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ABSTRACT 

We calculate the thermal decay in the one-dimensional Transient Thermal Grating (TTG) 

experiment by solving the transient Boltzmann-Peierls transport equation (BPTE) within the 

framework of the single mode relaxation time approximation and using modified Debye-

Callaway model in which both longitudinal and transverse phonon modes are included 

explicitly. We consider surface heating of an opaque thick semiconductor (SC) crystal film that 

we assume to have a cubic symmetry and is treated as a continuum, elastic, isotropic and 

dispersionless medium. We obtain a non-universal spectral suppression function (SSF) in the 

integrand of the effective apparent thermal conductivity that is similar to the one obtained by 

Chiloyan et al., [Phys. Rev. B 93, 155201 (2016)] using the standard single mode relaxation 

time approximation (RTA) model. Therefore, the non-universal character of the SSF in the TTG 

experiment does not depend on the form of the collision operator approximation in the BPTE; 

Callaway’s or standard. Moreover, the analysis of the behavior of the thermal decay rate, shows 

how the peculiar crystal momentum shuffling effect of phonon-phonon scattering Normal 

processes (N-processes) that is captured by Callaway’s model, influences the onset of the non-

diffusive (quasi-ballistic) regime in the phonon transport process in SC crystals. This effect 

tends independently from the other phonon scattering processes to favor the maintenance of the 

phonon diffusive regime over a large length scale range. A remarkable feature that cannot be 

put into light with the standard RTA model used in previous works. Hence, the implicit effect 

of N-processes has certainly an important impact on the extraction of the phonon mean free 

path spectrum distribution, especially in the high temperature regime.  

  



2 
 

I. INTRODUCTION 

For the purpose of heat transport in semiconductor (SC) and dielectric materials, the most 

important characteristic intrinsic length is the mean free path (MFP) of phonons that represent 

the main energy (heat) carriers in these materials [1-4]. 

Transient Thermal Grating (TTG) spectroscopy technique has been proven to be a robust 

method to study length scale based quasi-ballistic (non-diffusive) phonon transport, including 

the transition from the quasi-ballistic regime to the diffusive regime, in dielectric and SC 

crystals [5-9]. Using a reconstruction method, the TTG spectroscopy technique has allowed 

probing the phonon MFP spectrum distribution and obtaining valuable information about the 

contribution weight and role of low and high frequency phonons in the heat transport process 

in these materials [5]. 

In this technique, two crossed laser pulses are shone on the surface of a thin or thick film 

material. The film can be either suspended or deposited on a supporting substrate. The 

interference pattern of the pulses results in a spatially sinusoidal temperature profile that 

constitutes the thermal grating with a spatial period that can be varied by adjusting the angle 

between the crossed laser beams. Once heated, the sample is allowed to relax and the timely 

decay of the thermal profile is measured to yield information about the in-plane phonon 

transport process within the material [5-9]. Because of the great importance TTG has gained in 

the study of phonon spectroscopy, its modeling has become critical. So far, three approaches 

have been suggested to mathematically model the TTG technique in a one-dimensional case. 

(i) The first approach was performed in the framework of a “two-fluid” model by Maznev et 

al., [10]. An analytical spectral suppression function (SSF) in the integrand of the effective 

apparent thermal conductivity was obtained using simplifying assumptions about the scattering 

of high and low frequency phonons. This SSF was later utilized in the reconstruction of the 

phonon MFP spectrum distribution by Minnich [5]. As mentioned by Hua and Minnich [11] 

and Chiloyan et al., [12], there is a concern as the extent of validity of the “two-fluid” model is 

not clear. (ii) The second approach is based on solving the transient Boltzmann-Peierls transport 

equation (BPTE) in the framework of the standard single mode relaxation time approximation 

(RTA) model. In the standard RTA model, all phonon-phonon scattering processes are treated 

similarly regarding the onset of thermal conduction, with no distinction whatsoever between 

Normal and Umklapp anharmonic processes [11, 13]. This second approach was first explored 

by Collins et al., where they used analytical and numerical methods to solve the problem and 

obtained the exact solution of the BPTE, in both the gray case and the full spectral case for Si 
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and PbSe [13]. The authors showed that there is a deviation of the “two-fluid” model from the 

exact numerical solution for PbSe [13]. Hua and Minnich extended this same second approach 

to obtain the Fourier transform with respect to time of the thermal decay analytically. The 

authors were able to recover the “two-fluid” model SSF in what they called the “weakly quasi-

ballistic regime” [11]. (iii) The third approach is a variational one that was first used by 

Chiloyan et al., to solve the transient BPTE using also the standard RTA model [12]. The 

authors found a different SSF than the one obtained earlier [10, 11, 13]. The authors argued 

afterwards about the non-universality of the SSF, as the one they obtained depends explicitly 

on the material properties. The SSF obtained by Maznev et al., [10], Collins et al., [13] and Hua 

and Minnich [11] is a universal one; i.e., it depends only on the ratio of the phonon MFP with 

respect to a characteristic length and not otherwise on the material properties. A more detailed 

and extended analysis of the application of the variational approach to include the effect of the 

two-dimensional case of phonon transport in a TTG configuration, was later presented by 

Chiloyan et al., [14] and Hubermann et al., [15]. The authors showed that the optical penetration 

depth could have an important effect for thin film materials that are transparent or 

semitransparent to the laser wavelength used in the TTG experiment [14, 15]. 

Two recent works by Hua and Lindsay [16] and Chiloyan et al., [17] went beyond the 

standard RTA model and applied a more elaborate method using the full linearized collision 

matrix. The authors obtained closed forms expressions for the temperature profile and the 

effective apparent thermal conductivity and highlighted the limits of the standard RTA model 

in treating the results of the TTG spectroscopy technique, especially for high thermal 

conductivity materials. 

The differences in the outcomes of all these approaches show clearly how critical and 

crucial the modeling of the TTG spectroscopy technique is, for a better and rigorous 

understanding of phonon transport regimes in this experimental configuration. Besides, no 

analysis so far has considered Callaway’s model or a detailed analysis of the effect of 

temperature. 

The motivation behind the present work is to calculate and analyze the thermal decay in the 

one-dimensional (1D) TTG experiment that corresponds to the case of a surface heating of an 

opaque thick SC crystal film, by solving the transient BPTE using the Callaway’s 

approximation of the collision operator. This will allow us to address and highlight more 

respectfully and simply the critical role of phonon-phonon scattering Normal processes. The 

analysis will show how considering separately these processes, affects the expression of the 

SSF of the in-plane effective apparent thermal conductivity and the onset of the non-diffusive 
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(quasi-ballistic) regime in the phonon transport process. This latter effect cannot readily be 

inferred from rigorous treatment using the full linearized collision matrix [16, 17]. In addition, 

the analysis will also allow us to examine the important impact on the phonon MFP spectrum 

distribution that could be reconstructed based on the obtained thermal decay rate. 

We present the main steps of theoretical modeling in section 2. In section 3, we discuss the 

results of this approach in application to the 1D TTG experiment by analyzing the effect of 

varying the ambient temperature. We summarize and establish our concluding remarks in 

section 4. 

II. THEORY 

TTG spectroscopy technique is an experimental technique that is particularly sensitive to 

in-plane phonon transport [5-15]. In this section, we present the key elements of the method 

that allows deriving the full expression of the thermal decay rate that would be measured in this 

technique, by analyzing the case of a surface heating of an opaque thick SC crystal film that we 

can consider as a bulk material [13]. In contrast to previous theoretical works [11-15], we will 

consider phonon-phonon scattering Normal processes (N-processes) and phonon-phonon 

scattering Umklapp processes (U-processes) separately. Once the expression of the thermal 

decay rate is obtained, one can get straightforwardly the expression of the in-plane effective 

apparent thermal conductivity. The integrand of the latter contains the phonon SSF. 

A. Callaway’s approach of the Boltzmann-Peierls transport equation  

The starting point of our modeling is the transient BPTE in the framework of the single 

mode relaxation time approximation and using modified Debye-Callaway model in which both 

longitudinal and transverse phonon modes are included explicitly [18-26]. The SC system is 

assumed to have a cubic symmetry and is treated as a continuum, elastic and isotropic medium 

characterized by a linear (Debye-like) phonon spectrum for each phonon branch polarization 

so that one considers heat transport due only to acoustic phonons and ignore any contribution 

from optical phonons [18-26]. Callaway’s approximation of the collision operator in BPTE 

captures quite fairly and respectfully the peculiar effect of phonon-phonon N-processes that 

distinguishes them from the rest of phonon scattering processes including phonon-phonon U-

processes. Thus, it allows a simple separation of N-processes and U-processes [18-21]. 

Despite its simplicity, Debye-Callaway model has been proven to be very robust and 

effective in the study and prediction of the steady-state temperature behavior of the thermal 

conductivity of SC crystals within the conventional local/linear non-equilibrium 
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thermodynamics theory [18-25]. Besides, it constitutes one of the first models to be used to 

study the second sound phenomenon in SC and dielectric crystals [27]. We recently used the 

model to analyze the modulation frequency behavior of the reduced effective thermal 

conductivity of SC crystals that is observed in Time Domain Thermoreflectance (TDTR) and 

Frequency Domain Thermoreflectance (FDTR) experiments. We obtained an expression of the 

effective apparent thermal conductivity of the SC crystal that is characterized by a universal 

SSF that captures and describes the role, the weight and the contribution of quasi-ballistic and 

non-diffusive phonons. The SSF only depends on the ratio between the spectral phonon MFP 

and the thermal penetration depth as defined based on the diffusive Fourier’s law [26]. Indeed, 

the thermal penetration depth constitutes the central characteristic length scale in TDTR and 

FDTR configurations. 

We follow the same procedure as Collins et al., [13] and Hua and Minnich [11] to derive 

the expression of the thermal decay in a TTG experiment. In addition, we will consider local 

thermal equilibrium throughout, which is required to define a temperature [18-27]. Surface 

heating of an opaque bulk SC crystal in a TTG experiment results in a one-dimensional spatially 

periodic temperature profile that we assume to be established along the direction x

. Under the 

single mode relaxation time approximation, the transient Callaway’s form of the BPTE along 

the x-axis can be written as the following [11-13, 26]: 

𝜕𝑈௤,௣
௠

𝜕𝑡
+ 𝑚𝑣௣

𝜕𝑈௤,௣
௠

𝜕𝑥
= −

𝑈௤,௣
௠ − 𝑈௤,,௣

଴

𝜏௤,௣
஼ +

𝑔௤,௣
௠

𝜏௤,௣
஼      (1) 

where we have introduced the deviational spectral energy density per phonon mode (phonon 

wave-packet) of wave-vector q and polarization p as 𝑈(𝑥, 𝑡, 𝑚, 𝑞, 𝑝) ≡ 𝑈௤,௣
௠ = ℏ𝜔௣൫𝑛௤,௣

௠ −

𝑛௤,௣
ா௤

൯. 𝑛௤,௣
௠  is the phonon distribution function at the absolute local thermal equilibrium 

temperature T. 𝑈௤,௣
଴ = ℏ𝜔௣൫𝑛௤,௣

଴ − 𝑛௤,௣
ா௤

൯ is therefore the deviational equilibrium spectral 

energy density per phonon mode with 𝑛௤,௣
଴  and 𝑛௤,௣

ா௤  denoting the equilibrium phonon Planck 

distribution functions, at temperatures T and T0, respectively. T0 represents an absolute 

reference temperature [11-13, 26]. 

൫𝜏௤,௣
஼ ൯

ିଵ
= ൫𝜏௤,௣

ோ ൯
ିଵ

+ ൫𝜏௤,௣
ே ൯

ିଵ
 is the “combined” phonon scattering rate [18, 19] with 

𝜏௤,௣
ோ  representing the single relaxation time with which all resistive phonon scattering processes 

(all scattering processes that change the total phonon wave-vector: Umklapp, boundary, defects, 

imperfections) tend to return the phonon system to its thermal equilibrium state. 𝜏௤,௣
ே  is the 

single relaxation time due to N-processes (scattering processes that don’t change the total 

phonon wave-vector). As pointed out by Callaway [18] and others [19-21], N-processes tend to 
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return the phonon system to a displaced (drifted) Planck distribution function 𝑛௤,௣

ఒ೛
=

ቄ𝑒𝑥𝑝 ቂ
൫ℏఠು(௤)ି𝝀𝒑.𝒒൯

௞ಳ்
ቃ − 1ቅ

ିଵ

. By symmetry consideration in cubic SC crystals, p is a constant 

vector in the direction of the applied temperature disturbance, which has the dimension of a 

velocity times the reduced Planck constant ħ. 𝜔௣(𝑞), vp and m are, respectively, the dispersion 

relation of the phonon in state (q, p), group velocity of a p-polarization phonon and directive 

cosine; cosine of the angle between the x-axis and the phonon wave-vector q [18-27]. 

By using Callaway’s analysis and Debye-like phonon dispersion 𝜔௣(𝑞) = 𝑣௣𝑞 [18, 19, 26], 

we can easily show that the term 𝑔௤,௣
௠ is given by:  

𝑔௤,௣
௠ = −𝛽௣

𝜏௤,௣
஼

𝜏௤,௣
ே

𝑚𝑣௣𝐶௤
௣ 𝑑𝑇

𝑑𝑥
     (2) 

p is Callaway’s parameter that has the dimension of a relaxation time [18-27] and 𝐶௤
௣

=
డ௎೜,೛

బ

డ்
=

ℏ𝜔௣
డ௡೜,೛

బ

డ்
 is the specific heat or heat capacity per phonon normal mode [24, 26]. The Callaway 

pseudo-relaxation time p describing the effect of N-processes is calculated as in the 

conventional steady-state local/linear treatment, by recalling that N-processes cannot change 

the total phonon wave-vector (total crystal momentum) [18-27]. The term 𝑔௤,௣
௠  as given by Eq. 

(2) represents the spectral energy density per phonon mode associated to the phonon gas drift 

[18, 19]. 

B. Application to the 1D TTG configuration  

The one-dimensional spatially periodic temperature profile is of the form ∆𝑇(𝑥, 𝑡) =

𝑇(𝑥, 𝑡) − 𝑇଴ = ∆𝑇෪ (𝑡)𝑒௜ఎ௫ where 𝜂 =
ଶగ

ௗ
 is the wavenumber of the thermal grating of spatial 

period d. Therefore, we seek a spatially periodic solution for 𝑈௤,௣
௠  of the form 𝑈௤,௣

௠ (𝑥, 𝑡) =

𝑈௤,௣
௠෪ (𝑡)𝑒௜ఎ௫. By noting that 

ௗ்

ௗ௫
=

ௗ(∆்)

ௗ௫
 , Eq. (1) becomes: 

𝑑𝑈௤,௣
௠෪

𝑑𝑡
+ 𝛾𝑈௤,௣

௠෪ =
𝐶௤

௣

𝜏௘௙௙
∆𝑇෪      (3) 

where 𝛾 = ൫𝜏௤,௣
஼ ൯

ିଵ
+ 𝑖𝜂𝑚𝑣௣ and ൫𝜏௘௙௙൯

ିଵ
= ൫𝜏௤,௣

஼ ൯
ିଵ

− 𝑖𝜂
𝛽𝑝

𝜏𝑞,𝑝
𝑁 𝑚𝑣௣. 

To obtain Eq. (3), we used the fact that for small ∆𝑇, we can write 𝑈௤,௣
଴෪ = 𝐶௤

௣
∆𝑇෪ . 

Eq. (3) is a simple one variable first-order inhomogeneous ordinary differential equation for 

𝑈௤,௣
௠෪  that we can easily and readily solve. We get the following solution: 
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𝑈௤,௣
௠෪ (t) =

𝐶௤
௣

𝜏௘௙௙
න 𝑒ఊ൫௧ᇲି௧൯∆𝑇෪ (𝑡′)𝑑𝑡′

௧

଴

+ 𝐶௤
௣

∆𝑇෪ (0)eିఊ      (4) 

Another relation between 𝑈௤,௣
௠෪ (t) and ∆𝑇෪ (𝑡) is obtained through the energy conservation 

relation. The latter takes the form: 

෍ න න ቈ
𝐶௤

௣

𝜏௘௙௙
∆𝑇෪ (𝑡) −

𝑈௤,௣
௠෪ (t)

𝜏௤,௣
஼ ቉ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴

𝑑𝑚
ଵ

ିଵ௣

= 0     (5) 

where 𝑞஽
௉ denotes Debye’s cutoff wave-vector of the acoustic branch polarization p [18-27]. 

By considering the expression of ൫𝜏௘௙௙൯
ିଵ

, we can straightforwardly show that Eq. (5) leads 

to: 

∆𝑇෪ (𝑡) =

∑ ∫ ∫
𝑈௤,௣

௠෪ (t)

𝜏௤,௣
஼ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴
𝑑𝑚

ଵ

ିଵ௣

2 ∑ ∫
𝐶௤

௣

𝜏௤,௣
஼ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴௣

     (6) 

By inserting Eq. (4) into Eq. (6), we can directly extract the full expression of the normalized 

thermal decay 𝑌෨(𝑡) =
∆෪் (௧)

∆෪் (଴)
 as: 

𝑌෨(𝑡) =
1

2 ∑ ∫
𝐶௤

௣

𝜏௤,௣
஼ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴௣

෍ න න ቈ
𝐶௤

௣

𝜏௤,௣
஼ 𝜏௘௙௙

න 𝑒ఊ൫௧ᇲି௧൯𝑌෨(𝑡′)𝑑𝑡′
௧

଴

௤ವ
ು

଴

ଵ

ିଵ௣

+
𝐶௤

௣

𝜏௤,௣
஼ eିఊ௧቉ 𝑞ଶ𝑑𝑞 𝑑𝑚      (7) 

The exploitation of the expression of ൫𝜏௘௙௙൯
ିଵ

 allows us to rearrange Eq. (7) in a form that 

clearly highlights the effects of phonon-phonon scattering N-processes and Callaway’s model 

in comparison to the standard RTA model. 𝑌෨(𝑡) can be written as: 

𝑌෨(𝑡)

=
1

2 ∑ ∫
𝐶௤

௣

𝜏௤,௣
஼ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴௣

෍ න න ൥
𝐶௤

௣

൫𝜏௤,௣
஼ ൯

ଶ න 𝑒ఊ൫௧ᇲି௧൯𝑌෨(𝑡′)𝑑𝑡′
௧

଴

+
𝐶௤

௣

𝜏௤,௣
஼ eିఊ௧൩ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴

𝑑𝑚
ଵ

ିଵ௣

−
𝑖𝜂

2 ∑ ∫
𝐶௤

௣

𝜏௤,௣
஼ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴௣

෍ 𝛽௣𝑣௣ න න ቈ𝑚
𝐶௤

௣

𝜏௤,௣
஼ 𝜏௤,௣

ே
න 𝑒ఊ൫௧ᇲି௧൯𝑌෨(𝑡′)𝑑𝑡′

௧

଴

቉ 𝑞ଶ𝑑𝑞
௤ವ

ು

଴

𝑑𝑚
ଵ

ିଵ௣

     (8) 

The first term in Eq. (8) is the result we obtain using the standard RTA model [11-15], while 

the additional second term represents the effect of taking separately phonon-phonon scattering 
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N-processes and U-processes in the framework of the modified Debye-Callaway model [18-

27]. 

We apply Laplace transform to Eq. (7) in order to isolate the expression of the normalized 

thermal decay 𝑌ത෨(𝑠) in Laplace domain. After performing simple calculations of the different 

integrals with respect to the directive cosine m and rearranging the different terms, we can 

straightforwardly obtain the following result: 

𝑌ത෨(𝑠, 𝜂) =
∑ ∫ 𝐶௤

௣
𝜓௤,௣(𝑠, 𝜂)𝑞ଶ𝑑𝑞

௤ವ
ು

଴௣

∑ ∫
𝐶௤

௣

𝜏௤,௣
஼ ൜1 +

𝛽௣

𝜏௤,௣
ே − ൤1 +

𝛽௣

𝜏௤,௣
ே ൫1 + 𝜏௤,௣

஼ 𝑠൯൨ 𝜓௤,௣(𝑠, 𝜂)ൠ 𝑞ଶ𝑑𝑞
௤ವ

ು

଴௣

     (9) 

where the function 𝜓௤,௣(𝑠, 𝜂) is given by: 

𝜓௤,௣(𝑠, 𝜂) =
1

2𝜏௤,௣
஼ න

𝑑𝑚

𝛾 + 𝑠

ଵ

ିଵ

=
𝑖

2𝐾𝑛௤,௣
ఎ Log ቈ

1 + 𝐾𝑛௤,௣
ௌ − 𝑖𝐾𝑛௤,௣

ఎ

1 + 𝐾𝑛௤,௣
ௌ + 𝑖𝐾𝑛௤,௣

ఎ ቉ =

𝐴𝑟𝑐𝑡𝑎𝑛 ቈ
𝐾𝑛௤,௣

ఎ

1 + 𝐾𝑛௤,௣
ௌ ቉

𝐾𝑛௤,௣
ఎ       (10) 

where we introduce two non-dimensional Knudson numbers; a spatial one 𝐾𝑛௤,௣
ఎ

= 𝜂𝑣௣𝜏௤,௣
஼  

that compares the spectral phonon MFP to the thermal grating period and a temporal one 

𝐾𝑛௤,௣
ௌ = 𝑠𝜏௤,௣

஼  that compares the phonon combined relaxation time to the thermal decay time 

[11]. These two parameters specify the nature of the phonon transport regime completely in the 

spatio-temporal domain. In the diffusive limit, 𝐾𝑛௤,௣
ఎ

≪ 1 and 𝐾𝑛௤,௣
ௌ ≪ 1, while in the ballistic 

limit 𝐾𝑛௤,௣
ఎ

≫ 1 and 𝐾𝑛௤,௣
ௌ ≫ 1. In addition, we can obtain more insights onto these regimes 

based on the full expression of the normalized thermal decay given by Eq. (7) as we shall see 

later. 

The behavior of 𝑌ത෨(𝑠, 𝜂) is conditioned by the one of 𝜓௤,௣
(𝑠, 𝜂) depending on the phonon 

transport regime ൛𝐾𝑛௤,௣
ௌ →ାஶ

଴ ;  𝐾𝑛௤,௣
ఎ

→ାஶ
଴ ൟ. 

The conventional Fourier’s form of the normalized thermal decay in the herein 1D TTG 

configuration under consideration is given by: 

𝑌ி(𝑡, 𝑥) = 𝑒−Γ𝐹𝑡𝑒௜ఎ௫     (11) 

where the thermal decay rate Γி = 𝛼ி𝜂ଶ =
఑ಷ

஼
𝜂ଶ; F, F and C are the thermal diffusivity, 

conductivity and total specific heat, respectively. 

If one notes 𝑌෨ி(𝑡) = 𝑒−Γ𝐹𝑡, we easily remark that the thermal decay rate will be given by: 
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Γி
ିଵ = න 𝑌෨ி(𝑡)𝑑𝑡

ାஶ

଴

=𝑌ത෨ி(0)     (12) 

We apply this formula to our result that is given by Eq. (9) and we set Γ =
఑೅೅ಸ

಴ೌ೗೗ೌೢೌ೤

஼
𝜂ଶwhere 

𝜅்்ீ
஼௔௟௟௔௪௔௬ represents the effective apparent thermal conductivity that would be extracted from 

the measured thermal decay in the considered 1D TTG configuration. We easily obtain after 

some algebra, the full expression of 𝜅்்ீ
஼௔௟௟௔௪௔௬ as: 

𝜅்்ீ
஼௔௟௟௔௪௔௬(𝜂) =

𝐶

∑ ∫ 𝐶௤
௣

𝜒௤,௣𝑞ଶ𝑑𝑞
௤ವ

ು

଴௣

෍ 𝑣௣
ଶ න 𝐶௤

௣
𝜏௤,௣

஼ ቆ1 +
𝛽௣

𝜏௤,௣
ே

ቇ
1 − 𝜒௤,௣

൫𝐾𝑛௤,௣
ఎ

൯
ଶ 𝑞ଶ𝑑𝑞

௤ವ
ು

଴௣

     (14) 

where the function 𝜒௤,௣ is given by: 

𝜒௤,௣(𝜂) = 𝜓
௤,௣

(0, 𝜂) =
𝐴𝑟𝑐𝑡𝑎𝑛ൣ𝐾𝑛௤,௣

ఎ
൧

𝐾𝑛௤,௣
ఎ      (15) 

III. RESULTS AND DISCUSSION 

In the theory section, we assumed that the Callaway pseudo-relaxation time 

p, describing the implicit effect of phonon-phonon scattering N-processes, does not depend on 

space and that this approximation should preserve the essential features of thermal conduction 

by phonons. This means that the dependence of the phonon gas drift on space is contained in 

the expression of the drift velocity 
𝝀𝒑

ℏ
 only through the temperature gradient 𝜵𝑇(𝑥) [19]. p is a 

complicated quantity, depending on 𝜏௤,௣
ே  and 𝜏௤,௣

ோ . This complication is necessary because of 

the behavior of N-processes, which shuffle crystal momentum back and forth between phonon 

normal modes, and then contribute implicitly to the lattice thermal conduction (resistance) 

process of a given SC crystal material [18, 19]. 

In order to have a closer look at the steady-state behavior of the effective apparent thermal 

conductivity 𝜅்்ீ
஼௔௟௟௔௪௔௬and the thermal decay rate Γ as functions of the thermal grating period 

and temperature, we consider natural silicon (Si) and Si0.7Ge0.3 alloy as two illustrative 

examples of single and alloy SC crystals, respectively. Indeed, the first experimental results 

regarding phonon MFP spectroscopy utilizing TTG technique were carried out on a silicon thin 

film [5-7]. In addition to three phonon-phonon anharmonic scattering U and N-processes, we 

assume scattering of phonons by the boundaries of the thick opaque SC crystal film and by 

impurities (defects). All geometrical and physical properties of Si and Si0.7Ge0.3 materials can 

be found in tables I and II of reference [24]. We address a particular attention to the case of Si, 

for which we use two different sets of expressions for the relaxation times of phonon-phonon 
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scattering U and N-processes depending on the temperature regime. In the low temperature 

regime, up to 100K, the expressions of the relaxation times of the different phonon scattering 

processes considered are the conventionally and widespread ones we used in our early works 

[23, 24]. In the high temperature regime (>100K), we exploit the expressions suggested by 

Ward and Broido based on an ab-initio approach using first-principles density-functional 

perturbation theory (DFPT) [28, 29]. For the case of Si0.7Ge0.3 and because of the lack of finding 

expressions of the relaxation times of phonon-phonon scattering U and N-processes using first-

principles DFPT calculations, we assume the conventional expressions to be valid over the 

entire temperature range considered [23, 24]. 

We assume all physical properties of these SC crystals to be independent of temperature.  

The total resistive phonon scattering rate ൫𝜏௤,௣
ோ ൯

ିଵ
is obtained via Matthiessen’s rule [22-24]. 

To simplify more the expression of  𝜅்்ீ
஼௔௟௟௔௪௔௬in Eq. (14), we express it, as it is customary 

in the modified Debye-Callaway model, using a sum over one longitudinal (𝜅்்ீ
஼௔௟௟௔௪௔௬ି௅) and 

two degenerate transverse (𝜅்்ீ
஼௔௟௟௔௪௔௬ି்) phonon acoustic branch polarizations [22-26]. We also 

make use of the usual change of variable 𝑦 =
ℏఠ

௞ಳ்
which allows us to obtain straightforwardly 

the final computational expression of 𝜅்்ீ
஼௔௟௟௔௪௔௬. 

A. Callaway’s model vs standard RTA model 

The reason that motivates the use of Callaway’s model within the framework of the single 

mode relaxation time approximation, is the ability of this model to treat more fairly the different 

phonon-phonon scattering processes than does the standard RTA model. This model captures 

quite respectfully the peculiar effect of phonon-phonon scattering N-processes that 

distinguishes them from the rest of the phonon scattering processes including phonon-phonon 

scattering U-processes [18-27]. The standard RTA model often used, does not take this 

difference into consideration, and it treats all phonon scattering processes similarly, as if they 

were all independent resistive processes. It is well known however, that phonon-phonon 

scattering N-processes alone do not provide thermal resistance [18, 19, 30]. 
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Figure 1 : (a) Computed steady-state behaviors of the thermal conductivity of Si single and 
Si0.7Ge0.3 alloy SC bulk crystals using the conventional expressions of the relaxation times of 
phonon-phonon scattering U and N-processes, as functions of temperature. Callaway’s model 
(solid line), the standard RTA model excluding N-processes (dotted line) and including them 
(dashed line). (b) The case of the high temperature regime for Si using first-principles DFPT-

based expressions of the relaxation times of phonon-phonon scattering U and N-processes. 
The experimental data of natural Si are extracted from reference [23]. 

Whether N-processes are included or not in the Matthiessen’s rule to compute the total 

relaxation time in the standard RTA model, has a huge impact on the final result of the steady-

state behavior of the thermal conductivity  as a function of temperature, of a bulk SC crystal. 

The influence is striking in the high temperature regime above the peak value of  as one can 

see in figures 1(a) and 1(b), in which one illustrates a very instructive comparison between 

Callaway’s model and the standard RTA model. Figure 1 reports the computed temperature 

steady-state behaviors of  of Si and Si0.7Ge0.3 using both Callaway’s model and the standard 

RTA model with and without phonon-phonon scattering N-processes included. In the low 

temperature regime (below the peak value of ), the results of the 3 models are 

undistinguishable due to boundary effects. Indeed, mirrors the temperature behavior of the 

specific heat in the low temperature regime as boundaries phonon scattering processes dominate 

all other phonon scattering processes in this regime [18, 19, 30]. On the contrary, the 3 models 

predict different results in the high temperature regime. The standard RTA excluding 

(including) N-processes over (under)-estimates the value of  in comparison to Callaway’s 

model predictions, which fit quite fairly and consistently the experimental results [21, 23]. 

Previous studies on Si have shown the standard RTA model including N-processes to work 

quite well in the high temperature regime in comparison to ab-initio results, and the difference 

between this model and Callaway’s to be less than few percent at 300K [29]. As one can see in 

figure 1(a), we don’t reach the same conclusion using the conventional expressions of the 

relaxation times of phonon-phonon scattering U and N-processes. The standard RTA model 
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including N-processes falls faster starting temperatures around 100K and it predicts a dramatic 

decrease of  of Si by almost an order of magnitude at 300K compared to experimental values 

and Callaway’s model. This anomaly is corrected using first-principles DFPT-based 

expressions of the relaxation times as illustrated in figure 1(b). In this figure, we used two 

different couples of values for Debye temperatures of the longitudinal and transverse acoustic 

polarization branches: (1) 𝜃஽
௅ = 586𝐾 and 𝜃஽

் = 240𝐾; (2) 𝜃஽
௅ = 919𝐾 and  𝜃஽

் = 638𝐾 [23]. 

The first couple of values that correspond to the Brillouin Zone-boundary frequencies, are the 

ones we used to compute the behaviors of  in figure 1(a), while the second couple of values 

are the ones calculated from the acoustic branch phonon velocity [23, 24]. The second couple 

of values of Debye temperatures might be an overestimation. Nevertheless, they could be 

justified if one considers the contribution of optic phonon modes in the high temperature 

regime. Besides, as mentioned by Ward and Broido, the first-principles DFPT-based 

expressions of the relaxation times of phonon-phonon scattering U and N-processes take into 

account the contribution to scattering events and therefore to heat transport, of all phonon 

modes; acoustic and optic. They include also the effect of the full dispersive and anisotropic 

phonon branches [29]. Hence, it makes total sense that exploitation of these expressions 

combined with higher values of 𝜃஽
௅  and 𝜃஽

் gives better results for both Callaway’s model and 

the standard RTA model including N-processes as shown in figure 1(b). The two models give 

almost identical values over the whole temperature range that in addition, fit remarkably the 

experimental results of natural Si. Yet, the prediction of the standard RTA model including N-

processes remains always below the one of Callaway’s model. On the other hand, removal of 

such phonon-phonon scattering processes in the standard RTA model, leads to a huge increase 

of  of Si increases by a factor of seven at 300K as one can see in figure 1(b). This factor 

remains almost the same over the whole temperature range considered, which proves the 

importance of phonon-phonon scattering N-processes in the high temperature regime. 

The striking discrepancy in the high temperature regime, between the standard RTA model 

including N-processes and Callaway’s model, when use is made of the conventional and 

widespread expressions of the relaxation times of phonon-phonon scattering U and N-processes 

constitutes an important and crucial point. It undoubtedly demonstrates the great sensitivity of 

the solution of the BPTE within the framework of the single mode relaxation time 

approximation, not only to the different phonon properties and input parameters, but also and 

more importantly, to the particular expressions of the different relaxation times depending on 

the nature of the SC crystal and the temperature range. As discussed by Ward and Broido, most 
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of the conventionally and widespread expressions of the relaxation times of phonon-phonon 

scattering U and N-processes, were originally derived using approaches that implicitly assumed 

low frequency phonons and low temperature regime [19, 30]. Thus, it is not surprising that these 

expressions sometimes fail to predict the correct result, especially in the high temperature 

regime, depending on the used scattering term in the BPTE; standard or Callaway’s and the 

nature of the SC crystal [29]. 

Furthermore, it is interesting to note that Callaway’s model yields almost the same 

prediction of the temperature steady-state behavior of  of Si using the two different sets of 

expressions for the relaxation times of phonon-phonon scattering U and N-processes. 

In the case of Si0.7Ge0.3, the deviation between Callaway’s model and the standard RTA 

model including N-processes, occurs starting at room temperature. Therefore, we could infer 

that use of the conventional expressions of the relaxation times of phonon-phonon scattering U 

and N-processes for this alloy SC crystal is potentially valid up to at least, this temperature. 

In regard to the above discussion, one could assert that a better analysis, interpretation and 

exploitation of the results of the TTG technique shall arguably consider Callaway’s model. 

B. Phonon transport process in the 1D TTG configuration 

TDTR/FDTR and TTG are two different but complementary experimental techniques that 

have different excitation and detection procedures. The former one is more sensitive to the 

cross-plane phonon transport process while the latter is more sensitive to the in-plane one. The 

thermal penetration depth as defined based on the diffusive Fourier’s law constitutes the 

characteristic length scale in TDTR/FDTR experiment [26]. On the other hand, and because of 

the nature of TTG experimental excitation and detection, no Fourier’s based thermal penetration 

appears in the calculation, but instead the optical penetration depth could have an effect as 

mentioned by Chiloyan et al., [14] and Hubermann et al., [15]. In the 1D TTG configuration 

we are assuming in the herein work, the only characteristic length scale to be considered is the 

period of the thermal grating generated as a result of the interference pattern of the two crossed 

laser pulses shone on the surface of the opaque thick SC crystal film. 

In our recent work regarding the analysis of the modulation frequency behavior of the 

reduced effective thermal conductivity of SC crystals that is observed in TDTR and FDTR 

experiments, we derived an expression of the effective apparent thermal conductivity of the SC 

crystal that is characterized with a universal SSF. We obtained the same SSF either using 

Callaway’s model or the standard RTA model. In Callaway’s model, we have an effective 

relaxation time 𝜏௤,௣
ா௙௙

= 𝜏௤,௣
஼ ൬1 +

ఉ೛

ఛ೜,೛
ಿ ൰ in the integrand of the effective apparent thermal 
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conductivity while in the standard RTA model, we have only the combined relaxation time 𝜏௤,௣
஼ . 

The universality of the SSF we found, was obtained naturally as a function of the only ratio of 

the spectral phonon MFP to the thermal penetration depth as defined based on the diffusive 

Fourier’s law. The thermal penetration depth constitutes the characteristic length scale in the 

TDTR/FDTR geometry once an analogy with Fourier’s based thermal conductivity is sought 

[26]. 

It is interesting to note from Eq. (14) that the expression we derived for the effective 

apparent thermal conductivity 𝜅்்ீ
஼௔௟௟௔௪௔௬ that would be extracted from the measured thermal 

decay in the considered 1D TTG configuration, has the same non-universal SSF, Chiloyan et 

al., found using the standard RTA model [12]. The only difference is that we have an effective 

relaxation time 𝜏௤,௣
ா௙௙

= 𝜏௤,௣
஼ ൬1 +

ఉ೛

ఛ೜,೛
ಿ ൰ that is characteristic of Callaway’s model in place of just 

the combined relaxation time 𝜏௤,௣
஼  of the standard RTA. The full expression of the SSF is given 

by: 

Ξ௤,௣
்்ீ(𝜂) =

6𝜋ଶ𝐶

∑ ∫ 𝐶௤
௣

𝜒௤,௣𝑞ଶ𝑑𝑞
௤ವ

ು

଴௣

൥
1 − 𝜒௤,௣

൫𝐾𝑛௤,௣
ఎ

൯
ଶ൩      (16) 

Hua and Minnich found the same universal SSF of Maznev et al., [10] due to a further 

assumption they used in their mathematical derivation in what they called “weak quasi-

ballistic” regime [11]. If we don’t use this additional assumption, the general result we obtain 

is a non-universal SSF. Hence, the non-universal character of the SSF of the effective apparent 

thermal conductivity in the 1D TTG configuration, is not related to the form of the scattering 

term in the BPTE; standard or Callaway’s. That means that considering the peculiar effect of 

phonon-phonon scattering N-processes through Callaway’s model does not influence the 

expression of the SSF. The latter originates from the time integration of the thermal decay that 

embodies time nonlocal effects as shown in Eq. (7). The appearance of time nonlocal effects is 

a direct consequence of solving the time dependent BPTE in association with the initial 

boundary condition. These effects will indeed appear either using the standard RTA model or 

the full Callaway’s model. 

Before we tackle the general spectral result of 𝜅்்ீ
஼௔௟௟௔௪௔௬ given by Eq. (14) and the 

corresponding result of the thermal decay rate, it is very instructive to discuss first the simple, 

yet very meaningful, case of the Gray Spectrum Approximation (GSA). In this approximation, 

all phonon modes belonging to an acoustic branch polarization p have the same relaxation time 

independent of the wave-vector q for each phonon scattering process. We shall however 
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continue to assume separately phonon-phonon scattering N-processes characterized by a 

relaxation time 𝜏ே and phonon-phonon scattering resistive processes characterized by a 

relaxation time 𝜏ோ. In this case, we can easily show that the Callaway pseudo-relaxation time  

will exactly be given by 𝜏ோ. This shows the very fundamental intertwining between anharmonic 

N-processes and resistive processes; the implicit effect of N-processes in the onset of a 

noninfinite thermal conductivity is taken account of, through the resisting causing collisions, 

namely the relaxation time of the resistive processes which effect is explicit [24]. In addition, 

we assume there is no distinction between the different acoustic phonon polarizations. These 

assumptions shall not significantly hamper the physical picture. 

 

Figure 2 : Computed behavior of the normalized thermal decay in the 1D TTG configuration 
in the framework of the GSA for a bulk SC crystal as a function of the non-dimensional time 
𝒕 𝝉𝑹⁄ , for different values of the parameters 𝝉 and 𝝃: (a) 𝝃 = 𝟎. 𝟏, (b) 𝝃 = 𝟏, (c) 𝝃 = 𝟏𝟎 and 

(d) 𝝃 = 𝟓𝟎. 

Starting from the general expression of the normalized thermal decay in Laplace domain as 

given by Eq. (9) and applying the above assumptions, one gets straightforwardly the following 

GSA formula which we express using non-dimensional variables 𝜉 = 𝜂𝜏ோ𝑣, 𝜛 = 𝜏ோ𝑠 and 

𝜏 = 𝜏ோ 𝜏ே⁄  : 

⎩
⎪
⎨

⎪
⎧𝑌ത෨ீௌ஺(𝜛, 𝜉) =

Ψ(𝜛, 𝜉, 𝜏)

(1 + 𝜏) − [(1 + 𝜏)ଶ + 𝜏𝜛]Ψ(𝜛, 𝜉, 𝜏)

Ψ(𝜛, 𝜉, 𝜏) =
𝐴𝑟𝑐𝑡𝑎𝑛 ൤

𝜉
1 + 𝜏 + 𝜛

൨

𝜉

     (17) 
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Note that 𝜉 and 𝜛 are nothing else than the GSA versions of the non-dimensional spatial 

and temporal Knudson numbers introduced above, respectively. 

We report in figure 2 the computed behavior of the normalized thermal decay in the 1D 

TTG configuration in the framework of the GSA for a bulk SC crystal as a function of the non-

dimensional time 𝑡 𝜏ோ⁄ , for different values of the parameters 𝜏 and 𝜉. For large values of the 

thermal grating period that correspond to small values of the non-dimensional spatial Knudson 

number 𝜉, the phonon transport regime is diffusive and the normalized thermal decay decreases 

with time in a Fourier’s like exponential fashion. As discussed by Collins et al., based on the 

standard RTA model [13], the full solution derived from the BPTE seems to decrease slowly 

compared to the conventional Fourier’s solution. Furthermore, and as one can see in figures 

2(a) and 2(b), consideration of the peculiar implicit effect of phonon-phonon scattering N-

processes through Callaway’s model tends to increase the decreasing rate of the normalized 

thermal decay 𝑌ത෨ீௌ஺. The curve of 𝑌ത෨ீௌ஺ falls faster by increasing 𝜏. As 𝜉 increases, the phonon 

transport regime transitions to a quasi-ballistic (non-diffusive) regime, then to a full ballistic 

regime for very high values of 𝜉 where the phonon MFP becomes very large in comparison to 

the thermal grating period. In this regime, 𝑌ത෨ீௌ஺ manifests an oscillatory behavior as a function 

of time that is a manifestation of the phonons traveling ballistically as explained by Collins et 

al., [13]. These oscillations are due to spatial nonlocal effects [16] and could also be viewed as 

a signature of the phonon hydrodynamic transport regime [17]. In this case of the 1D TTG 

configuration, the phonons travel at a speed determined by the ratio of the thermal grating 

period to the period of oscillations and would be comparable to the speed of second sound [17]. 

Here also, the impact of the crystal momentum shuffling effect of the phonon-phonon scattering 

N-processes is evident as the change in 𝜏 impacts both the amplitude and the period of the 

oscillations. It is remarkable to note however, from figures 2(c) and 2(d), that the oscillations 

seem to die off almost at the same moment independent of the value of 𝜏. We note that the 

consideration of Callaway’s model in the framework of the simple GSA is able to exhibit one 

of the most important features that was recently highlighted using rigorous analysis based on 

the full linearized collision matrix [16, 17]. 

As we mentioned above, we obtain the same expression of the SSF in the integrand of the 

effective apparent thermal conductivity that would be extracted from the measured thermal 

decay in the 1D TTG configuration using both Callaway and the standard RTA models. The 

non-universal character of this SSF is captured through the term 
஼

∑ ∫ ஼೜
೛

ఞ೜,೛௤మௗ௤
೜ವ

ು

బ೛

 that illustrates 
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the dependence of this function on the material properties, in addition to the non-dimensional 

spatial Knudson number 𝐾𝑛௤,௣
ఎ . 

In the diffusive regime (𝐾𝑛௤,௣
ఎ

<< 1), 
ଵିఞ೜,೛

ቀ௄௡೜,೛
ആ

ቁ
మ and 𝜒௤,௣tend to 1/3 and 1, respectively. 

Hence 𝜅்்ீ
஼௔௟௟௔௪௔௬tends logically and naturally to the expression of steady-state Fourier’s thermal 

conductivity within the framework of the modified Debye-Callaway model [18-20, 22-24]. On 

the other hand, in the ballistic regime limit (𝐾𝑛௤,௣
ఎ

>> 1), 
ଵିఞ೜,೛

ቀ௄௡೜,೛
ആ

ቁ
మ decreases as

ଵ

ቀ௄௡೜,೛
ആ

ቁ
మ while 

𝜒௤,௣ decreases as 
ଵ

௄௡೜,೛
ആ , thus 𝜅்்ீ

஼௔௟௟௔௪௔௬ will decrease as 
ଵ

௄௡೜,೛
ആ  and ultimately tends to zero. 

 

Figure 3 : Computed room temperature steady-state behaviors of the 1D TTG effective 
apparent thermal conductivity of Si single (a) and Si0.7Ge0.3 alloy (b) SC bulk crystals using 
the conventional expressions of the relaxation times of phonon-phonon scattering U and N-

processes, as functions of the thermal grating period. Callaway’s model (solid line), the 
standard RTA model excluding N-processes (dotted line) and including them (dashed line). 
(c) The case of Si using first-principles DFPT-based expressions of the relaxation times of 

phonon-phonon scattering U and N-processes. 

Figures 3(a) and 3(b) show, respectively, the computed room temperature steady-state 

behaviors of the effective apparent thermal conductivity 𝜅்்ீ of Si and Si0.7Ge0.3 SC crystals 

using the conventional expressions of the relaxation times of phonon-phonon scattering U and 

N-processes, as functions of the thermal grating period d in the 1D TTG configuration. The 
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figures report the results of both Callaway’s model and the standard RTA model with and 

without N-processes included. Figure 3(c) reports the case of Si using first-principles DFPT-

based expressions of the relaxation times of phonon-phonon scattering U and N-processes. It is 

worth mentioning that for the quasi-particle description of the phonon wave packet to be valid 

in the first place, the minimum phonon MFP cannot be less than 2a where a denotes the lattice 

constant of the SC crystal [30]. Therefore, we set the minimum value of d to be 𝑑௠௜௡ = 2𝑎. 

For each of the three computation approaches, the behavior of 𝜅்்ீ shows three different 

regimes: (i) 𝜅்்ீ increases slowly as function of d for small values of the latter, then (ii) the 

increasing rate gets faster with d over a certain intermediate interval and finally (iii) 𝜅்்ீ 

saturates to a higher value for long values of d. These three regimes correspond to the quasi-

ballistic (non-diffusive), intermediate (transitional) and diffusive ones, respectively, of the 

phonon transport process. Nonetheless, we clearly see in figures 3 how the features of these 

three phonon transport regimes are affected and hugely impacted by the computation model 

used, the nature of the SC cubic crystal; single or alloy as well as the form of the expressions 

of the relaxation times of phonon-phonon scattering U and N-processes. The zone of the 

transition from the quasi-ballistic regime to the diffusive regime seems to be particularly 

influenced in terms of onset threshold, width, height and increasing rate (slope). Excluding 

phonon-phonon scattering N-processes in the standard RTA model tends to widen this quasi-

ballistic-diffusive transition zone in addition to its dramatic over-estimation of the value of  

𝜅்்ீ in the diffusive regime. As one can see in figure 3(a), by using the conventional 

expressions of the relaxation times of phonon-phonon scattering U and N-processes, 

Callaway’s model seems to recover the bulk thermal conductivity of Si at a shorter thermal 

grating period threshold (around 1µm) than does the standard RTA model. This is an odd 

prediction in comparison to experimental TTG results on Si material. It is true that several 

published works regarding TTG experiment on Si, dealt with Si membranes or thin films [5-9]. 

Some samples are however thick enough, to be considered as bulk materials. These works show 

indeed a recovery of the thermal conductivity of Si membranes starting around 7-10µm. Once 

again, this anomaly is corrected using first-principles DFPT-based expressions of the relaxation 

times as illustrated in figure 3(c). Here also, we report the results using the two different couples 

of values for Debye temperatures of the longitudinal and transverse acoustic polarization 

branches. Callaway’s model and the standard RTA model including N-processes predict now 

similar behaviors where the recovery of the bulk thermal conductivity of Si starts occurring for 

a thermal grating period around 100µm with a full recovery around 1000µm. This is in total 
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agreement with previous theoretical works in the literature that used the standard RTA model 

[6, 12, 16]. 

There is a small difference between Callaway’s model and the standard RTA model 

including N-processes. We will emphasize next on the impact of this difference on the 

information we could obtain relative to the transition between the diffusive and non-diffusive 

(quasi-ballistic) regimes in the phonon transport process, as well as on the phonon MFP 

spectrum distribution extraction in bulk SC crystals. 

As mentioned by Chiloyan et al., the behavior of the thermal decay rate Γ as a function of 

the square of thermal grating wavenumber 𝜂 constitutes a very efficient metric that allows 

precise and quantitative determination of the length scale threshold at which the phonon non-

diffusive transport regime onset occurs in a TTG experiment [14]. Indeed, 𝛤 is proportional to 

𝜂ଶ in the Fourier’s diffusive regime and the proportionality coefficient is equal to the thermal 

diffusivity [13, 14]. Any deviation from this scaling law is an indication of a deviation of the 

phonon transport process from the diffusive regime. 

 

Figure 4 : Computed behaviors of the 1D TTG thermal decay rate of Si SC bulk crystal as 
functions of the thermal grating wavenumber squared using Callaway’s model and the 

standard RTA model excluding and including phonon-phonon scattering N-processes; at room 
temperature (a) and at different temperatures: Callaway (b), standard RTA with N-processes 

(c) and standard RTA without N-processes (d). 
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We report, respectively, in figures 4 and 5, the computed behaviors of 𝛤 in the 1D TTG 

configuration as functions of  𝜂ଶ for Si and Si0.7Ge0.3 SC crystals at different temperatures for 

the three models considered; Callaway’s model and the standard RTA model with and without 

N-processes included. 

We remind here that in the case of Si, we use the conventional expressions of the relaxation 

times of phonon-phonon scattering U and N-processes for the temperatures 3K, 10K and 20K 

and we use first-principles DFPT-based expressions of these relaxation times for the 

temperatures 300K and 500K. In the case of Si0.7Ge0.3, we use the conventional expressions of 

these relaxation times for all temperatures as we mentioned in the beginning of the discussion 

section. 

 

Figure 5 : Computed behaviors of the 1D TTG thermal decay rate of Si0.7Ge0.3 SC bulk 
crystal as functions of the thermal grating wavenumber squared using Callaway’s model and 
the standard RTA model excluding and including phonon-phonon scattering N-processes; at 

room temperature (a) and at different temperatures: Callaway (b), standard RTA with N-
processes (c) and standard RTA without N-processes (d). 

As one can see in these figures, the three models show the deviation of the phonon transport 

process from the Fourier’s diffusive regime to occur at different thresholds depending on 

ambient temperature T. For each of the approaches, 𝛤 decreases and 𝜂 at which the quasi-

ballistic (non-diffusive) phonon transport regime starts to manifest itself, shifts to higher values, 

by increasing T. This means that the onset length scale threshold of the non-diffusive phonon 



21 
 

transport regime decreases as expected by increasing T. Indeed, the phonon MFP decreases by 

increasing T [30]. We note also that in the ballistic limit (𝐾𝑛௤,௣
ఎ

→ +∞), (i) the three approaches 

collapse on each other and (ii) for each approach, all the curves for different T collapse on each 

other as expected, in accordance with the tendencies in figures 3(b) and 3(c). 

In the TTG configuration, the characteristic length scale of the experiment (thermal grating 

period) does not depend on the model, Callaway’s or standard RTA. We define the length scale 

threshold at which there will be a transition in the phonon transport process from the non-

diffusive (quasi-ballistic) regime to the diffusive regime, as the thermal grating period for which 

𝛤 𝛤ி = 0.99⁄ . We summarize in Table 1, the values of these thresholds obtained from figures 4 

and 5 for both Si and Si0.7Ge0.3 SC crystals using the three different models at different 

temperatures. 

Table 1 :  Computed thermal grating period thresholds at which 𝛤 𝛤ி = 0.99⁄  for both Si and 
Si0.7Ge0.3 SC bulk crystals at different temperatures, using Callaway’s model and the standard 
RTA model excluding and including phonon-phonon scattering N-processes. 

 

Temperature 
(K) 

Thermal grating period threshold at 99% of Fourier’s diffusive regime 
Callaway Standard RTA with C Standard RTA with R 

Si Si0.7Ge0.3 Si Si0.7Ge0.3 Si Si0.7Ge0.3 

3 15.783cm 13.126cm 15.783cm 13.126cm 15.783cm 13.126cm 

10 14.393cm 10.667cm 14.393cm 10.667cm 14.729cm 10.915cm 

20 9.727cm 9.289cm 9.954cm 9.289cm 11.97cm 9.954cm 

300 5.581mm 2.3247mm 5.712mm 2.6087mm 9.506cm 2.277cm 

500 3.52mm 226.6498µm 3.602mm 403.279µm 9.506cm 1.4033cm 

The length scale threshold ranges from cms in the low T regime to mms in the high T 

regime. At each T and for each SC crystal, the behavior of the threshold for the three different 

models used, mirrors to a certain point, the steady-state T behavior of the thermal conductivity 

 discussed above in figure 1. The three models lead to almost the same values of the length 

scale threshold for temperatures below the optimal Top of the peak value of  and start to depart 

from each other for temperatures above Top. For each SC crystal above its Top, Callaway’s model 

shows the lowest threshold and the standard RTA model without phonon-phonon scattering N-

processes included, shows the highest. It is worth noticing also, that both Si and Si0.7Ge0.3 

manifest very close length scale thresholds for the onset of non-diffusive phonon transport 

regime for temperatures in the vicinity of their Top which happen to be around 20K for both SC 
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crystals as can be seen in figure 1. We could attribute this result to the fact that in the 

neighboring of  peak, all phonon scattering processes, intrinsic and extrinsic, are important 

and contribute all significantly [28]. Since  of both Si and Si0.7Ge0.3 reaches its peak value at 

almost the same Top, this means that the interplay mechanism between the different phonon 

scattering processes in the vicinity of this temperature, would have comparable strengths or 

magnitudes in both SC crystals. 

In order to shed more light on the implications of the difference between Callaway’s model 

and the standard RTA model including N-processes, we report in Table 2, the values of the 

thermal grating period threshold defined in Table 1 in the case of Si in the high temperature 

regime. 

Table 2 : Computed thermal grating period thresholds at which 𝛤 𝛤ி = 0.99⁄  for Si SC bulk 
crystal in the high temperature regime, using Callaway’s model and the standard RTA model 
including phonon-phonon scattering N-processes. 

 

Temperature 
(K) 

Thermal grating period threshold at 99% of Fourier’s diffusive regime (mm) 
Callaway 

𝑑஼  
Standard RTA with C 

𝑑ఛ಴  

Relative difference (%) 

൫𝑑ఛ಴
− 𝑑஼൯ 𝑑ఛ಴

ൗ  

100 15.747 16.114 2.28 

200 8.07 8.259 2.29 

300 5.581 5.712 2.29 

500 3.52 3.602 2.28 

800 2.434 2.491 2.29 

The relative difference between the values of the thermal grating period thresholds obtained 

using the two approaches remains almost the same over the whole high temperature range and 

is equal to ~2.3%. It is remarkable to notice that this is very close to the relative difference 

between the values of the steady-state thermal conductivities  obtained using these approaches 

൫𝜅஼௔௟௟௔௪௔௬ − 𝜅ோ்஺ିఛ಴
൯ 𝜅஼௔௟௟௔௪௔௬ൗ .  Nevertheless, while in the study of the temperature 

behavior of the steady-state , this difference might be considered negligible, this cannot be the 

case when investigating the phonon MFP spectrum distribution. This fact, consolidates and 

comforts the importance of Callaway’s model. 

It is interesting to remind that in our 1D TTG experiment configuration for an opaque thick 

film (bulk material) SC crystal, there is no scattering process of phonons associated with the 

thermal grating period; the thermal grating does not physically reduce the phonon MFP [13]. 
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The boundary scattering process we assumed in our computations corresponds to a fixed 

effective length scale that is representative of a bulk material [24]. 

In order to have an approximative yet very instructive physical picture, of the effect of 

phonon-phonon scattering N-processes in the framework of Callaway’s model, on the onset of 

the non-diffusive phonon transport regime, we could use the simple argument of the GSA 

approach as we did above. In the light of this approach and based on a combination of Eqs. (12) 

and (17), one could straightforwardly get: 

𝜏ோ𝛤(𝜏, 𝜉) = (1 + 𝜏)
𝜉 − (1 + 𝜏)𝐴𝑟𝑐𝑡𝑎𝑛 ൤

𝜉
1 + 𝜏

൨

𝐴𝑟𝑐𝑡𝑎𝑛 ൤
𝜉

1 + 𝜏
൨

     (18) 

Moreover, we can easily show that 𝜏ோ𝛤ி = 𝜉ଶ in this case. One sets the real number 0 < 𝑛 < 1 

such that 𝛤 𝛤ி = 𝑛⁄ . Thus, one could show after some algebra, that we obtain the following 

equation: 

൞
𝐴𝑟𝑐𝑡𝑎𝑛(𝑍)=

𝑍

1 + 𝑛𝑍ଶ

𝑍 =
𝜉

1 + 𝜏

     (19) 

If 𝑍௡is the solution of Eq. (19), then one could write: 

𝜉௡ = 𝑍௡𝜏+𝑍௡=
2𝜋𝜏ோ𝑣

𝑑௡
     (20) 

The length scale threshold 𝑑௡ for the onset of the non-diffusive phonon transport regime at 

100𝑛% of the Fourier’s diffusive regime scales therefore, inversely to 𝜏 = 𝜏ோ 𝜏ே⁄ . The peculiar 

crystal momentum shuffling effect of phonon-phonon scattering N-processes tends thus, 

independently from the other phonon scattering processes, to reduce the length scale threshold 

of occurrence of the transition from the diffusive regime to the non- diffusive (quasi-ballistic) 

regime in the phonon transport process. Consequently, it favors the maintenance of the phonon 

diffusive regime over a large length scale range. The standard RTA model excluding phonon-

phonon scattering N-processes is unable to unveil this remarkable feature, which nonetheless 

will be hid when using the standard RTA model including these processes. Callaway’s model 

sheds light on this key characteristic of N-processes straightforwardly. This simple analysis 

using the GSA approach confirms very well the results of the general spectral case shown in 

Tables 1 and 2 above. 

Phonon-phonon scattering N-processes are treated similarly to all other phonon scattering 

processes in the standard RTA model [30]. This does not mean they are not considered 
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important. But rather, we commonly neglect in such a model the particularity these scattering 

processes have of shuffling the crystal momentum between the different phonon normal modes 

[18, 19, 30]. The use of Callaway’s model captures this peculiar effect twice; first through the 

combined relaxation time and second through Callaway’s parameter, which leads to an 

additional term to the standard RTA model [18, 19]. Therefore, by using the standard RTA 

model, we miss this effect either by including or excluding phonon-phonon scattering N-

processes in the total relaxation time. This can be justified in the steady-state low temperature 

regime but not in the steady-state high temperature regime, where consideration of the peculiar 

implicit effect of phonon-phonon scattering N-processes becomes more relevant. 

All the above results we obtained in the framework of Callaway’s approach of the collision 

operator in the BPTE, shed light on the fundamental role of phonon-phonon scattering N-

processes in the intrinsic intertwining interaction between low and high frequency phonons that 

leads to the onset of the non-diffusive (quasi-ballistic)-diffusive transition regime in the phonon 

transport process in cubic SC crystals in the 1D TTG configuration. As such, the approach 

would allow obtaining more details and information about this intermediate regime than what 

we can get based on the standard RTA approach used in previous works [5-15]. The 

accumulation function and more precisely, the thermal conductivity per phonon MFP are 

directly influenced. 

Furthermore, the contribution weights of phonons with MFP within this quasi-ballistic-

diffusive transition regime can be very sensitive to temperature, the SC crystal thin film 

thickness as well as the depth of the dissipated heat inside the latter. The study of the 1D TTG 

configuration we performed in the present work can be deepened and enlarged to a 

multidimensional TTG configuration, in order to evaluate the real impact of Callaway’s model 

in phonon spectroscopy. Indeed, the SSF in the framework of this model will be important for 

a more accurate prediction of thermal conductivity reduction over the entire phonon spectrum. 

This will allow a better understanding of how thermal length scales in the TTG experiment 

affect which phonons conduct heat in each transport regime, in a rather simpler manner. To a 

certain point, this will be equivalent to the rigorous treatment based on the full linearized 

collision matrix used in recent works [16, 17]. Of course, these works have the merit of a more 

accurate physical picture. But Callaway’s model big advantage and great usefulness will lie in 

its simplicity and reduced computational cost with the aim of applying a reconstruction method 

to obtain the phonon MFP spectral distribution from the experimentally measured thermal 

decay in the TTG experiment [5, 31, 32]. The method used in the case of the standard RTA 
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model will have to be modified [5]. This would probably increase the sensitivity of the 

reconstruction method to hyperparameters [33], but this is beyond the scope of the present work. 

IV. CONCLUSIONS 

An approach based on solving the transient single mode relaxation time approximated 

Boltzmann-Peierls Transport Equation (BPTE) in the framework of modified Debye-Callaway 

model has been developed to analyze the thermal decay of opaque thick semiconductor (SC) 

cubic crystal films in the 1D configuration of the Transient Thermal Grating (TTG) experiment. 

We have obtained a non-universal spectral suppression function (SSF) in the integrand of the 

effective apparent thermal conductivity that is similar to the one obtained using the standard 

single mode relaxation time approximation (RTA) model. The only difference is that we have 

an effective relaxation time 𝜏௤,௣
ா௙௙

= 𝜏௤,௣
஼ ൬1 +

ఉ೛

ఛ೜,೛
ಿ ൰ that is characteristic of Callaway’s model in 

place of just the combined relaxation time ,
C
q p  of the standard RTA model. This proves that the 

non-universal character of the SSF in the TTG experiment does not depend on the form of the 

collision operator approximation in the BPTE; Callaway’s or standard. The SSF captures and 

describes very well the intertwining interaction between low and high frequency phonons in the 

onset of the quasi-ballistic (non-diffusive) heat transport regime and as such, the reduction of 

the effective apparent thermal conductivity of SC crystals observed in TTG experiments. 

Callaway’s approach unveils the central and relevant role that the meticulously implicit 

shuffling effect of the crystal momentum by phonon-phonon scattering N-processes, plays in 

the onset of the non-diffusive (quasi-ballistic) regime in the phonon transport process in SC 

crystals. Thus, the peculiar effect of phonon-phonon scattering N-processes captured by 

Callaway’s model has undoubtedly an impact on the extraction of the phonon MFP spectrum 

distribution, especially in the high temperature regime. 
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