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ABSTRACT

Deep learning-based frameworks have been recently applied to hy-
perspectral umixing due to their flexibility and powerful represen-
tation capabilities. However, such techniques either use black-box
models which are not physically interpretable, or fail to address the
non-idealities of the unmixing problem. In this paper, we propose a
physically interpretable deep learning method for hyperspectral un-
mixing accounting for nonlinearity and the variability of the end-
members. The proposed method is based on a probabilistic vari-
ational deep learning framework which employs semi-supervised
disentanglement learning to properly separate the abundances and
endmembers. A self-supervised strategy is used to generate labeled
training data, and the model is learned end-to-end using stochas-
tic backpropagation. Experimental results on both synthetic and real
datasets illustrate the performance of the proposed method compared
to state-of-the-art algorithms.

Index Terms— Hyperspectral data, hyperspectral unmixing,
neural networks, disentanglement learning, deep learning.

1. INTRODUCTION

Hyperspectral unmixing (HU) consists in estimating the spectral sig-
natures of pure materials in a scene (i.e., endmembers — EMs) and the
proportions with which they are contained in each pixel (i.e., abun-
dances) directly from a hyperspectral image (HI) [1]. Due to the
unsupervised nature of HU, adequately exploring the physics of the
problem when devising modeling strategies is paramount for obtain-
ing stable and accurate EM and abundance estimations. Traditional
methods considered the interaction between light and the EMs to be
linear. These strategies were based on frameworks including, e.g.,
nonnegative matrix factorization, Bayesian estimation and sparse
regression [1]. However, such approaches disregard non-idealities
such as nonlinear interactions between light and the materials [2]
and the variability of the EMs in different HI pixels [3]. Extensions
of the linear model were also proposed to deal with EM variability.
However, such models are still over-simplified, motivating machine
learning approaches capable of allying both flexibility and perfor-
mance [4]. Nonetheless, interpretability remains a key point when
leveraging machine learning strategies for HU [5, 6].

Recently, physically-motivated machine learning approaches
have been successfully applied to HU [7-10]. The advantage of
such models with respect to fully black-box strategies lies in the
interpretability of the estimated EMs and abundances, which is a
requirement for meaningful unmixing results. When deep learning
strategies come into play, autoencoder (AEC) architectures are of
special interest due to the intrinsic low-dimensionality of the abun-
dance space with respect to the pixels, and to the connection between

This work was supported in part by the National Geographic Society
under Grant NGS-86713T-21.

such strategies and hyperspectral mixing models [11]. Thus, sev-
eral approaches using AECs were proposed to solve HU addressing
phenomena such as nonlinearity [5,8,12] and EM variability [9,13].

Although deep learning methods presented relevant solutions for
HU reaching high levels of accuracy while retaining physical inter-
pretation, such strategies fail to provide a separation between EMs
and abundances that is both physical interpretable and accounts for
existing spectral variability and nonlinear effects. Recently, super-
vised disentanglement learning has become a popular approach to
separate latent variables in deep learning models into different fac-
tors of variation that can have a physical interpretation [14]. Dis-
entangled decompositions have been considered for different appli-
cations (e.g., separating content from style in images [14]), and its
potential will be explored in this work to aid the separation between
abundance and EM variations.

In this paper, an interpretable probabilistic deep disentangle-
ment learning framework that is based on self- and semi-supervised
learning is proposed. The proposed method, which is named Phl-
Net (Physically Interpretable disentangled neural Networks for
HU), accounts for both nonlinearities in the mixing model and
EM variability. Differently from traditional latent variable models,
the proposed framework leverages disentanglement learning and
physically-inspired neural networks (NNs) to provide more inter-
pretable EM and abundance estimates. HU is performed as a fully
unsupervised inference problem, where self-supervised learning
strategies are leveraged to generate the training data. The param-
eters of the model are learned by maximizing a lower bound to
the log-likelihood of training and test data. Importance sampling
and Monte Carlo sampling are employed in order to approximate
intractable distributions in the form of an optimization objective
that can be optimized more efficiently. Differently from related
black-box strategies, the proposed method addresses the challenges
in HU by using clearly defined statistical models and hypotheses,
and disentanglement is achieved during inference through inde-
pendence assumptions. Moreover, Phl-Net augments physically
motivated models with deep NNs. This leads to flexible but inter-
pretable model, in which the influence of, e.g., nonlinearity and EM
variability can be adjusted through the use of appropriate regular-
ization strategies. Experimental results with synthetic and real data
illustrate the performance of Phl-Net.

2. PROBLEM FORMULATION AND PROPOSED METHOD
HU aims at recovering P endmembers, M € RE*P | and corre-
sponding abundances a.,, € R” for each pixel n € {1,..., Ny} in
the HI with L bands and Ny pixels. The most simplistic and widely
used model used to describe the interaction between light and mate-
rials in the scene is the linear mixing model (LMM) [1]. The LMM,
however, fails to accurately represent many scenarios where nonide-
alities such as nonlinearity [2] and EM variability [2] become non-



negligible, requiring more sophisticated models capable of modeling
such phenomena. In general, these models can be represented as:

yn:f(an’M’En)+en7 (1)

where function f describes the mixing process, §,, is a vector of
parameters which account for nonlinearity and spectral variability,
and e,, € R denotes additive noise.

Although we address unsupervised HU, the proposed methodol-
ogy will be developed in two steps. First, the statistical modeling and
variational inference process are formulated in a semi-supervised
learning process, for which we consider a dataset D with N pixels,
which is partitioned in labeled Ds and unlabeled Dy portions with
Ns and Ny pixels, respectively, such that D = Dy | Ds. Later,
we provide a self-supervised learning strategy is used to generate the
training data Dg and provide a fully unsupervised HU pipeline.

Next, we propose a mixing model that incorporates nonlinearity
and variability existing in real scenarios. Then, we formulate the
HU problem using a variational inference framework followed by
a discussion of the cost function for the proposed semi-supervised
objective. We conclude the section with a description of the NN
architectures and the self-supervised strategy. In the following, we
will drop the pixel index n to lighten the notation.

2.1. The mixing model

Abundance prior: The Dirichlet distribution is a natural choice for
modeling abundance vectors since it enforces the non-negativity and
sum-to-one physical constraints of the model, being supported at the
unit simplex. We consider a flat Dirichlet distribution:

p(a) = Dir(a; 1p), (2)

where 1p is a vector of ones which contains its concentration pa-
rameters. The flatness indicates the lack of a priori knowledge over
the abundances other than its physical constraints.

Endmember model: Recently proposed EM models include the
use of additive [15] or multiplicative [16—18] perturbations of refer-
ence EM signatures, or a combination of both [19]. Nonetheless,
EM variability can be complex and specifying a probability distri-
bution function (PDF) p(M) analytically is difficult. In this work
we consider a deep generative EM model to provide a flexible rep-
resentation of spectral variability while accounting for their low in-
trinsic dimension [9]. We model M as a random variable which
follows a Gaussian distribution when conditioned on latent variables
Z = [z1,...,zp] € RT*F of dimension H « L (i.e., p(M|Z) is
Gaussian). The variable Z control the variability of the EMs. Thus,
although the conditional distribution is tractable, the marginal PDF
p(M) = §p(M|Z)p(Z)dZ can be arbitrarily flexible. Consider-
ing the EMs to be conditionally independent leads to:

»
po(M|2Z) = | [ po(melzs), 3)
k=1

with pg(mg|zk) = N(mk;p,;n’k(zk),diag(agn’k(zk))), where
N (x; pu, X) denotes a Gaussian PDF in & with mean vector p and
covariance matrix X, and my is the k-th column of M. Functions
wy*(2y) and 0" (z) return the mean and the diagonal of the
covariance matrix of the PDF, and 0 contains all parameters of the
mixing model. We assign the following prior for p(Z):

.
p(Z) =[] p(zx), p(zx) = N(2x;0,1). )

k=1

Mixing model: The complexity of the mixing process moti-
vated the development of HU method based on nonparametric mod-
els where the nonlinearity is learned from the data, such as in kernel-
based methods [7,20] and nonlinear AEC networks [5, 8, 12]. In this
work, we consider a decomposition of the nonlinear mixing process
as the sum of a linear contribution (i.e., the LMM) and a nonpara-
metric nonlinear function of @ and M [5,7,21]:

y=Ma+ pj(a, M) + e, 5)

where function pj denotes the contribution of nonlinear mixing in
the model. Although the connection between (5) and models such as
the bilinear mixing model and Hapke’s model is not direct, it has the
important property that the amount of nonlinearity can be explicitly
controlled by penalizing the norm of pj, during the learning process.
Considering white Gaussian noise, the likelihood becomes:

po(yla, M) = N (y; Ma + pf(a, M),o}1), (6)

where o} is the noise variance. Using independence between the
abundances, EMs and noise, the joint distribution factorizes as:

po(y,a, M, Z) = po(yla, M)ps(a)pe(M|Z)p(Z). (7)

2.2. The unmixing problem

The HU problem consists of finding the posterior distribution
pla, M, Z|y). However, due to the choice of distributions in (7)
this PDF cannot be computed analytically. Therefore, we propose
to use a variational approximation to the posterior. This consists in
specifying a parametric distribution g¢(a, M, Z|y) from a suffi-
ciently flexible family, and finding the parameters ¢ that make it as
close as possible to the true posterior PDF p(a, M, Z|y). We use
the following factorization for this PDF:

qo(a, M, Z|y) = qy(aly, M, Z)qs(M|Z,y)qs(Z|y). (8)

We additionally simplify the problem by assuming that a is in-
dependent of Z conditioned on y and M, and that M is indepen-
dent of y conditioned on Z:

9s(aly, M, Z) = q4(aly, M), )
1s(M|Z,y) = q5(M|Z). (10)

Such assumption disentangles a and M from Z and from y, respec-
tively. In the following, we define specific forms for each of those
factors. We consider ¢4 (a|y, M) as a Dirichlet distribution:

g9 (aly, M) = Dir(a; ¥4(y, M), (11)

where function g computes its concentration parameters.

Many HU works consider black-box models to compute the
abundances from the mixed pixels. On the other hand, it is im-
portant to introduce a priori information about the model to help
interpret the results when defining the functional form of the poste-
rior PDF of the abundances in (11). In this case, it was shown in [5]
that for AEC networks the amount of nonlinearity in the mixing and
inference models are closely related. Thus, it is helpful to split the
encoder network into linear and nonlinear parts, in such a way that
the amount of nonlinearity in both the encoder and decoder can be
adjusted. Thus, ¢ (y, M) can be written as:

(. M) = seav (75", M) + 55" (9. M), (12)
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where (y, M) is a piecewise-linear function that estimates the
abundance concentration parameters using a model-inspired NN ar-
chitecture, while '“y‘;’"l”‘ (y, M) is a deep NN that can compensate
nonlinearities in the model. sgeLu(x) = max(0, x) represents the
ReLU activation, which ensures the nonnegativity of '“yj)(y, M).
We assume distribution g4(Z|y) to factorize as ¢»(Z|y) =

HkP:1 qe(zk|y), where each g4 (zx|y) is a Gaussian PDF:

0o (zkly) = N (zi; 13" (y), diag(55"(v))) , (13)

vz, k < z,k

in which functions fz 3" and &, compute its mean and the elements
of its diagonal covariance matrix, respectively.
We also assume that g, (M| Z) can be factorized as ¢4 (M| Z) =

[Ti_, go(my|zx), with:

qs(mi|ze) = N (mu; o " (zx), diag(65" (z1))) . (14)
where ﬁ.;”’k and c“r;“C are functions that compute the mean and the
elements of the diagonal covariance matrix of this PDF, respectively.
Note that to reduce the freedom of the model and simplify the infer-
ence process, we consider conditional EM distributions in the gener-
ative and inference models to be equal, i.e., g4 (M |Z) = po(M |Z).

2.3. Objective function

To learn the parameters of the model and perform unmixing, we
maximize a cost function composed of three terms, defined as:

ET(@, ¢; D) = EData(D) - £Sparse(D) -R. (15)

The first term aims to maximize a regularized lower bound to
the log-likelihood of the labelled and unlabelled dataset log p(D),
which is given by [14,22]:

Lpata(D) = Lu(Du) + )\[LS(DS) + Z logQ¢(a,M|y)} ;

(y,a,M)eDg

where Ly (Dy) and Lg(Ds) are the evidence lower bounds

(ELBOs) to ZyeDU log p(y) and Z(y%M)eDS logp(y,a, M),
respectively, and are given by [14,22]:

po(y,a,M,Z
Lu(Dv) = )| E%(a,M,Zly){lOg qe( )

P Sartzg ) 19

pg y7 a7 M7Z
Ls(Ds) = ), Eq¢(Z\y,a,M){logW}- an

(y,a,M)eDg

Parameter A balances the contribution of labelled and unlabelled data
in the cost function, and 8 weights an additional regularization term
that maximizes the likelihood of the posterior of @ and M [22].

The second term is a regularization that promotes sparsity of the
estimated abundances by penalizing the concentration parameters of
the abundance posterior distribution (11) using the L1 /2 norm:

ﬁSparse (D) =T Z H%’; (y7 M) H1/2

(y,a,M)eDgs

+r Y] Eq¢<M|Z>q¢(Z|y>{H’Yi(y7 M)H1/2} ; (18)

yeDy

where 7 is a regularization parameter. The L;/> norm has shown
good performance to promote abundance sparsity in HU [23]. The
last term is a regularization on the model parameters:

R =a|py|+ cguryg,nnn“ 7 (19)

where ¢1 and g2 are regularization parameters and the norm depends
on the parameters in 6 and ¢.

In order to optimize the cost function L1 (6, ¢; D), there are
a few challenges related to the presence of the expectations, and
of PDFs which are not directly accessible (e.g., go(Z|y, a, M)).
To proceed, we first use self-normalized importance sampling and
Jensen’s inequality to write all terms of L1 (6, ¢; D) as a function of
the PDFs available in the right-hand-side of the selected factoriza-
tions in (7) and (8). Then, the reparametrization trick [24] is used to
write the expectations in terms of random variables that do not de-
pend on 6 and ¢, and Monte Carlo sampling is used to approximate
them. Due to space limitations, we omit details of these derivations,
which will be available in an extended version of this work.

2.4. Neural network architectures

We parametrize the models as follows. All NNs use the ReL.U ac-
tivation function in the hidden layers and linear output activations,
unless noted otherwise. ﬁg“k(zk) = p*(z4) are represented us-
ing a fully connected multilayer perceptron (MLP) with the same
architecture as in [9]. The EM covariances were set as &Z“k (z) =

" (zy) = o™*1L, with ™" being a learnable constant and

1. € R a vector of ones. For ﬂ;k(y), we considered an MLP
with four fully connected layers with L, 5H, 2H and H neurons,
whereas for &;’k(y), we considered six layers with L, 5H, 2H,
2H, 2H and H neurons. The parameters of the first two hidden lay-
ers of /iz;k (y) and &Z’k(y) are shared. The nonlinear contribution
in the mixing model p)(a, M) was a fully connected MLP with
the same architecture as in [5]. The noise variance o was set as
a positive learnable constant. The piecewise linear abundance NN

v a,lin

Yo (y, M) was selected by unrolling a sparse regression archi-

tecture with 11 layers [10]. The nonlinear part ’yi‘“““(y, M) was a
fully connected MLP with L, 2L, |L/2], | /4], 4P and P neurons,
where |-] denotes rounding to the nearest integer.

2.5. Self-supervised training strategy

To obtain supervised training data Ds for the semi-supervised frame-
work, we propose to use a self-supervised strategy based on methods
which extract different samples from endmembers directly from an
observed HI (i.e., in the form of pure pixels) as done in [3,25].

In this paper, we consider a two step procedure. In the first step,
we create a dictionary Dypx of pure pixels (i.e., EM samples) ex-
tracted from the HI as described in [9]. The second step generates
synthetic data incorporating the variability in Dpyx. At each itera-
tion k we generate tuples {(y;, a;, M;C)}f:1 where M, € RI*P
is an EM matrix sampled from the pure pixel dictionary. For each k
we generate P abundance vectors a;j, j € {1,..., P}, with the ele-
ments a; ; of the j-th vector satisfying a;; = 1if¢ = panda;,; = 0
otherwise (i.e., a one-hot encoding of each EM). The mixed pixels
are generated according to y; = Mya; + e, with e being white
Gaussian noise with a signal-to-noise ratio (SNR) of 4.

3. EXPERIMENTS

We compared Phl-Net with the FCLS (with EMs extracted using
the VCA method [26]), the PLMM [15], and the GLMM [17],
which account for EM variability, and with recent deep learning-
based strategies that address both EM variability and nonlinearity,
namely, DeepGUn [9], and RBF-AEC [27]. For best performance,
the parameters of all methods were adjusted for each experiment.
For Phl-Net, we optimize the cost function using the Adam op-
timizer for up to 30 epochs, with a batch size of 16, and initial



Table 1. Simulation results with synthetic data.
NRMSEa NRMSEjp; SAMjps NRMSEy  Time
Data Cube 1 - DC1

FCLS 0.3706 - - 0.0931 1.2
PLMM 0.3370 0.1656 0.0885 0.0349 842.9
GLMM 0.3453 0.0851 0.0319 0.0505 91.0
DeepGUn 0.2460 0.0681 0.0201 0.0582 607.4
RBF-AEC  0.4582 0.1289 0.0670 0.0681 82.0
PhI-Net 0.1697 0.0398 0.0162 0.0420 436.2
Data Cube 2 — DC2
FCLS 0.5109 - - 0.2746 1.1
PLMM 0.5066 0.6245 0.4874 0.0483 1050.6
GLMM 0.4371 0.4855 0.1972 0.1976 64.5
DeepGUn 0.2399 0.3072 0.0914 0.1193 678.5
RBF-AEC  0.5138 0.2919 0.1338 0.1450 78.3
PhI-Net 0.1910 0.3133 0.0838 0.1593 725.5

learning rate of 0.001 decreased by 10% per epoch until the 10-
th epoch. The labeled dataset Ds was constructed using the de-
scribed self-supervised strategy, with VCA [26] being used to ex-
tract 100 pure pixels to build Dypy, and ¥ = 30dB. We set the
EM latent space dimension as H = 2. The regularization param-
eters were selected within the intervals A € [0.01,1000], 7 was
either as zero or in 7 € [0.001,1], and ¢1,¢2 € [107*,10°]. The
performance of the algorithms was evaluated through the normal-
ized root mean squared error (NRMSE), defined as NRMSEx =
X — X | /|| X || = computed between a matrix X and its estimated

version X. We also compute the spectral angle mapper (SAM) be-

tween the true and the estimated EMs at each pixel: SAMns =
1 VN P T = =

N 2ano1 21 ATCCOS(Muy ;M /| ;|| Mn 5])), where 5

and ., ; are the true and estimated signatures of the j-th EM in the

n-th pixel, respectively.

Synthetic data: We created two synthetic data cubes, DC1 and
DC2, simulating nonlinear effects and EM variability, respectively.
To generate the first datacube (DC1), with Ny = 2500 pixels, we
considered synthetic abundance maps with P = 3 EM signatures
with L = 224 spectral bands selected from the USGS Spectral Li-
brary. The reflectance of each pixel was generated according to the
bilinear mixing model y,, = Man + Y,;_,; Zf:i+1 A iGn, ;T O
m; +e,, with e, being white Gaussian noise with an SNR of 30dB.
To generate the second datacube (DC2), with Ny = 2500 pixels, we
considered synthetic abundance maps and to incorporate EM vari-
ability in this dataset, sets of EM signatures from P = 5 pure ma-
terials (roof, metal, dirt, tree and asphalt) with realistic variability
were first manually extracted from a real HI. Then, to generate each
pixel y,,, spectral signatures for each EM were then randomly sam-
pled from these sets and used in a generalized version of the LMM
Yy, = My,a, + e, with pixelwise EM matrices, where e,, was
white Gaussian noise with an SNR of 30dB.

The quantitative results for both data cubes are presented in Ta-
ble 1 (visual results are omitted due to space limitations). It can
be seen that the Phl-Net obtained the best NRMSE 4 for both data
cubes, with improvements of 31% and 20% over the results given
by DeepGUn. In terms of EM estimation performance, PhlI-Net ob-
tained the best SAM s for both datacubes, and the best NRMSE s
for DC1, with RBF-AEC obtaining the best results for DC2. RBF-
AEC did not obtain quantitatively good abundance reconstructions,
which is likely due to its tendency to mark most pixels as being pure
that will be illustrated in the next example. PLMM obtained the
smallest NRMSEy due to its large flexibility to represent the HI
pixels. The execution times of PhI-Net were comparable to those of

Table 2. Simulation results with the Samson dataset.
FCLS PLMM GLMM DeepGUn RBF-AEC PhI-Net

NRMSEy 0.0687 0.0239 0.0011 0.0750 0.2062 0.0569
Time 245 22592  96.78 676.43 23091  1606.34
Soil

Vegetation

G

PLMM FCLS

GLMM

PhI-Net RBF-AEC DeepGUn

S «fl e

Fig. 1. Estimated abundances for the Samson HI.

the PLMM and DeepGUn methods.

Real data: To evaluate the performance of the methods on real
data, we considered the Samson HI. This HI was acquired by
AVIRIS, which captures 224 spectral bands. Water absorption re-
gions and bands with low SNR were removed, resulting in L = 156
bands. The Samson HI was previously shown to have P = 3
EMs [9]. The estimated abundances are shown in Figure 1, and the
quantitative are show in Table 2.

It can be seen that the methods based on deep learning (Deep-
GUn, RBF-AEC and PhI-Net) provide a better separation between
the different EMs in the HI when compared to the other methods,
which is observed more clearly for the Soil EM. Moreover, Phl-
Net obtained better abundance reconstructions in regions with more
heavily mixed EMs when compared to RBF-AEC, for which most
pixels are assigned only a single material. The quantitative results in
Table 2 show that the GLMM obtained the smallest reconstruction
error, which is expected due to its large number of degrees of free-
dom, whereas Phl-Net obtained intermediate results. Note, however,
that small NRMSEy does not necessarily imply accurate abundance
reconstructions. The execution time of PhI-Net was larger than those
of the other algorithms, but still comparable with that of more com-
plex methods such as DeepGUn. Future work will explore more
efficient inference algorithms to reduce the complexity of HU.

4. CONCLUSIONS

In this paper we proposed a deep disentangled variational inference
framework for HU that accounts for both nonlinearity and EM vari-
ability. To cope with the unlabeled nature of HI datasets, we em-
ployed a self-supervised learning strategy, allowing for the exploita-
tion of semi-supervised learning algorithms. Furthermore, we dis-
entangled endmembers and abundances by assuming conditional in-
dependence on the variational posterior. Experiments with synthetic
and real data show that the proposed Phl-Net leads to more accurate
abundance and EM estimates compared to state-of-the-art methods.
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