Physiological and pathological consequences of the interactions of the p53 tumor suppressor with the glucocorticoid, androgen, and estrogen receptors
Abstract
The p53 tumor suppressor plays a key role in protection from the effects of different physiological stresses (DNA damage, hypoxia, transcriptional defects, etc.), and loss of its activity has dire consequences, such as cancer. Its activity is finely tuned through interactions with other important regulatory circuits in the cell. Recently, striking evidence has emerged for crosstalk with another class of important regulators, the steroid hormone receptors, and in particular the glucocorticoid (GR), androgen (AR), and estrogen (ER) receptors. These receptors are important in maintaining homeostasis in response to internal and external stresses (GR) and in the development, growth, and maintenance of the male and female reproductive systems (AR and ER, respectively). We review how p53 interacts closely with these receptors, to the extent that they share the same E3 ubiquitin ligase, the MDM2 oncoprotein. We discuss the different physiological contexts in which such interactions occur, and also how these interactions have been undermined in various pathological situations. We will describe future areas for research, with special emphasis on GR, and how certain common features, such as cytoplasmic anchoring of p53 by the receptors, may become targets for the development of therapeutic interventions. Given the importance of GR in inflammation, erythropoiesis, and autoimmune diseases, and the importance of AR and ER in prostate and breast cancer (respectively), the studies on p53 interactions with the steroid receptors will be an important domain in the near future.