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Deep learning-based frameworks have been recently applied to hyperspectral umixing due to their flexibility and powerful representation capabilities. However, such techniques either use black-box models which are not physically interpretable, or fail to address the non-idealities of the unmixing problem. In this paper, we propose a physically interpretable deep learning method for hyperspectral unmixing accounting for nonlinearity and the variability of the endmembers. The proposed method is based on a probabilistic variational deep learning framework which employs semi-supervised disentanglement learning to properly separate the abundances and endmembers. A self-supervised strategy is used to generate labeled training data, and the model is learned end-to-end using stochastic backpropagation. Experimental results on both synthetic and real datasets illustrate the performance of the proposed method compared to state-of-the-art algorithms.

INTRODUCTION

Hyperspectral unmixing (HU) consists in estimating the spectral signatures of pure materials in a scene (i.e., endmembers -EMs) and the proportions with which they are contained in each pixel (i.e., abundances) directly from a hyperspectral image (HI) [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. Due to the unsupervised nature of HU, adequately exploring the physics of the problem when devising modeling strategies is paramount for obtaining stable and accurate EM and abundance estimations. Traditional methods considered the interaction between light and the EMs to be linear. These strategies were based on frameworks including, e.g., nonnegative matrix factorization, Bayesian estimation and sparse regression [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. However, such approaches disregard non-idealities such as nonlinear interactions between light and the materials [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF] and the variability of the EMs in different HI pixels [START_REF] Borsoi | Spectral variability in hyperspectral data unmixing: A comprehensive review[END_REF]. Extensions of the linear model were also proposed to deal with EM variability. However, such models are still over-simplified, motivating machine learning approaches capable of allying both flexibility and performance [START_REF] Palsson | Blind hyperspectral unmixing using autoencoders: A critical comparison[END_REF]. Nonetheless, interpretability remains a key point when leveraging machine learning strategies for HU [START_REF] Li | Model-based deep autoencoder networks for nonlinear hyperspectral unmixing[END_REF][START_REF] Hong | Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing[END_REF].

Recently, physically-motivated machine learning approaches have been successfully applied to HU [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF][START_REF] Hong | Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing[END_REF][START_REF] Borsoi | Deep generative endmember modeling: An application to unsupervised spectral unmixing[END_REF][START_REF] Qian | Spectral mixture model inspired network architectures for hyperspectral unmixing[END_REF]. The advantage of such models with respect to fully black-box strategies lies in the interpretability of the estimated EMs and abundances, which is a requirement for meaningful unmixing results. When deep learning strategies come into play, autoencoder (AEC) architectures are of special interest due to the intrinsic low-dimensionality of the abundance space with respect to the pixels, and to the connection between This work was supported in part by the National Geographic Society under Grant NGS-86713T-21.

such strategies and hyperspectral mixing models [START_REF] Palsson | Hyperspectral unmixing using a neural network autoencoder[END_REF]. Thus, several approaches using AECs were proposed to solve HU addressing phenomena such as nonlinearity [START_REF] Li | Model-based deep autoencoder networks for nonlinear hyperspectral unmixing[END_REF][START_REF] Hong | Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing[END_REF][START_REF] Wang | Nonlinear unmixing of hyperspectral data via deep autoencoder networks[END_REF] and EM variability [START_REF] Borsoi | Deep generative endmember modeling: An application to unsupervised spectral unmixing[END_REF][START_REF] Shi | Probabilistic generative model for hyperspectral unmixing accounting for endmember variability[END_REF].

Although deep learning methods presented relevant solutions for HU reaching high levels of accuracy while retaining physical interpretation, such strategies fail to provide a separation between EMs and abundances that is both physical interpretable and accounts for existing spectral variability and nonlinear effects. Recently, supervised disentanglement learning has become a popular approach to separate latent variables in deep learning models into different factors of variation that can have a physical interpretation [START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF]. Disentangled decompositions have been considered for different applications (e.g., separating content from style in images [START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF]), and its potential will be explored in this work to aid the separation between abundance and EM variations.

In this paper, an interpretable probabilistic deep disentanglement learning framework that is based on self-and semi-supervised learning is proposed. The proposed method, which is named PhI-Net (Physically Interpretable disentangled neural Networks for HU), accounts for both nonlinearities in the mixing model and EM variability. Differently from traditional latent variable models, the proposed framework leverages disentanglement learning and physically-inspired neural networks (NNs) to provide more interpretable EM and abundance estimates. HU is performed as a fully unsupervised inference problem, where self-supervised learning strategies are leveraged to generate the training data. The parameters of the model are learned by maximizing a lower bound to the log-likelihood of training and test data. Importance sampling and Monte Carlo sampling are employed in order to approximate intractable distributions in the form of an optimization objective that can be optimized more efficiently. Differently from related black-box strategies, the proposed method addresses the challenges in HU by using clearly defined statistical models and hypotheses, and disentanglement is achieved during inference through independence assumptions. Moreover, PhI-Net augments physically motivated models with deep NNs. This leads to flexible but interpretable model, in which the influence of, e.g., nonlinearity and EM variability can be adjusted through the use of appropriate regularization strategies. Experimental results with synthetic and real data illustrate the performance of PhI-Net.

PROBLEM FORMULATION AND PROPOSED METHOD

HU aims at recovering P endmembers, M P R LˆP , and corresponding abundances an P R P for each pixel n P t1, . . . , NU u in the HI with L bands and NU pixels. The most simplistic and widely used model used to describe the interaction between light and materials in the scene is the linear mixing model (LMM) [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. The LMM, however, fails to accurately represent many scenarios where nonidealities such as nonlinearity [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF] and EM variability [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF] become non-negligible, requiring more sophisticated models capable of modeling such phenomena. In general, these models can be represented as:

y n " f pan, M , ξ n q `en , ( 1 
)
where function f describes the mixing process, ξ n is a vector of parameters which account for nonlinearity and spectral variability, and en P R L denotes additive noise.

Although we address unsupervised HU, the proposed methodology will be developed in two steps. First, the statistical modeling and variational inference process are formulated in a semi-supervised learning process, for which we consider a dataset D with N pixels, which is partitioned in labeled DS and unlabeled DU portions with NS and NU pixels, respectively, such that D " DU Ť DS. Later, we provide a self-supervised learning strategy is used to generate the training data DS and provide a fully unsupervised HU pipeline.

Next, we propose a mixing model that incorporates nonlinearity and variability existing in real scenarios. Then, we formulate the HU problem using a variational inference framework followed by a discussion of the cost function for the proposed semi-supervised objective. We conclude the section with a description of the NN architectures and the self-supervised strategy. In the following, we will drop the pixel index n to lighten the notation.

The mixing model

Abundance prior: The Dirichlet distribution is a natural choice for modeling abundance vectors since it enforces the non-negativity and sum-to-one physical constraints of the model, being supported at the unit simplex. We consider a flat Dirichlet distribution:

ppaq " Dirpa; 1P q , ( 2 
)
where 1P is a vector of ones which contains its concentration parameters. The flatness indicates the lack of a priori knowledge over the abundances other than its physical constraints. Endmember model: Recently proposed EM models include the use of additive [START_REF] Thouvenin | Hyperspectral unmixing with spectral variability using a perturbed linear mixing model[END_REF] or multiplicative [START_REF] Drumetz | Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability[END_REF][START_REF] Imbiriba | Generalized linear mixing model accounting for endmember variability[END_REF][START_REF] Borsoi | Kalman filtering and expectation maximization for multitemporal spectral unmixing[END_REF] perturbations of reference EM signatures, or a combination of both [START_REF] Hong | An augmented linear mixing model to address spectral variability for hyperspectral unmixing[END_REF]. Nonetheless, EM variability can be complex and specifying a probability distribution function (PDF) ppM q analytically is difficult. In this work we consider a deep generative EM model to provide a flexible representation of spectral variability while accounting for their low intrinsic dimension [START_REF] Borsoi | Deep generative endmember modeling: An application to unsupervised spectral unmixing[END_REF]. We model M as a random variable which follows a Gaussian distribution when conditioned on latent variables Z " rz1, . . . , zP s P R HˆP of dimension H ! L (i.e., ppM |Zq is Gaussian). The variable Z control the variability of the EMs. Thus, although the conditional distribution is tractable, the marginal PDF ppM q " ş ppM |ZqppZqdZ can be arbitrarily flexible. Considering the EMs to be conditionally independent leads to:

p θ pM |Zq " P ź k"1 p θ pm k |z k q , ( 3 
) with p θ pm k |z k q " N `mk ; µ m,k θ pz k q, diagpσ m,k θ pz k qq ˘,
where N px; µ, Σq denotes a Gaussian PDF in x with mean vector µ and covariance matrix Σ, and m k is the k-th column of M . Functions µ m,k θ pz k q and σ m,k θ pz k q return the mean and the diagonal of the covariance matrix of the PDF, and θ contains all parameters of the mixing model. We assign the following prior for ppZq:

ppZq " P ź k"1 ppz k q , ppz k q " N pz k ; 0, Iq . ( 4 
)
Mixing model: The complexity of the mixing process motivated the development of HU method based on nonparametric models where the nonlinearity is learned from the data, such as in kernelbased methods [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF][START_REF] Borsoi | A blind multiscale spatial regularization framework for kernel-based spectral unmixing[END_REF] and nonlinear AEC networks [START_REF] Li | Model-based deep autoencoder networks for nonlinear hyperspectral unmixing[END_REF][START_REF] Hong | Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing[END_REF][START_REF] Wang | Nonlinear unmixing of hyperspectral data via deep autoencoder networks[END_REF]. In this work, we consider a decomposition of the nonlinear mixing process as the sum of a linear contribution (i.e., the LMM) and a nonparametric nonlinear function of a and M [START_REF] Li | Model-based deep autoencoder networks for nonlinear hyperspectral unmixing[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF][START_REF] Zhao | Hyperspectral unmixing via deep autoencoder networks for a generalized linear-mixture/nonlinear-fluctuation model[END_REF]:

y " M a `µy θ pa, M q `e , ( 5 
)
where function µ y θ denotes the contribution of nonlinear mixing in the model. Although the connection between ( 5) and models such as the bilinear mixing model and Hapke's model is not direct, it has the important property that the amount of nonlinearity can be explicitly controlled by penalizing the norm of µ y θ during the learning process. Considering white Gaussian noise, the likelihood becomes:

p θ py|a, M q " N `y; M a `µy θ pa, M q, σ y θ I ˘, (6) 
where σ y θ is the noise variance. Using independence between the abundances, EMs and noise, the joint distribution factorizes as:

p θ py, a, M , Zq " p θ py|a, M qp θ paqp θ pM |ZqppZq . (7)

The unmixing problem

The HU problem consists of finding the posterior distribution ppa, M , Z|yq. However, due to the choice of distributions in [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF] this PDF cannot be computed analytically. Therefore, we propose to use a variational approximation to the posterior. This consists in specifying a parametric distribution q ϕ pa, M , Z|yq from a sufficiently flexible family, and finding the parameters ϕ that make it as close as possible to the true posterior PDF ppa, M , Z|yq. We use the following factorization for this PDF: q ϕ pa, M , Z|yq " q ϕ pa|y, M , Zqq ϕ pM |Z, yqq ϕ pZ|yq. [START_REF] Hong | Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing[END_REF] We additionally simplify the problem by assuming that a is independent of Z conditioned on y and M , and that M is independent of y conditioned on Z: q ϕ pa|y, M , Zq " q ϕ pa|y, M q , (9) q ϕ pM |Z, yq " q ϕ pM |Zq . [START_REF] Qian | Spectral mixture model inspired network architectures for hyperspectral unmixing[END_REF] Such assumption disentangles a and M from Z and from y, respectively. In the following, we define specific forms for each of those factors. We consider q ϕ pa|y, M q as a Dirichlet distribution:

q ϕ pa|y, M q " Dirpa; γa ϕ py, M qq , ( 11 
)
where function γa ϕ computes its concentration parameters. Many HU works consider black-box models to compute the abundances from the mixed pixels. On the other hand, it is important to introduce a priori information about the model to help interpret the results when defining the functional form of the posterior PDF of the abundances in [START_REF] Palsson | Hyperspectral unmixing using a neural network autoencoder[END_REF]. In this case, it was shown in [START_REF] Li | Model-based deep autoencoder networks for nonlinear hyperspectral unmixing[END_REF] that for AEC networks the amount of nonlinearity in the mixing and inference models are closely related. Thus, it is helpful to split the encoder network into linear and nonlinear parts, in such a way that the amount of nonlinearity in both the encoder and decoder can be adjusted. Thus, γa ϕ py, M q can be written as:

γa ϕ py, M q " sReLU ´γ a,lin ϕ py, M q `γ a,nlin ϕ py, M q ¯, (12) 
where γa,lin ϕ py, M q is a piecewise-linear function that estimates the abundance concentration parameters using a model-inspired NN architecture, while γa,nlin ϕ py, M q is a deep NN that can compensate nonlinearities in the model. sReLUpxq " maxp0, xq represents the ReLU activation, which ensures the nonnegativity of γa ϕ py, M q. We assume distribution q ϕ pZ|yq to factorize as q ϕ pZ|yq " ś P k"1 q ϕ pz k |yq, where each q ϕ pz k |yq is a Gaussian PDF:

q ϕ pz k |yq " N `zk ; μz,k ϕ pyq, diagp σz,k ϕ pyqq ˘, (13) 
in which functions μz,k ϕ and σz,k ϕ compute its mean and the elements of its diagonal covariance matrix, respectively.

We also assume that q ϕ pM |Zq can be factorized as q ϕ pM |Zq " ś P k"1 q ϕ pm k |z k q, with:

q ϕ pm k |z k q " N `mk ; μm,k ϕ pz k q, diagp σm,k ϕ pz k qq ˘. ( 14 
)
where μm,k ϕ and σm,k ϕ are functions that compute the mean and the elements of the diagonal covariance matrix of this PDF, respectively. Note that to reduce the freedom of the model and simplify the inference process, we consider conditional EM distributions in the generative and inference models to be equal, i.e., q ϕ pM |Zq " p θ pM |Zq.

Objective function

To learn the parameters of the model and perform unmixing, we maximize a cost function composed of three terms, defined as:

LTpθ, ϕ; Dq " LDatapDq ´LSparsepDq ´R . ( 15 
)
The first term aims to maximize a regularized lower bound to the log-likelihood of the labelled and unlabelled dataset log ppDq, which is given by [START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF][START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF]:

LDatapDq " LU pDU q `λ" LSpDSq `β ÿ py,a,M qPD S log q ϕ pa, M |yq ı ,
where LU pDU q and LSpDSq are the evidence lower bounds (ELBOs) to ř yPD U log ppyq and ř py,a,M qPD S log ppy, a, M q, respectively, and are given by [START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF][START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF]:

LU pDU q " ÿ yPD U E q ϕ pa,M ,Z|yq ! log p θ py, a, M , Zq q ϕ pa, M , Z|yq ) , (16) 
LSpDSq " ÿ py,a,M qPD S E q ϕ pZ|y,a,M q ! log p θ py, a, M , Zq q ϕ pZ|y, a, M q

) . ( 17 
)
Parameter λ balances the contribution of labelled and unlabelled data in the cost function, and β weights an additional regularization term that maximizes the likelihood of the posterior of a and M [START_REF] Kingma | Semi-supervised learning with deep generative models[END_REF].

The second term is a regularization that promotes sparsity of the estimated abundances by penalizing the concentration parameters of the abundance posterior distribution (11) using the L 1{2 norm:

LSparsepDq " τ ÿ py,a,M qPD S › › γa ϕ py, M q › › 1{2 `τ ÿ yPD U E q ϕ pM |Zqq ϕ pZ|yq ! }γ a ϕ py, M q} 1{2 ) , ( 18 
)
where τ is a regularization parameter. The L 1{2 norm has shown good performance to promote abundance sparsity in HU [START_REF] Qian | Hyperspectral unmixing via L 1{2 sparsity-constrained nonnegative matrix factorization[END_REF]. The last term is a regularization on the model parameters:

R " ς1 › › µ y θ › › `ς2 › › γa,nlin ϕ › › , ( 19 
)
where ς1 and ς2 are regularization parameters and the norm depends on the parameters in θ and ϕ.

In order to optimize the cost function LTpθ, ϕ; Dq, there are a few challenges related to the presence of the expectations, and of PDFs which are not directly accessible (e.g., q ϕ pZ|y, a, M q). To proceed, we first use self-normalized importance sampling and Jensen's inequality to write all terms of LTpθ, ϕ; Dq as a function of the PDFs available in the right-hand-side of the selected factorizations in [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF] and [START_REF] Hong | Endmember-guided unmixing network (EGU-Net): A general deep learning framework for self-supervised hyperspectral unmixing[END_REF]. Then, the reparametrization trick [START_REF] Kingma | Auto-encoding variational bayes[END_REF] is used to write the expectations in terms of random variables that do not depend on θ and ϕ, and Monte Carlo sampling is used to approximate them. Due to space limitations, we omit details of these derivations, which will be available in an extended version of this work.

Neural network architectures

We parametrize the models as follows. All NNs use the ReLU activation function in the hidden layers and linear output activations, unless noted otherwise. μm,k ϕ pz k q " µ m,k θ pz k q are represented using a fully connected multilayer perceptron (MLP) with the same architecture as in [START_REF] Borsoi | Deep generative endmember modeling: An application to unsupervised spectral unmixing[END_REF]. The EM covariances were set as σm,k ϕ pz k q " σ m,k θ pz k q " σ m,k 1L, with σ m,k being a learnable constant and 1L P R L a vector of ones. For μz,k ϕ pyq, we considered an MLP with four fully connected layers with L, 5H, 2H and H neurons, whereas for σz,k ϕ pyq, we considered six layers with L, 5H, 2H, 2H, 2H and H neurons. The parameters of the first two hidden layers of μz,k ϕ pyq and σz,k ϕ pyq are shared. The nonlinear contribution in the mixing model µ y θ pa, M q was a fully connected MLP with the same architecture as in [START_REF] Li | Model-based deep autoencoder networks for nonlinear hyperspectral unmixing[END_REF]. The noise variance σ y θ was set as a positive learnable constant. The piecewise linear abundance NN γa,lin ϕ py, M q was selected by unrolling a sparse regression architecture with 11 layers [START_REF] Qian | Spectral mixture model inspired network architectures for hyperspectral unmixing[END_REF]. The nonlinear part γa,nlin ϕ py, M q was a fully connected MLP with L, 2L, tL{2s, tL{4s, 4P and P neurons, where t¨s denotes rounding to the nearest integer.

Self-supervised training strategy

To obtain supervised training data DS for the semi-supervised framework, we propose to use a self-supervised strategy based on methods which extract different samples from endmembers directly from an observed HI (i.e., in the form of pure pixels) as done in [START_REF] Borsoi | Spectral variability in hyperspectral data unmixing: A comprehensive review[END_REF][START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF].

In this paper, we consider a two step procedure. In the first step, we create a dictionary Dppx of pure pixels (i.e., EM samples) extracted from the HI as described in [START_REF] Borsoi | Deep generative endmember modeling: An application to unsupervised spectral unmixing[END_REF]. The second step generates synthetic data incorporating the variability in Dppx. At each iteration k we generate tuples tpy j , aj, M k qu P j"1 where M k P R LˆP is an EM matrix sampled from the pure pixel dictionary. For each k we generate P abundance vectors aj, j P t1, . . . , P u, with the elements aj,i of the j-th vector satisfying aj,i " 1 if i " p and aj,i " 0 otherwise (i.e., a one-hot encoding of each EM). The mixed pixels are generated according to y j " M k aj `e, with e being white Gaussian noise with a signal-to-noise ratio (SNR) of ϑ.

EXPERIMENTS

We compared PhI-Net with the FCLS (with EMs extracted using the VCA method [START_REF] Nascimento | Vertex Component Analysis: A fast algorithm to unmix hyperspectral data[END_REF]), the PLMM [START_REF] Thouvenin | Hyperspectral unmixing with spectral variability using a perturbed linear mixing model[END_REF], and the GLMM [START_REF] Imbiriba | Generalized linear mixing model accounting for endmember variability[END_REF], which account for EM variability, and with recent deep learningbased strategies that address both EM variability and nonlinearity, namely, DeepGUn [START_REF] Borsoi | Deep generative endmember modeling: An application to unsupervised spectral unmixing[END_REF], and RBF-AEC [START_REF] Shahid | Unsupervised hyperspectral unmixing via nonlinear autoencoders[END_REF]. For best performance, the parameters of all methods were adjusted for each experiment.

For PhI-Net, we optimize the cost function using the Adam optimizer for up to 30 epochs, with a batch size of 16, and initial learning rate of 0.001 decreased by 10% per epoch until the 10th epoch. The labeled dataset DS was constructed using the described self-supervised strategy, with VCA [START_REF] Nascimento | Vertex Component Analysis: A fast algorithm to unmix hyperspectral data[END_REF] being used to extract 100 pure pixels to build Dppx, and ϑ " 30dB. We set the EM latent space dimension as H " 2. The regularization parameters were selected within the intervals λ P r0.01, 1000s, τ was either as zero or in τ P r0.001, 1s, and ς1, ς2 P r10 ´4, 10 5 s. The performance of the algorithms was evaluated through the normalized root mean squared error (NRMSE), defined as NRMSE X " }X ´x X}F L }X}F computed between a matrix X and its estimated version x X. We also compute the spectral angle mapper (SAM) between the true and the estimated EMs at each pixel: SAM M "

1 N U ř N U n"1 ř P j"1 arccospm J n,j
x mn,j{}mn,j}}x mn,j}q, where mn,j and x mn,j are the true and estimated signatures of the j-th EM in the n-th pixel, respectively.

Synthetic data:

We created two synthetic data cubes, DC1 and DC2, simulating nonlinear effects and EM variability, respectively. To generate the first datacube (DC1), with NU " 2500 pixels, we considered synthetic abundance maps with P " 3 EM signatures with L " 224 spectral bands selected from the USGS Spectral Library. The reflectance of each pixel was generated according to the bilinear mixing model y n " M an `řP i"1 ř P j"i`1 an,ian,jmi d mj `en, with en being white Gaussian noise with an SNR of 30dB. To generate the second datacube (DC2), with NU " 2500 pixels, we considered synthetic abundance maps and to incorporate EM variability in this dataset, sets of EM signatures from P " 5 pure materials (roof, metal, dirt, tree and asphalt) with realistic variability were first manually extracted from a real HI. Then, to generate each pixel y n , spectral signatures for each EM were then randomly sampled from these sets and used in a generalized version of the LMM y n " M nan `en with pixelwise EM matrices, where en was white Gaussian noise with an SNR of 30dB.

The quantitative results for both data cubes are presented in Table 1 (visual results are omitted due to space limitations). It can be seen that the PhI-Net obtained the best NRMSE A for both data cubes, with improvements of 31% and 20% over the results given by DeepGUn. In terms of EM estimation performance, PhI-Net obtained the best SAM M for both datacubes, and the best NRMSE M for DC1, with RBF-AEC obtaining the best results for DC2. RBF-AEC did not obtain quantitatively good abundance reconstructions, which is likely due to its tendency to mark most pixels as being pure that will be illustrated in the next example. PLMM obtained the smallest NRMSE Y due to its large flexibility to represent the HI pixels. The execution times of PhI-Net were comparable to those of 2.

It can be seen that the methods based on deep learning (Deep-GUn, RBF-AEC and PhI-Net) provide a better separation between the different EMs in the HI when compared to the other methods, which is observed more clearly for the Soil EM. Moreover, PhI-Net obtained better abundance reconstructions in regions with more heavily mixed EMs when compared to RBF-AEC, for which most pixels are assigned only a single material. The quantitative results in Table 2 show that the GLMM obtained the smallest reconstruction error, which is expected due to its large number of degrees of freedom, whereas PhI-Net obtained intermediate results. Note, however, that small NRMSE Y does not necessarily imply accurate abundance reconstructions. The execution time of PhI-Net was larger than those of the other algorithms, but still comparable with that of more complex methods such as DeepGUn. Future work will explore more efficient inference algorithms to reduce the complexity of HU.

CONCLUSIONS

In this paper we proposed a deep disentangled variational inference framework for HU that accounts for both nonlinearity and EM variability. To cope with the unlabeled nature of HI datasets, we employed a self-supervised learning strategy, allowing for the exploitation of semi-supervised learning algorithms. Furthermore, we disentangled endmembers and abundances by assuming conditional independence on the variational posterior. Experiments with synthetic and real data show that the proposed PhI-Net leads to more accurate abundance and EM estimates compared to state-of-the-art methods.
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 1 Fig. 1. Estimated abundances for the Samson HI.

Table 1 .

 1 Simulation results with synthetic data. NRMSE A NRMSE M SAM M NRMSE Y

						Time
			Data Cube 1 -DC1		
	FCLS	0.3706	-	-	0.0931	1.2
	PLMM	0.3370	0.1656	0.0885	0.0349	842.9
	GLMM	0.3453	0.0851	0.0319	0.0505	91.0
	DeepGUn	0.2460	0.0681	0.0201	0.0582	607.4
	RBF-AEC	0.4582	0.1289	0.0670	0.0681	82.0
	PhI-Net	0.1697	0.0398	0.0162	0.0420	436.2
			Data Cube 2 -DC2		
	FCLS	0.5109	-	-	0.2746	1.1
	PLMM	0.5066	0.6245	0.4874	0.0483	1050.6
	GLMM	0.4371	0.4855	0.1972	0.1976	64.5
	DeepGUn	0.2399	0.3072	0.0914	0.1193	678.5
	RBF-AEC	0.5138	0.2919	0.1338	0.1450	78.3
	PhI-Net	0.1910	0.3133	0.0838	0.1593	725.5

Table 2 .

 2 Simulation results with the Samson dataset.

		FCLS PLMM GLMM DeepGUn RBF-AEC PhI-Net
	NRMSE Y 0.0687 0.0239 0.0011 0.0750	0.2062	0.0569
	Time	2.45 225.92	96.78 676.43	230.91	1606.34