ devil’s

advocate (Figure 6) indicates that a lower spin rate can have a strong effect. We think that τ-` diagrams should
be drawn for planets and stars before inferring their dynamo characteristics.

6.2. Dynamo scaling laws

Christensen [2010] nicely reviews a number of scaling laws proposed to infer the magnetic field intensity of
planets (and stars). Among the nine proposed scaling laws he lists, five relate magnetic intensity to planetary
rotation rateΩ, with no influence of the available convective power Pdi ss , three involve bothΩ and Pdi ss , and
one only Pdi ss . The latter one, first proposed by Christensen and Aubert [2006], stems from the analysis of a
large corpus of numerical simulations of the geodynamo, backed by an appraisal of the dominant terms in the
governing equations. It is the law preferred by Christensen [2010] who shows that it is in good agreement with
the measured magnetic intensity of planets and stars.
Translated in τ-` formulation, Christensen’s preferred laws yield:

τu(Ro) = 1

cu

(
MoR2

oΩ
1/2

F̃ Pdi ss

)2/5

'
(

T 2
ητ

4∗
tΩ

)1/5

(29)

τb(Ro) = 1√
2cb fohm

(
MoR2

o

F̃ Pdi ss

)1/3

' (
Tητ

2
∗
)1/3

, (30)

from equations (32) and (15) of Christensen [2010], assuming that energies are in this largest-scale component,
with F̃ = F /3.1, and converting Pdi ss = 4πR2

o qo , with qo , fohm , cu ' 1.05, cb ' 0.63, and F ' 1 as he defines
them. Both large-scale flow velocity U and magnetic field B do not depend upon magnetic diffusivity2, and
B is also independent of spin rate Ω. These predictions are displayed by blue and red stars on the right axis in
Figures 4, 5, and 6. While B-prediction agrees well with observations, U -prediction over-estimates flow velocity.

2Note that one can define a dissipation time Tdi ss = 3
√

Mo R2
o

Pdi ss
, which makes it more explicit that Tητ2∗ = T 3

di ss is independent of

magnetic diffusivity η.
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Davidson [2013] re-examined this question and noted that inertia is playing too strong a role in Christensen
and Aubert [2006]’s simulations. He derived a MAC-balance variant and obtained a revised flow velocity law
(his equation (15)), which translates into:

τu(Ro) 'Ω1/3
(

MoR2
o

Pdi ss

)4/9

=
(

T 4
ητ

8∗
t 3
Ω

)1/9

, (31)

in which U is independent of magnetic diffusivity η. Davidson’s prediction is drawn as a blue × in Figures 4, 5,
and 6.

Our discussion on scenario validity domain questions the obtention of universal dynamo scaling laws.
However, such scaling laws can be easily derived for the three scenarios we presented, and they nicely illustrate
the diversity one can get. Each scenario produces τu(Ro) and τb(Ro) that combine τ∗ (or Tdi ss ), Tη and tΩ with
various powers.
Our MAC scenario produces:

τu(Ro) =
(

Tητ2∗
tΩ

)1/2

=
(
ΩMoR2

o

Pdi ss

)1/2

τb(Ro) = (
tΩTη

)1/2 = Ro√
Ωη

,

for which B is independent of Pdi ss , and U is independent of magnetic diffusivity η.
The QG-MAC scenario yields:

τu(Ro) =
(
`⊥
Ro

)2/3
(

T 2
ητ

2∗
tΩ

)1/3

=
(
`⊥
Ro

)2/3 (
ΩR2

o MoR2
o

ηPdi ss

)1/3

τb(Ro) =
(

Ro

`⊥

)2/3 (
tΩTητ∗

)1/3 =
(

Ro

`⊥

)2/3 (
ηMoR2

o

Ω4R2
oPdi ss

)1/6

And our QG-MAC a la Aubert scenario gives:

τu(Ro) =
(
`⊥
Ro

)1/2
(

Tητ2∗
tΩ

)1/2

=
(
`⊥
Ro

)1/2 (
ΩMoR2

o

Pdi ss

)1/2

τb(Ro) =
(

Ro

`⊥

)3/4 (
tΩTητ

2
∗
)1/4 =

(
Ro

`⊥

)3/4 (
MoR2

o

ΩPdi ss

)1/4

,

predicting U and B independent of magnetic diffusivity η, unless `⊥/Ro depends upon η.

6.3. Strong and weak dynamos

All three MAC-type scenarios we presented produce a magnetic field whose energy is several orders of mag-
nitude larger than kinetic energy, as observed for the Earth. They thus belong to the category of ‘strong-
field’ dynamos. Dormy [2016] points out that strong-field dynamos can be obtained in numerical simulations
with large magnetic Prandtl number Pm = ν/η. He stresses that minimising Pm at a given Ekman number
Ek(Ro) = ν/ΩR2

o is not a good strategy to approach Earth core regimes, since it increases magnetic Ekman
number Ekη(Ro) = η/ΩR2

o . Similarly, Christensen et al. [2010] show that Ekη(Ro) < 10−4 is needed for obtaining
Earth-like geodynamo models. In all scenarios we explored, viscosity ν plays no role, while magnetic Ekman
has a crucial role (see section 5.4 in particular).

Our three MAC-type scenarios can easily be built with large Pm, while retaining all characteristics of Earth-
like dynamos: Em À E , dominant Ohmic dissipation, and MAC force balance. However, we find that the
examples produced by Dormy [2016] depart from these conditions, because viscosity strongly controls their
patterns, as shown in Supplementary Material’s section S2.
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7. Limitations and perspectives

Let us first recall that our τ-` approach is not a theory of turbulence. We try to formulate plausible scenarios
by identifying scales at which a change in turbulence regime should occur, and by patching scaling laws
appropriate for each regime. We thus entirely depend on the availability of such laws, which can be brought
by experiments, theory, and numerical simulations.

For simplicity reasons, we have treated planetary cores as simple full spheres. The application to actual
planets requires to at least consider spherical shells of various thicknesses instead. An extension to giant planets
and stars also requires taking into account compressibility and free-slip boundaries.

For simplicity reasons again, in particular to provide the simplest possible link with classical dimensionless
numbers, we have ignored all prefactors. This can be a bit irritating when these prefactors pile up to produce
orders of magnitude... For objects of particular interest, such as Earth’s core and Sun’s convective zone, it might
be desirable to adopt a more accurate description.

We observe that density anomaly spectra from numerical simulations are rarely displayed, while they convey
valuable information. We also note that spectra from laboratory experiments are scarce (but see Madonia et al.
[2023]) and too often given in ‘arbitrary units’, preventing their conversion into τ-` representation. We are
lacking experimental data on turbulence for rotating convection in a sphere in presence of strong magnetic
fields.

τ-` diagrams provide hints on how velocity and magnetic field scale with length-scale. This might be useful
for observers who need such constraints to tune their magnetic field and core-flow inversions [Gillet et al.,
2015, Baerenzung et al., 2016].

8. Conclusion

τ-` regime diagrams are a simple graphical tool that proves useful for inventing or testing dynamic scenarios
for planetary cores. Tradition in fluid dynamics is to characterize systems by dimensionless numbers, usually
based on ‘typical’ large-scale quantities. Past decades have seen large efforts to develop a more detailed
description of phenomena that operate at different scales. This has led to the apparition of even more
dimensionless numbers, in which the various scales involved do not always figure very clearly, and to the
construction of somewhat unintelligible scaling laws. By defining τ timescales that depend on ` length-scales
over their entire range, we hope to make these choices more explicit. By providing a simple graphical identity to
these scales, we wish to make their meaning more intuitive. Contrary to spectra in ‘arbitrary units’, τ-` diagrams
give insight into regimes and balances which are paramount to rotating, magnetized and/or stratified fluids,
where waves can be present and significantly alter the dynamics.

Because they put together most key properties of a given object, τ-` regime diagrams constitute a nice iden-
tity card. We think this applies to numerical simulations and laboratory experiments as well. Both approaches
enable extensive parameter surveys, which are crucial for exploring and understanding different regimes. Be-
ing object-oriented, τ-` diagrams are not easily applied to such surveys, but we think they would very valu-
ably complement classical scaling law plots. The idea would be to draw τ-` diagrams for a few representative
members and end-members of the survey, which would nicely illustrate their validity range.

Our article thus has two goals. The first goal is to provide all ingredients for building your own τ-` diagram,
be it of a numerical simulation, a laboratory experiment or theory. To that end, we included construction
rules, examples, technical appendices, and Python scripts (supplementary material). The second goal is to
demonstrate the potential of τ-` regime diagrams for suggesting and testing various scenarios for Earth’s
dynamo.

Convinced that available convective power Pdi ss is a key control parameter, and the one that can most
readily be estimated for other planets and exoplanets, we have modified our original approach [Nataf and
Schaeffer, 2015] to propose and discuss a few scenarios built upon this input data. This results in a more
challenging exercise, calling for force balance inspection.
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The resulting τ-` diagrams (Figures 4b, 5a, 5b) display more clearly than previous analyses the range of
validity of assumed force balances. In particular, a diversion to Venus (Figure 6) calls for a re-analysis of what is
called a ‘fast rotator’.
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Appendix A. τ-` representation of turbulent spectra

Our ‘fuzzy physics’ approach targets gathering dominant physical phenomena in a common frame. Some
of them are classically defined in wavenumber or frequency space, rather than in physical space, hence the
need for some conversion. This appendix lists the different types of energy spectra that are usually obtained
from observations, numerical simulations and experiments, and derives recipes for converting them into τ-`
language.

A.1. Choosing a conversion rule

We consider different expressions of total energy per unit mass U :

U =
∫

E(k)dk or U =∑
ki

EB (ki ) or U (r ) =∑
n

Ln(r ). (32)

E(k) is the classical spectral energy density introduced by Kolmogorov [1941]. EB (ki ) is the discrete equivalent
of E(k) for flow ‘in a box’ [Lesieur, 2008]. Ln(r ) is the degree n component at radius r of Lowes-Mauersberger
spectrum widely used in geomagnetism [Lowes, 1966].

A flow with spectral energy density E(k) ∝ k−5/3 yields the same k-exponent for its discrete energy spectrum
EB [Lesieur, 2008, Stepanov et al., 2014], and a n−5/3 Lowes-Mauersberger spectrum. However, pre-factors may
differ. More importantly, the conversion of energy spectra into τ-` equivalents is questionable.



Henri-Claude Nataf and Nathanaël Schaeffer 23

In Kolmogorov [1941]’s universal turbulence, an eddy turnover time is classically derived as:

τu(`) ' `3/2 [E(k)]−1/2 with `' 1/k, (33)

where` is the ‘size’ of the eddy. A similar result is obtained using velocity increments S2(`) =< [u(x+`)−u(x)]2 >.
This conversion rule was used in Nataf and Schaeffer [2015], and we kept it to build Figure 1. This approach is
appealing for Kolmogorov-type self-similar inertial range where no length-unit other than ` should appear,
and where large eddies are more energetic than small eddies. Even then, no exact conversion between spectral
energy density and eddy velocity can be drawn, as thoroughly discussed by Davidson and Pearson [2005].

In this article, we prefer converting spectral harmonic coefficients of energy at a given degree n into velocity
or magnetic field at the scale corresponding to n. Equation (33) is then replaced by:

τu(`(n)) ' `(n) [Ln]−1/2 with `(n) ' 1

2

πRo

n +1/2
. (34)

A.2. Application to various relevant spectra

We now detail the τ-` conversion of spectra commonly obtained from observations, numerical experiments
and laboratory experiments/

A.2.1. Lowes-Mauersberger spectrum

In geomagnetism, the variation of magnetic energy with length-scale is usually measured by its Lowes-
Mauersberger spectrum [Lowes, 1966]. This spectrum is expressed in terms of Gauss coefficients g m

n and hm
n

of scalar magnetic potential V , which defines the internal magnetic field at any radius above the core-mantle
boundary when the mantle is considered as an electrical insulator.

Potential V (r,θ,ϕ) is then solution of Laplace equation and can be expressed in terms of spherical harmon-
ics as:

V (r,θ,ϕ) = Ro

∞∑
n=1

n∑
m=0

(
Ro

r

)n+1

(g m
n cosmϕ+hm

n sinmϕ)P m
n (cosθ), (35)

where P m
n are the Schmidt semi-normalized associated Legendre functions of degree n and order m (note that

the spherical harmonic degree is often noted l rather than n, which we have adopted to avoid a confusion with
length-scale `).

Following Langlais et al. [2014], the Lowes-Mauersberger spectrum at any r > Ro is then given by the suite
of Ln defined by:

Ln(r ) = (n +1)
n∑

m=0
((g m

n )2 + (hm
n )2)

(
Ro

r

)2n+4

. (36)

The total magnetic energy per unit mass at radius r is obtained as:

Um(r ) ≡ B 2(r )

2µ
=

∞∑
n=1

Ln(r ). (37)

Spherical harmonic degree n is related to our ` length-scale by:

`(n) ' 1

2

πRo

n +1/2
. (38)

We deduce from equations (37) and (38) that the magnetic field b(`,r ) at length-scale ` and radius r is given
by:

b(`(n),r ) '
√

2µLn(r ). (39)

We finally obtain τb(`) from:

τb(`(n)) ' `(n)√
2Ln/ρ

with `(n) = 1

2

πRo

n +1/2
. (40)

A flat Lowes-Mauersberger spectrum (constant Ln), such as observed for the Earth’s magnetic field at the core-
mantle boundary, thus translates into τb(`) ∝ `.
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A.2.2. Numerical simulation spectra

Numerical simulations of planetary dynamos are most often performed using a pseudo-spectral expansion
in spherical harmonics Y m

n (θ,ϕ) of degree n and order m. Degree-n or order-m spectra are thus readily
obtained for both velocity, magnetic and codensity fields. These spectra are usually for u2, b2 and C 2 in
dimensionless units, such that the sum over all n and m yields 2/ρ times the energy per unit mass of that
dimensionless field. Given length-scale L and time-scale T chosen in the simulation, u and b spectra should be
multiplied by L2/T2 (assuming that b is expressed in Alfvén wave velocity units).

A.2.3. Degree-n energy spectra

Given these precisions, the procedure is similar to that exposed in section A.2.1. `(n) is given by:

`(n) = 1

2

πRo

n +1/2
. (41)

One should keep in mind that for a given degree n, the corresponding length-scale varies linearly with
radius. This is ignored in our approach. If Sn is the n-element of the dimensionless x2 spectrum, then the
corresponding τx (`) lines for x = u, b and ρ are given by:

τu(`(n)) ' T

L

`(n)√
Sn

, (42)

τb(`(n)) ' T

L

`(n)√
Sn

, (43)

τρ(`(n)) '
√

`(n)

g
√

Sn

, (44)

where gravity g (in dimensional units) is obtained from the input Rayleigh number.
In the example of Figure 3a from Guervilly et al. [2019], the simulated acceleration of gravity g at the top

boundary is obtained from:

g = RaRo κν

R4
o

, (45)

with Ra = 2.5×1010.
In the example of Figure 4a from Schaeffer et al. [2017], g is obtained from:

g = Ra∗Ro κν

(Ro −Ri )4 , (46)

with Ra∗ = Ra/βRo = 2.4×1013, where β is the imposed codensity gradient at the top boundary. We then obtain
the τρ(`) line by applying equation (44) to the codensity spectrum multiplied by Pr2.

A.2.4. Order-m energy spectra

Quasi-geostrophic vortices are better characterized by their order-m spectra Sm than by their degree-n
spectra, in particular in 2D QG simulations. Thus Guervilly et al. [2019] display m-spectra of their 3D and QG
convection simulation results. Translation into τ-` is obtained as in Appendix A.2.3, replacing Sn by Sm . For
the simulation presented in Figure 3a, Sm and Sn spectra are very similar, apart for even-odd oscillations in
the n-spectra due to equatorial symmetry.

A.2.5. Frequency spectrum

In laboratory experiments, turbulent spectra are more easily obtained from signal x(r, t ) measured in the
time-domain (t = 0 to T ) at a given position r. Power spectral density (PSD) is then computed from its Fourier
transform x̂T (r, f ) as:

Ẽ(r, f ) = lim
T→∞

1

T
|x̂T (r, f )|2. (47)



Henri-Claude Nataf and Nathanaël Schaeffer 25

When a mean flow U(r) is present, and when turbulence is weak enough, a time record reflects advection
of the spatial variation of velocity [e.g., Frisch, 1995]. Extensions to intense turbulence have been developed
[Pinton and Labbé, 1994]. Taylor’s hypothesis [Taylor, 1938] then permits to obtain a kinetic energy density
wavenumber spectrum E(r,k) from the velocity frequency power spectrum Ẽ(r, f ):

E(r,k( f )) = U

2π
Ẽ(r, f ) with k( f ) = 2π f

U
, (48)

where U = ||U(r)||. Strictly speaking, this is a k//-spectrum, valid for wavenumber k parallel to mean velocity
vector U(r). It is the same as a k-spectrum for isotropic turbulence. The τ-` translation is then obtained from
equation (40).

Note that Taylor’s hypothesis cannot be applied to magnetic spectra unless magnetic diffusion is small
enough for the frozen flux approximation to apply.

A.3. Dissipation in τ-` diagrams

One advantage of using equation (34) for converting spectra into τ-` lines is that dissipation is maximum at
the minimum time.

In discrete series from numerical simulations, total viscous dissipation per unit mass is estimated from:

εν = 2ν
∑
`

1

τ2
u(`)

. (49)

This equation confirms that maximum dissipation per unit mass is attained at minimum τu(`∗) = τmi n , where
it can be approximated by:

ε̃ν = 2ν

τ2
mi n

(50)

(remember that our fuzzy approach ignores O(1) prefactors).
We have estimated viscous (and Ohmic) dissipation from sum (49) applied to lines τu(`) of τ-` diagram of

Guervilly et al. [2019]’s 3D simulation shown in Figure 3a, and to lines τu(`) and τb(`) of S2 DNS of Schaeffer
et al. [2017] displayed in Figure 4a. Obtained values (dotted lines) compare well with actual simulation results
(dashed lines), but plot at least a factor of 10 below corresponding τmi n times.

Appendix B. Force balances in τ-` diagrams

In this Appendix, we present the dominant force balances expected in planetary cores, and derive their τ-`
translation.

Let us start from the Navier-Stokes equation for deviations from hydrostatic equilibrium in an incompress-
ible fluid under the Boussinesq approximation:

ρ (∂t u+u ·∇u+2Ω×u) =−∇p +∆ρg+ j×b+ρν∇2u, (51)

where the symbols have their usual meaning: velocity u, pressure p, electric current density j, magnetic field b.
The acceleration term on the left-hand side includes advection and Coriolis, while the right-hand side figures
pressure gradient, buoyancy, Lorentz, and viscous forces.

Following Aubert [2019], Schwaiger et al. [2019], Schwaiger [2020], we consider five types of force balances:
QG, CIA, QG-CIA, MAC and QG-MAC.

B.1. Leading-order Quasi-Geostrophy (QG)

When Coriolis is the dominant acceleration, one gets geostrophic equilibrium:

2ρΩ×u =−∇p, (52)
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Taking the curl of this equation yields Proudman-Taylor constraint:

∂u

∂z
= 0, (53)

where z coordinate is parallel toΩ.
At next order, Proudman-Taylor constraint implies that the projection of velocity gradient along the spin axis

(Ω ·∇)u is small, scaling as 1/`∥, where `∥ ∼ Ro [Julien et al., 2012].

B.2. Coriolis-Inertia-Archimedean (CIA)

Consider the three-term balance of Coriolis, inertia and Archimedean forces. At a given length-scale `⊥,
retaining these forces in the curl of equation (51) yields:

Ωu

`⊥
∼ u2

`2
⊥
∼ ∆ρ

ρ

g

`⊥
(54)

Translating in τ-` language, we get:

tΩτu(`⊥) ∼ τ2
u(`⊥) ∼ τ2

ρ(`⊥), (55)

which implies:
τu(`⊥) ∼ tΩ ∼ τρ(`⊥). (56)

This is the regime we expect when the τu(`) line reaches the tΩ line, where Ro(`⊥) ∼ 1.

B.3. Quasi-Geostrophic Coriolis-Inertia-Archimedean (QG-CIA)

Quasi-geostrophy applies at leading order when Coriolis largely dominates over inertia (Ro ¿ 1), if other forces
are small as well. Fluid motions are organized in columnar eddies aligned with the spin axis. Dynamics of these
convective columns can still be controlled by a (quasi-geostrophic) CIA balance, in which the Coriolis term is
reduced to its ageostrophic part:

Ωu

`∥
∼ u2

`2
⊥
∼ ∆ρ

ρ

g

`⊥
(57)

The first term corresponds to vortex stretching, the second one to vorticity advection, and the last one to vortex
generation by buoyancy (see Cardin and Olson [1994], Jones [2015]).

Translating in τ-` language, we get:

tΩτu(`∥) ∼ τ2
u(`⊥) ∼ τ2

ρ(`⊥). (58)

B.4. Magneto-Archimedean-Coriolis (MAC)

When magnetic Lorentz force is strong enough to break quasi-eostrophy at scale `⊥, one can get a balance
between Lorentz, buoyancy and Coriolis forces, such that:

Ωu

`⊥
∼ b2

ρµ`2
⊥
∼ ∆ρ

ρ

g

`⊥
, (59)

analogous to the CIA balance with fluid velocity replaced by Alfvén wave velocity in the advection term.
Translating in τ-` language, we get:

tΩτu(`⊥) ∼ τ2
b(`⊥) ∼ τ2

ρ(`⊥), (60)

which implies:

Λ(`⊥) = tΩτu(`⊥)

τ2
b(`⊥)

∼ 1. (61)

This is the regime we get when the magnetic field is strong enough (see Aurnou and King [2017]). The Elsasser
number (sometimes called dynamical Elsasser number, notedΛd ) is of order one at scale `⊥.
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B.5. Quasi-Geostrophic Magneto-Archimedean-Coriolis (QG-MAC)

When leading order force balance is quasi-geostrophic, the Coriolis term should only involve its ageostrophic
part, at a length-scale `∥ ∼ Ro . QG-MAC balance therefore writes:

Ωu

`∥
∼ b2

ρµ`2
⊥
∼ ∆ρ

ρ

g

`⊥
, (62)

analogous to the QG-CIA balance with fluid velocity replaced by Alfvén wave velocity in the advection term.
Translating in τ-` language, we get:

tΩτu(`∥) ∼ τ2
b(`⊥) ∼ τ2

ρ(`⊥), (63)
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