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Despite intensive efforts there is still a very poor under-standing of the physics of the high-T c superconductors. One way to investigate this question is a detailed analysis of the normalsuperconducting transition. Such a transition is normally expected to fall in the universality class of the 3D XY model ( He 4 transition) [START_REF] Fisher | Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors[END_REF], since the order parameter has both amplitude and phase fluctuations although the charged nature of the pairs can lead to more complicated behaviors [START_REF] Halperin | First-Order Phase Transitions in Superconductors and Smectic-A Liquid Crystals[END_REF][START_REF] Dasgupta | Phase Transition in a Lattice Model of Superconductivity[END_REF]. For high-T c one expects that an analysis of the transition, and in particular of the critical exponents, can give a clue on the underlying microscopic mechanism. For example, preformed pairs [START_REF] Shen | Excitation Gap in the Normal State of Underdoped Bi2Sr2CaCu2O8+δ[END_REF] would favor phase fluctuations, leading to a 3D XY transition, whereas an amplitude-driven transition, e.g., because the energy scale for phase fluctuations is much higher than T c [START_REF] Emery | Importance of phase fluctuations in superconductors with small superfluid density[END_REF], would have a mean-field behavior. The critical exponents that depend on the number of components of the order parameter [START_REF] Zinn-Justin | Quantum field theory and critical phenomena[END_REF] would also allow one to decide on more complicated order parameters [START_REF] Zhang | [END_REF].

Since in a superconductor there is no external parameter conjugate to the order parameter, one can only measure the exponents α, ν, and 𝓏. There have been several attempts to measure such exponents. Precise measurements of the magnetic penetration depth below T c in YBa2Cu3O7- (YBCO) single crystals [START_REF] Kamal | Penetration Depth Measurements of 3D XY Critical Behavior in YBa2Cu3O6.95 Crystals[END_REF] revealed a large critical region below T c (≈10 K) and ν = 0.66, in agreement with the 3D XY exponent. If the hyperscaling relation is obeyed below T c this imposes a small value of a close to zero. The situation is less clear above T c , where such measurements cannot be performed. Above T c measurements of microwave conductivity in YBCO single crystals [9] yield a combination of n and z and were interpreted in terms of 2D Gaussian fluctuations, whereas frequency dependent microwave conductivity measurements in YBCO films [START_REF] Booth | Large Dynamical Fluctuations in the Microwave Conductivity of YBa2Cu3O7-δ above Tc[END_REF] were interpreted in terms of critical fluctuations. Specific heat measurements have the enormous advantage of measuring a both above and below Tc in the same experiment and on the same sample. However, large error bars in the exponents arise from the large phonon contribution and the wide transitions of samples. First, specific heat data in YBCO single crystals were interpreted in terms of Gaussian fluctuations [START_REF] Inderhees | Heat capacity of untwinned YBa2Cu3O7-δ crystals along the Hc2 line[END_REF]. More recently, C p data were interpreted within the 3D XY framework [12 -15], accommodating also data in large magnetic fields [START_REF] Salamon | XY-like critical behavior of the thermodynamic and transport properties of YBa2Cu3O7-x in magnetic fields near Tc[END_REF]. However, those exponents are not obtained over more than one decade in reduced temperature and a clear discussion of the error bars for the exponent at zero field is nonexistent.

We present here a detailed study of the C p transition of detwinned YBCO single crystals. The size of singularity in our crystals is 1.3 -3 times larger than the ones reported in literature. The samples have exceptionally sharp transitions and large disorder lengths. Our measurements show definite incompatibilities with the 3D XY predictions and provide evidence that the critical exponents are asymmetric around Tc. This fact is incompatible with a regular second order phase transition.

Our very sensitive ac micro calorimeter allows us to measure the specific heat with a relative resolution δC C ⁄ of 10 -4 . Our absolute precision is 5% [START_REF] Riou | A very sensitive micro calorimetry technique for measuring specific heat of μg single crystal[END_REF]. Our sample holder is a polymer membrane freely suspended from a copper matrix; thermometers and heaters are thin films deposited and lithographically patterned within a central area of 0.6 mm of diameter. Their thermal response times are ≈ 0.1 ms. The crystal responds to a temperature change within 5 ms. Much longer times characterize the thermal coupling of the crystal to the copper matrix (≈ 0.5 s) resulting to quasiadiabatic conditions. At 3 Hz the temperature oscillation front propagates coherently throughout the sample. The total specific heat of the central area of the membrane is ~1.5mJ/K at 100 K, which is about 3 times less than our smallest YBCO sample. The sample holder contribution is reproducible within 30%, and is subtracted from the data. The excellent sensitivity of our metallic thermometer (100 mV/K) allows one to measure temperature oscillations as small as 5 mK, with a resolution of 0.5 mK, at an average temperature of 90K, corresponding to a specific heat resolution of 0.5 nJ/K. The dc temperature is incremented by steps as small as 5 mK; at each point the temperature is stabilized with drifts smaller than 1 mK/h. The calorimeter is optimized at the temperature range 40 -160 K; recently a similar technique was extended in the temperature range 1 -10 K [START_REF] Fominaya | Nano calorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals[END_REF]. Since the electronic specific heat of YBCO is very sensitive to oxygen doping [START_REF] Loram | Electronic specific heat of YBa2Cu3O6+x from 1.8 to 300 K[END_REF], we used macroscopic samples (10 -35 µg), the smallest dimension of which is larger than 30 µm, in the purpose to achieve good doping homogeneity during the annealing process. Specific care was taken in order to define precisely the oxygen content. We measured several twinned and detwinned single crystals with our best samples being detwinned. We present data on samples named YBCO3, UBC1, UBC2, and UBC2 overdoped. The YBCO3 sample was grown in a gold crucible resulting in a slight contamination of Cu chains with Au [20]. Samples UBC1 and UBC2 were grown on Y -stabilized zirconia crucibles resulting in a very low impurity level. The central result of this paper is shown in Figs. 1 and2.

Despite the fact that the singular part of the specific heat resembles a λ shape similar to the one of the He 4 transition, the derivative shows that this is not true. From Fig. 1, we observe an enormous difference between dC + dt ⁄ and dC -dt ⁄ (the ± sign corresponds to data above/below T c ), with a measured ratio

(dC + dt ⁄ ) (dC -dt ⁄ ) ⁄
≈10 close to T c for our best sample, whereas the theoretical ratio within the 3D XY model is 1.03, indicating dramatic difference between our data and the 3D XY predictions. The 3D XY model would also predict [START_REF] Lipa | Very High-Resolution Heat-Capacity Measurements near the Lambda Point of Helium[END_REF][START_REF] Singsaas | Universality of static properties near the superfluid transition in He 4[END_REF] for the singular part of the specific heat C sing.

± = B ± + A ± α ± ⁄ |t| -α ±
with B + = B -, α + = α -= -0.013 ± 0.003, and A + A - ⁄ = 1.03. Let us thus further analyze our data to extract the critical exponents.

The phonon background is very well described by C back = bt -ct 2 + d which gives for the total specific heat (after subtraction of the contribution of the sample holder)

C tot = B + A α ⁄ |t| -α + (bt - ct 2 + d),
where the superscripts are dropped for clarity. Because of our low noise level, we can analyze the derivative of dC tot dt ⁄ which eliminates the d and B terms. This leaves five fit parameters: a, A, b, c, and T c , which reduce to four because fits are not sensitive to the value of c, the slight background curvature. We have a good control over parameters b and Tc which allows us to make a reasonable fit of the data despite the large number of parameters. T c is restricted in a very small temperature window for our samples because the transitions are remarkably sharp (≈70 mK). We are able to restrict b, the slope of the phonon background within ±10% of its nominal value due to our high absolute precision. Subtracting b -2ct from the derivative dC tot dt ⁄ , we obtain directly a power law. We use then the straight line slope in a log (dC sing dt ⁄ ) versus log|t| plot to get α as shown on Fig. 3.

A good power law is observed over more than two decades of reduced temperature both above and below T c , in the temperature range 410 -4 < t < 0.1. We observe two very different slopes resulting in very different values of the exponent: α is big and positive above T c (α + = 0.5), whereas it is small and negative below Tc (α -= -0.3). This leads to the stunning result of a divergence above T c and a cusp below T c . Close to T c the transition gets rounded before reaching our experimental resolution of t ~10 -5 . The transition width δT c is given by the temperature difference between the two inflection points of C(T) (extrema of the dC dt ⁄ curve). The rounding occurs when the characteristic coherence length which diverges close to T c (ξ~t -ν ) reaches a typical disorder length. Our best samples have transitions widths between δT = 70 -100 mK corresponding to a disorder length of 500 -1500 Å, 50 to 180 times larger than the coherence length. This is a very large length for a solid sample, among the largest reported for high-T c materials, but still very small compared to the disorder length in He In such a plot a straight line slope equals α + 1. Above T c a power law is observed with a slope of 1.5 (α + = 0.5), whereas below T c a power law is observed with a slope of 0.7 (α -= -0.3). Inset: simulation of the effect of disorder in the derivative within the 3D XY model. Slopes above and below Tc are identical in this scale and reach the 3D XY value outside the rounded region. Given the astonishing result of asymmetric exponents, it is important to check how robust is the result against a change of the slope b of the background or a change in T c . We show on Fig. 4 α + (b,T c ) and α -(b, T c ) as a function of T c . The acceptable T c window is shown gray on Fig. 4, and corresponds to δT c as defined above. The asymmetry of the exponent is pronounced within all the acceptable range of T c 's values. The exponent becomes symmetric only for a value of T c unphysically far from the peak temperature (arrow on Fig. 2, right inset).

Similarly, the asymmetry is not healed by changing the background slope b. From Fig. 4 one can extract the exponents and their error bars (given from the variation within the gray areas). This gives α + = 0.5 ± 0.2 (with α -= -0.5). To study α -we use the sample YBCO3 (δT c = 100 mK) even though it has a wider transition, since it has the sharpest derivative peak dC -dt ⁄ . YBCO3 data are fitted both with α -= -0.3

or α -= -0.013, with a slightly better fit for the -0.3 value. This leads to α -= -0.2 ± 0.3. Such a value is compatible with various models with a number of components of the order parameter N ≥ 2 (accommodating the XY model, the SO(5) model, or the N4 d-wave model). For this sample also data above T c cannot be fitted with the 3D XY exponent and an excellent fit is again obtained for the Gaussian exponent α + = 0.5.

We checked the robustness of this asymmetry against various artifacts, such as disorder effects or a very asymmetric distribution of T c 's around the optimal doping. Disorder cannot explain the effect. Based on Harris criterion it is relevant only for positive values of α and thus should affect the transition only above T c . Besides this criterion, a phenomenological approach considering the distribution of T c 's within the sample shows that it does not produce the observed asymmetry: In the inset of Fig. 3 we show such an effect for a 3D XY transition. If one measures the slope in the rounded region, one mistakenly finds a smaller (α + 1) slope and the value of a appears smaller than the real value. This should not affect our data since we systematically exclude the rounded region from our fits. If it had affected our data, the real α -should be closer to zero, whereas the real α + should have a larger positive value. In cleaner samples the exponents would thus have slightly higher values than the reported ones, but those would not become more symmetric. A distribution of Tc around optimal doping is also unable to explain the data since we find asymmetric exponents outside the rounded region. In the optimally doped samples enhanced rounding is expected on the left side of T c because there is only one maximum value for T c . This effect should be reversed in overdoped samples, where enhanced rounding is expected on the right side of T c (one has only minimum value of T c ). We checked for this effect by annealing our best crystal UBC2 in adequate conditions in order to push it in the overdoped region. We obtained x = 0.99 and T c = 89.2 K; the transition width is 3 times larger than in optimal doping, even though our annealing conditions were specially designed to enhance good doping homogeneity. The derivative of C p data for the UBC2 overdoped sample is shown on Fig. 1 together with data for the optimally doped UBC2. The asymmetry both in the exponents and in (dC + dt ⁄ ) (dC -dt ⁄ ) ⁄ persists and are still incompatible with the 3D XY prediction. The rounding of the transition seems to affect mostly the right side of the transition (T c defined as the zero dC dt ⁄ point), in agreement with the Harris criterion.

Although the exponents are asymmetric, the weight of fluctuations taken separately above and below T c is reasonable. Above T c , C sing A possible interpretation of the data is that we observe above T c the Gaussian fluctuations, whereas the system below T c is in the critical regime. Using our specific heat data, we can estimate the width of the critical regime. By equating the singular part of the specific heat (using the coefficient C 0 ) with the mean-field jump (Δ C MF ≈ 5 mJ/gK [START_REF] Loram | Electronic specific heat of YBa2Cu3O6+x from 1.8 to 300 K[END_REF]), we find a critical width T -T c = 0.17 K. The critical width will be 4 times smaller (T -T c = 0.04 K) if a double mean-field jump (strong coupling) is considered [24]. Thus the critical region above T c is very close to the rounded region, and true critical behavior above T c cannot be observed, consistent with our observation of Gaussian-like fluctuations. Of course this should also be true below T c , so it remains a mystery why the critical regime below T c would be much larger. The standard Ginzburg criterion gives a critical region twice larger above T c than below, because thermal fluctuations are less effective below T c , where the establishment of the order parameter enhances the restoring force for fluctuations. A similar result is expected for the 3D XY model: the coherence length below T c is 2.5 times larger than the coherence length above T c [23,25], indicating a larger energy cost for fluctuations below T c and a smaller critical region. In He 4

the critical regime appears symmetric [START_REF] Lipa | Very High-Resolution Heat-Capacity Measurements near the Lambda Point of Helium[END_REF].

Fit of the data in various temperature ranges suggests that "Gaussian" fluctuations govern the behavior above T c all the way from T c + 10 K down to T c + 0.04 K (rounded region). "Critical" fluctuations govern the behavior from T c -0.04 K down to T c -10 K. With the exponents being so different from the two sides, a much stronger divergence above T c explains the huge asymmetry of dC dt ⁄ .

The values of critical exponents may thus be understood separately (amplitude fluctuations above T c , phase fluctuations below T c ), but their asymmetry is not compatible with a regular second order transition. Complications such as a dimensional crossover could change the apparent value of the exponents but would not explain the observed asymmetry. To the best of our knowledge no theoretical explanation exists at present. Some possibilities could be the existence of a weakly first order phase transition or coincidence of two phase transitions close to T c , but clearly more theoretical work is needed. A point remaining to clarify is if the effect will persist in the underdoped regime and that there is no coupling with a singular phonon background at T c .
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 1 Figure 1. Derivative of the total specific heat of four YBCO single crystals. All samples are detwinned and optimally doped, except for sample UBC2over, which is overdoped. The asymmetry of the derivative peak reaches a ratio of 9 for sample UBC2, whereas the prediction of 3D XY is a ratio of 1.03

Figure 2 .

 2 Figure 2. Singular part of the specific heat for samples UBC2 (δT c = 70 mK) and YBCO3 (δT c = 100 mK). The background subtracted is a two-degree polynomial fit of the data in the range (50 -70 K) and (100 -120 K). The peak height (11 mJ/gK) is, respectively, 1.8, 1.5, 1.5, 2.8, 2.6, 1.3, and 1.3 larger than the one reported in [11 -16,19]. No comparison is available for the transition width and disorder length in these samples. Left inset: C/T data for sample UBC2. Right inset: derivative of the specific heat; gray area represents the rounding of the transition.

Figure 3 .

 3 Figure 3. Derivative of the singular part of the specific heat as a function of reduced temperature.In such a plot a straight line slope equals α + 1. Above T c a power law is observed with a slope of 1.5 (α + = 0.5), whereas below T c a power law is observed with a slope of 0.7 (α -= -0.3). Inset: simulation of the effect of disorder in the derivative within the 3D XY model. Slopes above and below Tc are identical in this scale and reach the 3D XY value outside the rounded region.

Figure 4 .

 4 Figure 4. Exponent α as a function of different choices of T c for samples UBC2 and YBCO3. Nominal background is subtracted. The gray area corresponds to the rounded region of the transition. The point where the two curves meet is denoted by an arrow on Fig. 2, right inset.
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  C 0 × t -0.5 gives C 0 = 0.218 mJ/gK. From the relation C 0 = κ B (ξ 2 4√2π) ⁄ we obtain ξ 0 = 8.2Å, a very reasonable value for the coherence length. Below T c , YBCO3 data are fitted with C sing -= B --(A -0.013 ⁄ ) × |t| 0.013 and give (A -0.013 ⁄ ) = 97 mJ/gK. Using the relation A -= κ B (ξ ϕ 3 ) ⁄ R ϕ 3 and R ϕ = 0.8 [23] we find ξ ϕ = 8.7Å, again a very reasonable value for the coherence length below T c .

, that is almost exempt of impurities.