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1. Introduction

Let R = ⊕k≥0Rk = k[x, y, z] be the graded ring in three indeterminates. The partial
derivatives in these three variables are denoted ∂x, ∂y and ∂z. The R graded-module of
derivations is a rank 3 module DerR = ⊕k≥0[Rk∂x + Rk∂y + Rk∂z]. The so-called Euler
derivation is δE = x∂x + y∂y + z∂z.

To a reduced homogeneous polynomial of degree n ≥ 1, f ∈ Rn, one associates its
module of tangent derivations:

Der(f) = {δ ∈ DerR | δ(f) ∈ (f)}.
The Euler derivation belongs to Der(f) and there is a factorization

Der(f) = RδE ⊕Der0(f),

where
Der0(f) = {δ ∈ DerR | δ(f) = 0}.

Let ∇(f) = (∂xf, ∂yf, ∂zf) be the vector of partial derivatives. Then Der0(f) is the kernel
of the Jacobian map

R3 ∇(f)−−−−→ R[n− 1].

The modules Der(f) and Der0(f) could also be defined in higher dimensions where instead
of curves, we would have hypersurfaces. One reason to focus on curves is that the module
Der0(f) is locally free (its associated sheaf in P2 is reflexive and then it is a vector bundle
for dimensional reasons). In some very particular cases, these modules can also be free
(see the definition below). This was first pointed out in [4] for reduced hypersurfaces and
studied in [7] for line arrangements (finite sets of distinct lines in P2) presenting a very
special combinatorics; for instance, a union of lines invariant under the action of some
reflection group or the Hesse arrangement of 12 lines through the 9 inflection points of a
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smooth cubic curve (see [2] for detailed examples). Actually, in [2], Terao conjectures that
freeness of hyperplane arrangements depends only on its combinatorics. This conjecture is
still unsolved even for line arrangements; this is certainly because we do not know enough
examples of free line arrangements and more generally of free curves to clearly understand
what distinguishes a free curve from a non free curve. Although combinatorics is not as
relevant for general curves as for line arrangements, understanding why a curve is free, in
addition to the interest of this result for itself, could help solve Terao’s conjecture. Before
going further on this subject, let us recall the definition of freeness for a reduced plane
curve.

Definition 1.1. The reduced curve V (f) is free if and only if Der0(f) (or equivalently
Der(f)) is a free module. More precisely Der0(f) is free with exponents (a, b) if Der0(f) =
R[−a]⊕R[−b] where a and b are integers verifying 0 ≤ a ≤ b and a+ b+ 1 = deg(f) (or
Der(f) = R[−1]⊕R[−a]⊕R[−b]).

Remark 1.2. A smooth curve of degree ≥ 2 is not free, an irreducible curve of degree ≥ 3
with only nodes and cusps as singularities is not free (see [1, Example 4.5]). Few examples
of free curves are known and of course very few families of free curves are known. One
such family can be found in [6, Prop. 2.2].

One method to produce free curves given in [8] (suggested by E. Artal-Bartolo and J.
Cogolludo-Agustin in a personal communication), consists in taking the union of all the
singular curves in a generic pencil of curves of the same degree ; generic means here that
the base locus is smooth. More precisely, it was proved that:

Theorem 1.3. Let f, g two reduced polynomials in Rn such that B = V (f)∩V (g) consists
in n2 distinct points. Denote by Dk the union of k ≥ 2 curves and by Ds the union of all
the singular curves of the pencil 〈f, g〉 of degree n curves generated by f and g. Then Dk

is free with exponents (2n− 2, n(k − 2) + 1) if and only if Ds ⊂ Dk and the singularities
of Ds are quasihomogeneous.

Let us first give some classical examples.

Example 1.4. The Braid arrangement defined by xyz(x − y)(x − z)(y − z) = 0 is the
union of the three singular curves of the pencil 〈(x−y)z, y(x−z)〉. It is free with exponents
(2, 3).

Example 1.5. The Hesse arrangement defined by
∏

ε=0,1,j,j2

(x3 +y3 +z3− ε xyz) = 0 is the

union of four triangles, that are all the singular curves of the pencil 〈x3 + y3 + z3, xyz〉. It
is free with exponents (4, 7).

Example 1.6. The Fermat arrangement defined by (xn − yn)(yn − zn)(xn − zn) = 0 is
the union of three sets of n concurent lines that are all the singular curves of the pencil
〈xn − yn, yn − zn〉. It is free with exponents (n+ 1, 2n− 2).

As a definition of quasihomogeneous singularity we follow the characterization given
in [5]:

Definition 1.7. Let f ∈ C[x, y, z] a reduced polynomial. Let C = V (f) its corresponding
projective curve. A singular point p ∈ V (f) is a quasi-homogeneous singularity if and only
if τp(C) = µp(C), where τp(C) and µp(C) are the Tjurina and Milnor numbers of C at p.



Remark 1.8. The definition being local one can assume that p = (0, 0) and C{x, y} is

the ring of convergent power series ; then τp(C) = C{x,y}
(∂xf,∂yf,f) and µp(C) = C{x,y}

(∂xf,∂yf) . This

implies in particular that τp(C) ≤ µp(C).

Remark 1.9. When p is a smooth point of C, these numbers vanish.

Remark 1.10. These numbers play a crucial role here. Indeed, denoting by Tf the
logarithmic tangent sheaf associated to V (f) which is the sheafification of Der0(f), and
by Jf the sheaf of ideals, called Jacobian ideal, image of the Jacobian map, one has

0 −−−−→ Tf −−−−→ O3
P2

∇(f)−−−−→ Jf (n− 1) −−−−→ 0.

Since the curve C = V (f) is reduced, its singular locus is a finite scheme and the Jacobian
ideal defines a finite scheme of length

c2(Jf ) =
∑
p∈C

τp(C).

The sum τ(C) :=
∑

p∈C τp(C) is called the total Tjurina number of C. This gives also the
following relation:

c2(Tf ) = (n− 1)2 − τ(C).

The proof of Theorem 1.3 was based on the following observations:

(1) there exists a canonical derivation δ = det[∇f,∇g,∇] = 〈∇f ∧ ∇g | ∇〉 (where
〈 | 〉 is the usual scalar product of vectors in C3) associated to a pencil 〈f, g〉 of
degree n curves; this canonical derivation induces for any k ≥ 2 a non zero section
sk ∈ H0(TDk(2n− 2)).

(2) the zero locus of this section sk is empty if and only if Dk ⊂ Ds and at each
singular point p of Ds one has τp(D

s) = µp(D
s).

The smoothness of the base locus B is necessary to certify that its contribution to the
length of the Jacobian scheme is

n2∑
i=1

(k − 1)2 = n2(k − 1)2.

1.1. Objectives. We would like to extend this construction of free curves to more general
pencils, i.e. pencils with a singular base locus. Here we focus on two cases.

(1) The fat case: pencils generated by two powers 〈f b, ga〉 where V (f) and V (g) are
two curves of degree a and b such that (a, b) = 1 and V (f) ∩ V (g) is a smooth
set of ab distinct points. In such pencils any curve is singular along the base locus
B when a > 1 and b > 1. The interest for this case comes from the celebrated
example of the two types of 6-cusped sextics with non-isomorphic fundamental
groups given by Zariski [9]; indeed the six cusps belong to a smooth conic for the
first type and do not belong to a conic for the second type. The sextic of the first
type is a general curve in a pencil 〈f3, g2〉 where f = 0 is a smooth conic and g = 0
is a smooth cubic.

(2) The tangential case: pencils of degree n curves such that the general one is smooth
but with a singular base locus B, i.e. card(B) < n2. The complete description of
these pencils remains difficult and we will concentrate in this text on the case of
pencils generated by conics.



2. The fat case

In this section we do not study all the singular pencils but only those defined by two
multiple structures on reduced curves with primary degrees meeting along a smooth set.
More precisely, we prove:

Theorem 2.1. Let a, b be two positive integers such that gcd(a, b) = 1, f ∈ Ra, g ∈ Rb
be two reduced polynomials such that the corresponding curves V (f) and V (g) meet along
ab distinct points. We consider the pencil Cab = 〈f b, ga〉 of degree ab curves. Then,

(1) if a > 1 and b > 1 then all curves of Cab are singular at B;
(2) there is a finite number of curves in Cab, disjoint from V (f b) and V (ga), that are

singular outside B. We call these curves the +singular curves and their union
is denoted by D+s ; the length of the scheme of all the singular points of these
+singular curves, including the singularities of V (f) and V (g) when these gener-
ators are not smooth, is

(a− 1)2 + (b− 1)2 + (a− 1)(b− 1);

(3) if V (f) and V (g) are smooth, a union Dk of k curves of the pencil Cab is free with
exponents (a+ b−2, kab− (a+ b) +1) if and only if D+s ⊂ Dk and any singularity
of D+s outside B is quasihomogeneous.

(4) if V (f) is not smooth (resp. or/and V (g)), the curve Dk ∪ V (f) (resp. Dk ∪ V (g)
and Dk∪V (f)∪V (g)) where Dk is a union of k curves of the pencil Cab is free with
exponents (a+b−2, kab−b+1) (resp. (a+b−2, kab−a+1), (a+b−2, kab+1)) if
and only if D+s ⊂ Dk and any singularity of D+s outside B is quasihomogeneous.

Proof. Let us prove each assertion.

(1) If (x, y) is a local system of coordinates at any base point p ∈ B, then any curve of
the pencil is contained in the ideal (xa, yb) then singular at p.

(2) Let us consider a curve H = λf b + µga with λµ 6= 0 with a singular point p /∈ B.
Since p is singular we obtain ∇H(p) = 0. We have by Liebniz’s rule:

∇H(p) = bλf b−1(p)∇f(p) + aµga−1(p)∇g(p) = 0.

Since p /∈ B, f b−1(p) 6= 0 and ga−1(p) 6= 0. This is equivalent to say that ∇f(p) and ∇g(p)
are proportional, in other words that the two by two minors of the matrix [∇f,∇g] vanish
simultaneously at p. Moreover since f and g meet transversally at B, these minors do not
vanish at any point in B. The scheme Γ of singular points outside B is then defined by
the following exact sequence

0 −−−−→ OP2(1− b)⊕ OP2(1− a)
[∇f,∇g]−−−−−→ O3

P2

∇f∧∇g−−−−−→ JΓ(a+ b− 2) −−−−→ 0.

Reciprocally, if p ∈ Γ then one can find easily two non zero constants λ and µ such that
∇(λf b + µga)(p) = 0. The length of Γ is the number by

c2(JΓ) = (a− 1)2 + (b− 1)2 + (a− 1)(b− 1).

(3) Let Dk, defined by Hk = 0, be a union of k curves in the pencil that contains D+s.
We consider the canonical derivation

δ = det[∇f,∇g,∇] = 〈∇f ∧∇g | ∇〉.
Since by Liebniz’s rule, we have δ(Hk) = 0 for any k ≥ 2, this derivation induces a non
zero section of H0(TDk(a+ b− 2)) and gives a commutative diagram:



0 0y y
OP2(2− a− b) OP2(2− a− b)

sδ

y [∇f∧∇g]
y

0 −−−−→ TDk −−−−→ O3
P2 −−−−→ JDk(kab− 1) −−−−→ 0y y ∥∥∥

0 −−−−→ JZ(sk)(a+ b− kab− 1) −−−−→ F −−−−→ JDk(kab− 1) −−−−→ 0y y
0 0

where the sheaf F is a rank two sheaf singular along Γ, the scheme of +singular points
defined above. Dualizing the last exact sequence we obtain:

0 −−−−→ OP2(1− kab) [U,V ]t−−−−→ OP2(1− a)⊕ OP2(1− b) [−V,U ]−−−−→ OP2(1− a− b+ kab)

−−−−→ ωDk −−−−→ OΓ −−−−→ OZ(sk) −−−−→ 0,

where ωDk is the dualizing sheaf of the Jacobian scheme associated to Dk, U and V are
the polynomials of degree kab− a and kab− b such that

∇Hk = U∇f + V∇g.
Denoting by T the complete intersection defined by {U = 0} ∩ {V = 0}, we find finally a
shorter exact sequence:

0 −−−−→ OT −−−−→ ωDk −−−−→ OΓ −−−−→ OZ(sk) −−−−→ 0.

Cutting this exact sequence in two short exact sequences we get

0 −−−−→ OT −−−−→ ωDk −−−−→ R −−−−→ 0 (s1)

and
0 −−−−→ R −−−−→ OΓ −−−−→ OZ(sk) −−−−→ 0. (s2)

The complete intersection T is supported by B. Since Γ ∩B = ∅ the exact sequence (s2)
proves that the scheme R is supported on a subset of Γ and does not meet B. The exact
sequence (s1) then shows that R is supported by all the +singular points appearing in
Dk.

If D+s ⊂ Dk both schemes R and Γ have the same support ; if the singularities of D+s

are quasihomogeneous then these schemes coincide. The curves V (f) and V (g) meeting
tranversally, the scheme Γ is lci (see [8, proof of Theorem 2.7]) ; this proves that R = OΓ

and finally, this implies Z(sk) = ∅. �

2.1. Example. Consider the pencil 〈f3, g2〉 of sextic curves where

Cf = V (f) = {y2 − xz = 0} and Cg = V (g) = {x3 + y3 + z3 = 0}.
The smooth conic Cf and the smooth cubic Cg meet in six different points pi = (a2

i , ai, 1)
where a6

i + a3
i + 1 = 0. All curves of this pencil are singular in the six points pi. Let us

describe now the +singular curves of this pencil with more details.



Proposition 2.2. In the pencil 〈f3, g2〉 there are exactly five curves that are singular
in a point not belonging to the pi’s. Two of these five curves C1,0 and C0,1 are defined
respectively by the equation f3 = 0 g2 = 0, the three other are C1,−1, C4,1 and C4,−3

defined respectively by the equations f3 − g2 = 0, 4f3 + g2 and 4f3 − 3g2 = 0.
The additional singular point of C1,−1 is (0, 1, 0).
The additional singular points of C4,1 are (1, 0, 1), (1, 0, j) and (1, 0, j2).

The additional singular points of C4,−3 are (−1
2 , 1,

−1
2 ), (−j

2

2 , 1, −j2 ) and (−j2 , 1,
−j2

2 ).

The curve C1,−1 ∪ C4,1 ∪ C4,−3 is free with exponents (3, 14).

Proof. The singular points p = (a, b, c) 6= pi of Cλ,µ := λf3 + µg2 = 0 are those verifying:

∇(λf3 + µg2)(p) = 3λf2(p)∇(f)(p) + 2µg(p)∇(g)(p) =
−→
0 .

• If f(p) = 0 then (λ, µ) = (1, 0) and the corresponding curve is f3 = 0.

• If g(p) = 0 then (λ, µ) = (0, 1) and the corresponding curve is g2 = 0.
• If f(p)g(p) 6= 0 then ∇(f)(p) = (−c, 2b,−a) and ∇(g)(p) = (3a2, 3b2, 3c2) are

proportionnal. More precisely, (a, b, c) verifies the equations: 3b(bc+ 2a2) = 0
c3 − a3 = 0

3b(ab+ 2c2) = 0.

Solving this system by elementary computations, we find the additionnal singular
points and the singular curves associated. according to Theorem 2.1 the curve
C1,−1 ∪ C4,1 ∪ C4,−3 is free with exponents (3, 14).

�

2.2. Example. This second example corresponds to the case (4) of the main theorem.

We consider the pencil 〈f3, g2〉 of sextic curves where

f(x, y, z) = x2 + y2 + z2 and g(x, y, z) = xyz.

The smooth conic V (f) and the singular cubic V (g) meet in six different points
(1, i, 0), (1,−i, 0), (1, 0, i), (1, 0,−i), (0, 1, i) and (0, 1,−i). Using the same method than
in the previous example, we find that the locus V (∇f ∧∇g) consists in 7 points that are
the three vertices of the triangle, (1, 0, 0), (0, 1, 0), (0, 0, 1) and the four singular points of
f3 − 27g2 = 0. Then the curve xyz(f3 − 27g2) = 0 is free with exponents (3, 5).

3. The tangential case

The pencil is generated by two curves of degree n that do not meet transversally (i.e.
the cardinality of the set B is < n2). At the point p ∈ B where V (f) and V (g) share the
same tangent line, the canonical derivation δ = det(∇f,∇g,∇) verifies δ(p) = 0. This is
the main difficulty here. Indeed the computation of the length of the Jacobian scheme
becomes harder and we could have µp(Hk) 6= τp(Hk) at such a point p ∈ B for a union of
k curves in the pencil. If V (f) and V (g) are two smooth conics such that B consists in a
subscheme of length 3 and a distinct simple point. Then V (fg(af+bg)), where V (af+bg)
is aslo smooth, is free with exponents (2, 3). So it is possible for a union of smooth curves
of the same pencil to be free. It is also possible to be free when instead of containing all
the singular curves the union contains only some irreducible components of some singular
curves. For instance, if V (f) and V (g) are two smooth conics tangent in a point p. Then



V (fg(af + bg)h) where V (af + bg) is aslo smooth and V (h) is the line passing through
the two smooth points in B, is free with exponents (2, 4).

p p

We will focus on pencil of conics. Our aim is to

(1) determine the “smaller” free union of conics for each kind of pencil;
(2) compute the Tjurina numbers at the base points for any kind of pencil.

3.1. Pencil of conics. There are different regular pencils (the general conic of the pencil
is smooth) generated by two conics C and D with no component in common. Let us
precise now for any of this different pencils what generators 〈f, g〉 can be chosen. Recall
that the canonical derivation is δ = det[∇f,∇g,∇]. The pencil is

(1) generic when C ∩D consists of 4 distinct points. Then, up to a linear transfor-
mation, C and D can be defined by x2 − z2 = 0 and y2 − z2 = 0. The canonical
derivation δ has degree 2 ; among the intersection points appearing in the picture,
the base points are blue and the singular points are red;

(2) tangent when C∩D consists of 3 points, one double and two simple points. Then,
up to a linear transformation, C and D can be defined by x2− z2 = 0 and yz = 0.
The canonical derivation δ has degree 2; now base points and singular points are
not disjoint;



(3) bitangent when C ∩ D consists of 2 double points. Then, up to a linear trans-
formation, C and D can be defined by x2 − z2 = 0 and y2 = 0. The canonical
derivation δ can be factorized by y, i.e. δ = yν where the derivation ν has degree
1;

(4) osculating when C∩D consists of 2 points, one simple and one triple point. Then,
up to a linear transformation, C and D can be defined by xy = 0 and y2−xz = 0.
The canonical derivation δ has degree 2;

(5) +osculating when C ∩D consists of one quadruple point. Then, up to a linear
transformation, C and D can be defined by y2−xz = 0 and x2 = 0. The canonical
derivation δ can be factorized by x, i.e. δ = xν where the derivation ν has degree
1.

3.2. A free union of curves remains free by deleting a smooth curve.



Proposition 3.1. Assume that A is a union of curves V (λf + µg) of a regular pencil
of degree n curves 〈f, g〉 in P2. Assume also that A contains a singular member V (h1h2)
(h1h2 ∈ 〈f, g〉) which is a normal crossing divisor at the points V (h1) ∩ V (h2) and that
V (h1) is smooth. Then if A is free the arrangement A \ V (h1) is also free.

Proof. Let δ be the canonical derivation associated to the pencil 〈f, g〉. If the pencil does
not contain any multiple curve the degree of δ is αn = 2n−2. If it contains a multiple curve
then one can factorize it to define a new “canonical” derivation (vanishing along any curve
of the pencil) with degree αn < 2n−2. Since V (h1h2) belongs to the pencil 〈f, g〉 one gets
δ(h1h2) = det(∇(f),∇(g),∇(h1h2)) = 0. Then h1δ(h2) = −h2δ(h1). Hence there exists a
polynomial k such that δ(h2) = −kh2 and δ(h1) = kh1. The derivation δ′ = δ − k

deg(h1)δE
verifies δ′(h1) = 0 and it has the same degree than δ. Since V (h1h2) is a normal crossing
divisor at p ∈ V (h1) ∩ V (h2) then k(p) 6= 0 ; indeed h1(p) = k(p) = 0 implies that δ(h1)
vanishes at p at the order two contradicting the normal crossing at p. Then δ′(p) 6= 0
and the section induced by δ′ does not vanish at p. Hence when the component V (h1) is
deleted from A, p is removed from the scheme defined by the Jacobian ideal J∇A and also
removed from Z(sδ′) the zero scheme of the section induced by δ′. Then Z(sδ′) = ∅ and
A \ V (h1) is also free. �

Example 3.2. The following arrangement of four lines can be seen as a union of two
singular conics, the dashed one and the black one. It is free with exponents (2, 1).

The following arrangement of lines is still free by Proposition 3.1 with exponents (2, 0).



Example 3.3. Pappus arrangement consists in 9 lines given by the well known configura-
tion 93. The 9 lines are the sides of the 3 triangles passing through 9 points. In the pencil
generated by two triangles, singular curves are missing. In general three nodal cubics are
missing but in the following example there is only one singular cubic missing: it consists in
the union of a line union and a smooth conic; indeed let us consider the pencil generated by
one set of three concurrent lines and one triangle [x(x2−z2), (x+y)(x−2y+z)(x−2y−z)].
It still contains another triangle (x − y)(x + 2y − z)(x + 2y + z) = 0 and a conic+line
y(3x2 − 4y2 + z2) = 0.

eq1eq2f gh
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The union of all the singular members of the pencil is free with exponents (4, 7) (by
[8], Theorem 1.3). By Proposition 3.1 we obtain a new arrangement which is free with
exponents (4, 6) by removing the line from the conic+line member:

x(3x2 − 4y2 + z2)(x2 − y2)(x2 − z2)((x+ 2y)2 − z2)((x− 2y)2 − z2) = 0

By Proposition 3.1 again, we obtain a new arrangement which is free with exponents (4, 5)
by removing the conic from the conic+line member:

xy(x2 − y2)(x2 − z2)((x+ 2y)2 − z2)((x− 2y)2 − z2) = 0.

3.3. A free union of curves remains free by adding a smooth curve.

Proposition 3.4. Let C be a smooth curve in a pencil 〈f, g〉 of degree n curves, A be an
arrangement of curves, or components of curves, of this pencil. Assume that the section of
TA(αn) induced by the canonical derivation δ (of degree αn) does not vanish. Then A is free
with exponents (αn,−αn−c1(TA)) and A∪C is free with exponents (αn,−αn−c1(TA∪C)).

Proof. There is a short exact sequence:

0 −−−−→ TA∪C −−−−→ TA −−−−→ L −−−−→ 0,

where L is a line bundle over C. Indeed on an open affine neighborhood U ⊂ P2 the first

arrow is given by a 2× 2 matrix

(
a b
c d

)
where a, b, c, d ∈ OU and C|U = {ad− bc = 0}.

Assuming that the rank of Lp is > 1 at some p ∈ C means that a(p) = c(p) = b(p) =
d(p) = 0. But this would imply that ∇(ad− bc)(p) = 0 which contradicts the smoothness
of C.

Since C belongs to the pencil the canonical derivation δ induces a non zero section of
TA(αn) but also a non zero section of TA∪C(αn). This gives the following commutative
diagram:

0 0y y
OP2(−αn) OP2(−αn)

s1

y ys
0 −−−−→ TA∪C −−−−→ TA −−−−→ L −−−−→ 0y y ∥∥∥
0 −−−−→ JZ(s1)(c1(TA∪C) + αn) −−−−→ OP2(c1(TA) + αn) −−−−→ L −−−−→ 0y y

0 0

Then A is free with exponents (αn,−αn−c1(TA))) and L = OC(c1(TA)+αn)). This proves

JZ(sk+1)(c1(TA∪C) + αn)) = OP2(c1(TA∪C) + αn).

�

Example 3.5. By Proposition 3.4 the following arrangement (three concurent lines with
one of them tangent to a smooth conic) is free with exponents (2, 2). Computing the
Chern classes of the logarithmic vector bundle associated, this implies that τp(A∪C) = 10.



Computing the Milnor number at p we find µp(A∪C) = 11 showing that the tangent point
p is not a quasihomogeneous singularity.

p

3.4. Tjurina number for pencils of conics.

Proposition 3.6. Let p be the double point of a tangent pencil 〈f, g〉. Let C1, . . . , Ck be
k ≥ 3 smooth conics in the pencil 〈f, g〉. Then

τp(
k⋃
i=1

Ci) = 2((k − 1)2 + 1).

Proof. By a direct computation, using for instance Macaulay 2, one can prove that the
union of three smooth conics and a line through the two simple points of the base locus B
is free with exponents (2, 4). Adding smooth conics of the same pencil does not change the
freeness and the arrangement A consisting in k ≥ 3 smooth conics plus one line through
the two simple points is free with exponents (2, 2k − 2). Then

c2(TA) = 4k − 4 = (2k)2 − τ(A).

The total Tjurina number is the sum of the two normal crossing singular points in B count-

ing each of them as k2 and the Tjurina number at the double point which is τp(
⋃k
i=1Ci).

This means

τ(A) = 4k − 4 = 4k2 − 2k2 − τp(
k⋃
i=1

Ci),

proving the result. �

Proposition 3.7. Let p be one of the two double points of a bitangent pencil 〈f, g〉. Let
C1, . . . , Ck be k ≥ 2 smooth conics in the pencil 〈f, g〉. Then

τp(
k⋃
i=1

Ci) = 2k2 − 3k + 1.



Proof. By a direct computation, using for instance Macaulay 2, one can prove that the
union of two smooth conics and the tangent lines along p and q, the two base points, is
free with exponents (1, 4) (the degree of the canonical derivation is 1 instead of 2 because
of the double line in the pencil). By Proposition 3.4 adding smooth conics of the same
pencil does not change the freeness and the arrangement A consisting in k ≥ 2 smooth
conics plus the two tangent lines is still free with exponents (1, 2k). Then

c2(TA) = 2k = (2k+ 1)2− τ(A) = (2k+ 1)2− 1− τp(A)− τq(A) = (2k+ 1)2− 1− 2τq(A).

Then we find τq(A) = k(2k + 1). By Proposition 3.1, removing one of these two lines we
get a new free arrangement A′ with exponents (1, 2k − 1). Then

c2(TA′) = 2k − 1 = (2k)2 − τ(A′) = (2k)2 − τp(A′)− τq(A′).

Since τq(A′) = τq(A) = k(2k+ 1), we find τp(A) = 2k2− 3k+ 1. At p the Tjurina number
of A coincide with the one of k smooth conics in a bitangent pencil. This proves the
assertion. �

Proposition 3.8. Let p be the triple point of an osculating pencil 〈f, g〉. Let C1, . . . , Ck
be k ≥ 3 smooth conics in the pencil 〈f, g〉. Then

τp(
k⋃
i=1

Ci) = 3((k − 1)2 + 1).

Proof. The union of three osculating smooth conics is a free divisor with exponents (2, 3).
This is verified for instance with Macaulay2. Then adding smooth conics remains free,
more precisely for k ≥ 3 smooth osculating conics, this union is free with exponents
(2, n(k−2)+1). The second Chern class of the logarithmic bundle associated is 2×(n(k−
2) + 1). This number is also computed with the total Tjurina number. There are two
points of intersection, p the osculating point and q where the k conics meet transversally.

At q the Tjurina number is the Milnor number (k − 1)2. This gives τp(
⋃k
i=1Ci). �

Proposition 3.9. Let p be 4-uple point of a +osculating pencil 〈f, g〉. Let C1, . . . , Ck be
k ≥ 2 smooth conics in the pencil 〈f, g〉. Then

τp(

k⋃
i=1

Ci) = 4k2 − 6k + 3.

Proof. The union of two +osculating smooth conics is a free divisor with exponents (1, 2).
This is verified with Macaulay2. Then adding smooth conics remains free, more precisely
for k ≥ 2 smooth overosculating conics, this union is free with exponents (1, 2(k − 1)).
The second Chern class of the logarithmic bundle associated is 2(k − 1). This number is
also computed with the total Tjurina number. There is only one point of intersection, p.

This gives τp(
⋃k
i=1Ci). �
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