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Abstract

We provide a criterion for certain algebraic objects over Jacobson schemes to
be forms of each other based on their behaviour at closed fibres. This criterion
permits to answer a question that I. Burban had asked the authors.
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1 Introduction

Let G be a group scheme over a base scheme S. The concept of G-torsors over
S is to be found in many areas of mathematics and mathematical physics; they are
powerful tools to frame problems in a language that is partial to powerful algebraic
geometry methods. G acts on itself by right multiplication. A G-torsor is a scheme
X with a right action of G that “locally” looks like G with this action. By locally we
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mean that there exists a faithfully flat and finitely presented scheme T over S such
that XT and GT are isomorphic as T-schemes with a GT-action.

The treatise [SGA3] shows how a deep understanding of G can be had through
the study of its fibres Gs, s ∈ S. It thus seem natural, given a right action of G on
an S-scheme X, to study situations under which the fibres Xs being Gs-torsors yield
information about X itself being a G-torsor. In practice the fibres of closed points
are more tractable. The existence of “enough” closed points brings up the natural
working hypothesis that S be a Jacobson scheme. It is under this assumption that
we are able to create a fiberwise criterion for torsors under certain reductive group
schemes.

This work grew up out of the desire to answer a question that I. Burban posed to
the authors a few years ago [Bu]. His question and the (positive) answer that can be
given using our main result is given in the last section.

Acknowledgments. The second author wishes to sincerely thank CNRS for facili-
tating an invited researcher visit to the Camille Jordan Institute.

2 Preliminaries on group schemes and smoothness

Throughout this paper S is a (base) scheme with structure sheaf OS. By an S-
functor (resp. monoid, group) we mean a contravariant functor F from the category
of schemes over S to the category of sets (resp. monoid, groups). When F is repre-
sentable, i.e. a scheme, we say that F is an S-scheme (resp. monoid scheme, group
scheme). The use of bold face characters in the text is used to emphasize the functo-
rial nature of the object under consideration. In particular, if X is an S-scheme then
its functor of points

T 7→ HomS−Sch(T,X)

will be denoted by X.
If F is an S-functor and T a scheme over S, we denote by FT the T-functor

obtained by base change. If T = Spec(R) we denote F(T) and FT by F(R) and FR

respectively. If F is an S-scheme, then FT = F ×S T and, as it is customary, we
denote F×Spec(R) T by F×R T.

We denote as usual by OS the affine S-ring scheme S[T ] = Spec(Z[T ])×Z S. Thus
OS(T) = OT(T). Recall that an OS-module is an S-abelian group M together with
OS(T)-module structure on M(T) that is functorial on T. The concept of OS-algebra
is defined similarly.

We mainly use the terminology and notation of Grothendieck-Dieudonné [EGA-I],
which agrees with that of Demazure-Grothendieck used in [SGA3, Exp. I and II].
Below we briefly review concepts/results that are relevant to this paper.

2



2.1 Groups attached to quasi-coherent modules

Let E be a quasi-coherent module over S. We denote its dual by E
∨

. For each
morphism f : T → S we let ET = f ∗(E) be the inverse image of E under the morphism
f , and define an abelian S-group V(E) by V(E)(T) = HomOT

(ET,OT) = Γ
(

T, (ET)
∨
)

.
V is actually an S-scheme; it is represented by the affine scheme Spec

(

Sym(E)
)

where Sym(E) is the OS-symmetric algebra of E [EGA-I, 9.4.9]. If E is of finite type
(resp. of finite presentation), then V(E) is an S-scheme of finite type (resp. of finite
presentation), ibid, 9.4.11.

The abelian S-group W(E) is defined by W(E)(T) = Γ(T,ET). Recall that if E
is locally free of finite type then W(E) ≃ V(E

∨

). In particular W(E) is in this case
an affine S-scheme. Note that the S-abelian groups V(E) and W(E) have natural
OS-module structures

To E we attach the S-functors EndOS−mod(E) and AutOS−mod(E) whose functor
of points are given by T 7→ EndOT−mod(E ⊗OS

OT) and T 7→ AutOT−mod(E ⊗OS
OT)

respectively. The first one is naturally an S-monoid and the latter an S-group with
“composition of endomorphisms” as multiplication. They are affine schemes whenever
L is locally free of finite rank.

Similarly to an OS-module L we attach an S-monoid AutOS−mod(L) and an S-
group AutOS−mod(L). For example AutOS−mod(L)(T) = AutOT−mod(LT).

2.2 Group schemes and Lie algebras

Throughout G will denote an S-group scheme and we denote by ǫ ∈ G(S) its unit
section. We refer to [SGA3, I and II], [DG] and [LLR, §1] for details in what follows.

If T is a scheme we denote by T[ǫ] the corresponding scheme of dual number
[SGA3, II.2]. The functor T → Lie(G)(T) := ker

(

G(T[ǫ]) → G(T)
)

is an OS-
module isomorphic to V(ω1

G/S) where ω1
G/S = ǫ∗(Ω1

G/S) ibid. Prop. 3.3 and 3.6.

Furthermore, the OS(T)-module Lie(G)(T) has a natural Lie algebra structure. It
is thus an OS-Lie algebra. Recall that for all scheme morphisms T → S we have an
OT-Lie algebra isomorphism

(2.1) Lie(G)×S T = Lie(GT).

The OT(T)−Lie algebra Lie(G)(T) is denoted by Lie(G). From the above isomor-
phism we have

(2.2) Lie(G)(T) = Lie(GT).

We denote by Lie(G) the vector group sheaf (fibration vectorielle) of sections of
the affine scheme Lie(G) → S. In other words, Lie(G) is the OS-module (ω1

G/S)
∨ =

HomOS
(ω1

G/S,OS). Note that Lie(G) is naturally an OS-Lie algebra.
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Remark 2.1. In general Lie(G) does not determine Lie(G), but it does if ω1
G/S

is locally free of finite type, in particular if G is smooth. In this case Lie(G) =
W

(

Lie(G)
)

. See [SGA3, II Lemma 4.11.7]. If S = Spec(R) the R-Lie algebra
Lie(G) = Lie(G)(S) is a locally free R-module of finite type. For any ring extension
S/R we have Lie(GS) = Lie(G)(S) = Lie(G)⊗R S.

Lemma 2.2. Let L be an OS-algebra which is locally free of finite type (as an OS-
module). Let L = W(L). Then.

(1) There is a natural isomorphism of affine S-group schemesAutOS−alg(L) ≃ AutOS−alg(L).
(2)There is a natural OS-Lie algebra isomorphismDerOS−alg(L) ≃ Lie

(

AutOS−alg(L)
)

.

Proof. (1) Since GL(L) := AutOS−mod(L) is locally isomorphic to GLd,S for some
d, it is an affine S-group scheme. Thus AutOS−alg(L), being a closed subgroup of
GL(L), is also affine. By [SGA3, I Prop. 4.6.2] AutOS−alg(L) ≃ AutOS−alg(L).

(2) Since L is a good OS-module [SGA3, II Def. 4.4 and Ex. 4.4.2], we have an
OS-module isomorphisms η : EndOS−mod(L) ≃ Lie

(

AutOS−mod(L)
)

[SGA3, II Prop.
4.5]. By [SGA3, I Prop.4.6.2] this is in fact a morphism of S-schemes. We claim that
the restriction of η to DerOS−alg(L) is our isomorphism. The proof reduces to the
case when S is affine, which can be found in [DG, II §4 2.3].

2.3 Connected component of the identity, forms and type

of a reductive group scheme.

Let G be an S-group scheme which is locally of finite presentation. We consider
the S–subgroup G0 of G [SGA3, VIB.3.1] defined by

G◦(T) =
{

u ∈ G(T) | ∀s ∈ S, us(Ts) ⊂ G0
s

}

.

IfG is smooth along the unit section, G◦ is representable by a smooth S–group scheme
called the connected component of the identity of G and furthermore the fibre (G◦)s
is the connected component of the identity of the κ(s)-algebraic group Gs [SGA3,
VIB.4.1].

Let G be an S group scheme. An S-group scheme G′ is called a (twisted) form of
G, if there exist a faithfully flat extension T → S such thatGT andG′

T are isomorphic
T-group schemes. In a similar fashion one defines forms of OS or OS-algebras.

Let G be a reductive K-group scheme, where K is an algebraically closed field. If
T is a maximal torus of G, then T is split and defines a root datum which is up to
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isomorphism independent of the choice of T. It is called the type of G and is denoted
by R(G).

Let G be a reductive S-group scheme. If s ∈ S the type of G at s is the type of the
reductive κ(s)-group Gs := Gs ×κ(s) κ(s). Because G posseses maximal tori locally
for the étale topology one knows that the type function s 7→ type of Gs is locally
constant [SGA3, XXII 2.8]. We say that G is of constant type if the type function is
constant. This is the case, for example, if S is connected.

2.4 Specific properties in characteristic zero

We assume in this section that S is a Q-scheme. Let G be a semisimple adjoint
S-group scheme of constant type. We will denote the OS-Lie algebra Lie(G) by L,
and the OS-Lie algebra Lie(G) by L. Recall that L is locally free of finite type.

Since G and its simply connected cover Gsc have the same Lie algebra, we have
isomorphisms of affine S–group schemes [SGA3, XXIV 3.6 and 7.3.1]

(2.3) Aut(G) ≃ Aut(Gsc) ≃ AutOS−Lie(L) ≃ AutOS−Lie(L)

where the last isomorphism is given by Remark 2.1 and Lemma 2.2.(1). In particular,
the S-scheme AutOS−Lie(L) is smooth and affine. By (2.3) and [SGA3, XXIV 1.3 and
1.8] we have an isomorphism

(2.4) G ≃ AutOS−Lie(L)
◦.

This yields an OS-Lie algebra isomorphism

(2.5) L ≃ Lie
(

AutOS−Lie(L)
)

= Lie
(

AutOS−Lie(L)
◦
)

.

Recall [SGA3, II Theo. 4.7 and Prop. 4.8] the adjoint representation
Ad : G → AutOS−mod(L) and the induced a OS-Lie algebra homomorphism ad :
L → EndOS−mod(L).

Lemma 2.3. Under the identification L ≃ Lie
(

AutOS−Lie(L)
)

of(2.5) the map ad
induces an OS-Lie algebra isomorphism between L and DerOS−Lie(L).

Proof. All the morphisms under consideration are S-scheme morphisms, so the ques-
tion is local on S and we may assume that S = Spec(R) for some Q-ring R. Consider
the R-Lie algebra L = L(R). Since by Remark 2.1 L = W(L) where W(L)(T) =
L ⊗R OT(T), it will suffice to show that for all ring extensions S/R the S-Lie alge-
bra homomorphism d = adS : L ⊗R S → DerS−Lie(L ⊗R S) is an isomorphism. By
replacing G by GS we may assume that R = S. By [SGA3, II 4.7.2] the map d is
nothing but the adjoint representation d(x) = adL(x). Since G is of constant type
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there exist a unique Chevalley group G0 such that G is a twisted form of G0 ×Z R.
Let g = Lie(G0)(Z)⊗Z Q. Then g is a finite dimensional split semisimple Lie algebra
over Q and L is a twisted form of g⊗QR, that is, there exists an fppf extension (in fact
étale cover) S of R such that the S-Lie algebras L⊗R S and (g⊗Q R)⊗R S ≃ g⊗Q S
are isomorphic. Fix one such isomorphism

(2.6) ψ : L⊗R S → g⊗Q S.

If d(x) = 0, then x belongs to the centre of L and therefore ψ(x ⊗ 1) belongs to the
centre of g⊗QS, which is trivial. Since S/R is faithfully flat x = 0 so that d is injective
and we henceforth identify L with an R-submodule of Der(L). That d is surjective,
that is that every derivation of L is inner, we reason as follows. If L = g⊗Q R every
derivation is inner by Whitehead’s Lemma (see [P1, Example 4.9]).1 For L arbitrary,
we appeal to the isomorphism (2.6). By the split case we have (Der(L)/L)⊗R S = 0.
Thus L = Der(L) as desired.

2.5 Semicontinuity property for Lie algebras

For convenience we recall the following well-known fact.

Lemma 2.4. Let F be a quasi-coherent OS–module of finite presentation. Then the
function s 7→ dimκ(s)

(

F ⊗OS
κ(s)

)

is upper semi-continuous.

Proof. The statement is local and therefore reduces then to the case of a ring R and
of an R–module M of finite presentation [Stacks, Tag 01PC]. If R is noetherian then
M is coherent and the result can be found in [Ha, 12.7.2]. For lack of a reference we
provide a proof in the general case. Let p, q be prime ideals of R such that p ⊂ q.
We want to show that dimκ(p)

(

M ⊗R κ(p)
)

≤ dimκ(q)

(

M ⊗R κ(q)
)

. Replacing R by
Rq, we can assume that R is local of maximal ideal q.

We consider an exact sequence Rm A
−→ Rn → M → 0 where A is a matrix of size

(m,n) with entries in R. Let r = dimκ(q)(M⊗Rκ(q)), so that the rank of Aκ(q) is n−r.
There thus exists a minor B of A of size (n−r, n−r) such that det(B) ∈ R is not zero
when passing to κ(q), hence is invertible in R. It follows that det(Bκ(p)) is invertible
so that the rank of Aκ(p) is ≥ n − r. We conclude that dimκ(p)

(

M ⊗R κ(p)
)

≥ r as
desired.

Lemma 2.5. Let G be an S–group scheme that is locally of finite presentation. Then
ω1
G/S is an OS–module of finite presentation and the map s 7→ dimκ(s) Lie(Gs) is upper

semi-continuous.

1 Note that our L is denoted by L in [P1].
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Proof. That ω1
G/S is of finite presentation follows from [Stacks, Tag 01V2, 01V3].

By (2.2) we have a κ(s)−Lie algebra isomorphism Lie(Gs) ≃ Lie(G)
(

κ(s)
)

. From
the isomorphism Lie(G) ≃ V(ω1

G/S), we see that the dimension of Lie(G)
(

κ(s)
)

at a point s ∈ S is the dimension of the κ(s)−space Homκ(s)

(

ω1
G/S ⊗OS

κ(s), κ(s)
)

,

which is the dimension of ω1
G/S ⊗OS

κ(s) since ω1
G/S is an OS–module of finite type.

Furthermore, since ω1
G/S is in fact of finite presentation, Lemma 2.4 implies that the

map s 7→ dimκ(s)

(

Lie(G)(κ(s))
)

is upper semi-continuous.

3 Group schemes over Jacobson schemes

3.1 Jacobson schemes and smoothness

We refer the reader to [EGAIV, §10] for general results about Jacobson schemes.
Let us just recall that a scheme S is Jacobson if for each open cover S =

⋃

i∈I Spec(Ri),
then each Ri is a Jacobson ring, i.e. if every radical ideal I is the intersection of the
maximal ideals containing it [Stacks, Tag 00G4].

Proposition 3.1. Let f : X → S be a scheme morphisms which is locally of finite
presentation. Assume that x ∈ X is such that:

(i) f is flat at x.
(ii) fκ(x) is smooth.

Then f is smooth on an open neighborhood of x.

Proof. By assumption there exists affine open subschemes Spec(A) = U ⊂ X and
Spec(B) = V ⊂ S such that f(U) ⊂ (V) and A is a finitely presented B-algebra. Let
q ∈ Spec(A) and p ∈ Spec(B) be the points corresponding to x and f(x) respectively.

By (i) Aq is flat over Bp, while by (ii) A ⊗B κ(p) is smooth over κ(p). It follows
from [Stacks, Tag 00TF] that the restriction of f to U is smooth at q, hence (by
definition of smoothness) smooth also in a neighbourhood of q.

Corollary 3.2. Let f : X → S be as above. Assume that (i) and (ii) hold for all
closed points of X. If S is Jacobson then f is smooth.

Proof. By [EGAIV, Cor. 10.4.7] X is Jacobson. Let X0 be the set of closed points of
X. It will suffice to show that each point x ∈ X0 has an open neighbourhood in which
f is smooth. Indeed, if this is the case, then there exists an open U ⊂ X containing
X0 in which f is smooth. Let Z = X\U. If Z 6= ∅, then Z∩X0 6= ∅ by [EGAIV, Prop.
10.1.2 (a)]. This contradicts X0 ⊂ U. Thus Z = ∅ so that U = X as desired.
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Since by the Proposition every x ∈ X0 has an open neighbourhood in which f is
smooth the Corollary follows.

Proposition 3.3. Let S be an integral Jacobson scheme, and G be an S-group scheme
of finite presentation. Assume that for all closed point b ∈ S the fibres Gb are smooth
and of the same dimension d.2

(1) For all s ∈ S the algebraic κ(s)-group Gs is smooth of dimension d.

(2) The S-functor G◦ is representable by a smooth S–group scheme of relative dimen-
sion d which is open in G.

(3) If for each closed point b ∈ S the fibre Gb is connected then G is smooth and has
connected geometric fibres.

Proof. (1) We denote by η : Spec(F ) → S the generic point of S. Chevalley’s generic
flatness theorem [G-W, 10.85] shows that there exists an open dense subset U of S
such that G ×S U is flat over U. We know that U is also Jacobson [EGAIV, Prop.
10.3.3]. Corollary 3.2 shows that G ×S U is smooth over U. By [Stacks, Tag 05F7],
up to shrinking U if necessary, the dimension function of the fibres of G ×S U → U
is constant. Since by assumption this dimension has value d on the closed points of
U, we get that G×S U is smooth of relative dimension d.3 In particular the algebraic
F -group GF is smooth of dimension d.

Let s ∈ S and let c = dim(Gs). According to Chevalley’s semicontinuity theorem
[SGA3, VIB.4.1]

Fc = {x ∈ S : dim(Gx) ≥ c} ⊂ S

is a closed set. Since Fc ∩ {s} contains s and is closed

(3.1) {s} ⊂ Fc.

Since S is Jacobson, it follows that there exists a closed point b in {s}. We have

(3.2) dim(Gs) ≤ dim(Gb) = d.

On the other hand, s belongs in the adherence of η. The same semicontinuity
reasoning used above shows that so that

(3.3) dim(GF ) ≤ dim(Gs).

Since GF is of dimension d it follows from (3.2) and (3.3) that dim(Gs) = d.

2 Since G is of finite presentation Gs is an algebraic κ(s)-group. Thus Gs has a finite number
of irreducible components. They all have the same (finite) dimension and this is also the dimension
of Gs.

3 That is, all the fibres Gs, s ∈ U are equidimensional and this dimension is d.
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For establishing smoothness we use a variation of the previous argument by ap-
plying semicontinuity considerations to the Lie algebras. Lemma 2.5 yields the in-
equalities

dimF Lie(GF ) ≤ dimκ(s) Lie(Gs) ≤ dimκ(b) Lie(Gb).

Since G is smooth of dimension d at η and at b we obtain that d = dimκ(s) Lie(Gs).
Thus Lie(Gs) and Gs have the same dimension (namely d). By the smoothness
criterion [DG, II.5.2.1] Gs is smooth. This completes the proof of (1).

(2) By (1) we see that assumption (ii) of [SGA3, VIB Cor. 4.4] holds. It follows
that the S-functor G◦ is representable by a smooth S–group scheme which is open in
G.

According to [Stacks, Tag 055I], the level set

En =
{

s ∈ S | Gs has n geometrically connected components
}

is a locally constructible subset of S for each n ≥ 1. Since S in a Jacobson scheme,
the set closed points of S0 is very dense in S so that S0 ∩En is dense in En for each n
[EGAIV, 10.1.2, (b’)]. Our assumption implies that E1 = S. That G is smooth now
follows from (2).

3.2 Forms

Proposition 3.4. Let S is an integral Jacobson scheme and G an affine S–group
scheme of finite presentation. Assume that Gb is reductive and of dimension d for
all closed point b ∈ S. Then G is a reductive S–group scheme of constant type. In
particular, there exists a unique Chevalley group G0 such that G is an S–form of
G0 ×Z S.

Proof. Proposition 3.3.(3) shows that G is smooth of relative dimension d and has
connected geometric fibres. According to [Co1, Prop. 3.1.9.(1)] G is reductive in a
neighborhood of each closed point b ∈ S. Since S is a Jacobson scheme, it follows that
G is reductive. Since the type function is locally constant, the connectedness of S
implies that G has constant type t0 (see §2.3). Let G0 be the corresponding Chevalley
group scheme. According to [SGA3, XXIII 5.6] G is an S–form of G0 ×Z S.

Corollary 3.5. Let G and G′ be group schemes over an integral Jacobson scheme S.
Assume that G is reductive and that G′ is affine and of finite presentation. If G′

b is
a form of Gb for each closed point b ∈ S, then G′ is an S–form of G. In particular,
G′ is a reductive S–group scheme

9



3.3 Lie algebras

If L is an OS–Lie algebra and s ∈ S, then the OSpec κ(s)–algebra L ⊗OS
κ(s)

obtained by base change is equivalent to a κ(s)–algebra that we will denote by Ls.
Along similar lines if L = W(L) we will denote the κ(s)–algebra L

(

κ(s)
)

by Ls. Note
that Ls = Ls.

Proposition 3.6. We assume that S is an integral Jacobson Q–scheme. Let L be an
OS–Lie algebra which is locally free of rank d, and let L = W(L) be its corresponding
OS-Lie algebra. Assume that for each closed point b ∈ S the κ(b)-Lie algebra Lb

is semisimple.4 Then there exists a unique finite dimensional split semisimple Lie
Q-algebra L0 such that L is a form of L0 := L0 ⊗Q S.5

Proof. (1) The S–group scheme G := AutOS−Lie(L) is a closed subgroup of GL(L),
hence affine of finite presentation. Recall that by (2.3) we have G ≃ AutOS−Lie(L).
For each closed point b ∈ S, the algebraic group Gb = Autκ(b)−Lie(Lb) is smooth of
dimension d and (Gb)

◦ is semisimple adjoint. Proposition 3.3.(2) shows that G◦ is
representable by an open subgroup scheme ofG which is smooth of relative dimension
d. Appealing now to Proposition 3.4 yields that G◦ is adjoint semisimple and is a
form of the S-group corresponding to a (unique) semisimple adjoint Chevalley group
scheme G◦

0. We denote by L0 the Q–Lie algebra of Lie(G◦
0)⊗Z Q. This yields the OS-

Lie algebra that we denoted by L0. Observe that Lie(G) is a form of L0 as OS-Lie
algebras.

By Lemma 2.3 we have L ≃ DerOS−Lie(L). Finally since G ≃ AutOS−Lie(L) we
can apply Lemma 2.2 to conclude that Lie(G) ≃ DerOS−Lie(L). It follows that L is
a form of L0 as desired.

The following variant of the heretofore presented ideas will allow us to answer
Burban’s question (see §4 below).

Proposition 3.7. Assume that S is an integral Jacobson Q–scheme. Let G be a
semisimple adjoint S–group scheme and consider its OS-Lie algebra L = Lie(G).

Let L′ be a sheaf of OS−Lie algebras. We assume that L′ is locally free of rank
d, and that for each closed point b ∈ S, L′

b is a form of Lb.

(1) The S–functor AutOS−Lie(L
′) is a smooth affine S-group scheme whose connected

component of the identity G′ is a semisimple adjoint S–group scheme.

(2) There is a natural isomorphism Lie(G′) ≃ L
′.

(3) G′ is an S–form of G.
(4) L′ is an S–form of L.

4 Necessarily of finite dimension d.
5 By definition L0(T) is the OT(T)-Lie algebra L0 ⊗Q OT(T).

10



Proof. (1) As in the previous Proposition H := AutOS−Lie(L
′) is an affine S−group

scheme of finite presentation. For each closed point b ∈ S, Hb is smooth (κ(b) is
of characteristic 0), hence of dimension d. Proposition 3.3.(1) shows that the S–
subfunctor H◦ of H is representable by a smooth affine S–group scheme G′ of dimen-
sion d.

According to [Co1, prop. 3.1.9.(1)], G′ is reductive on a neighborhood of each
closed point b ∈ S. Since S is a Jacobson scheme, it follows that G′ is reductive. We
consider now the center C of G′ [SGA3, XXII 4.1.7] which is a multiplicative S–group
scheme of finite type. According to [SGA3, IX 2.9] the subset U of points b of S where
Cb = 1 is clopen. Since S is Jacobson, U contains a closed point b of S. Thus U 6= ∅,
so that U = S since S is connected. It follows that C = 1. Thus G′ is semisimple
adjoint.

(2) Let L′ = W(L′). By Lemma 2.2 and (1)

DerOS−alg(L
′) ≃ Lie

(

AutOS−alg(L
′)
)

≃ Lie
(

AutOS−alg(L
′)◦

)

= Lie(G′).

On the other hand we have an isomorphism ofOS–Lie algebras L
′ ≃ DerOS−alg(L

′)
(Lemma 2.3), whence an isomorphism L′ ≃ Lie(G′). It follows that W(L′) ≃
W(Lie(G′)). Since W is fully faithful L′ and Lie(G′) are isomorphic OS–Lie alge-
bras.

(3) Since S is connected the semisimple S-groups G and G′ have constant type.
Furthermore, the types are determined by their Lie algebras since the groups are
adjoint. Given that by assumption the fibres of their Lie algebras at closed points
are forms of each other, the types of G and G′ coincide. We appeal again to [SGA3,
XXIII 5.6] to conclude that G′ is a form of G. Thus (3) holds.
(4) From (3) and Remark 2.1 we get that Lie(G′) = W

(

Lie(G′)
)

is a form of
Lie(G) = W

(

Lie(G)
)

. It follows that Lie(G′) is a form of Lie(G). Thus (4) follows
from (2).

4 Burban’s question

In order to formulate Burban’s question we need to recall the concept of loop
algebra of a simple Lie finite dimensional complex Lie algebra g.
Let R = C[t±1]. Fix a positive integer d, and set S = k[t±

1

d ]. The natural map R → S

is faithfully flat and finite étale. We put ξ = e
i2π

d ; then the elements of Γ = Z/dZ act
as automorphisms of S over R via

et
1

d = ξet
1

d .

for e ∈ Z. This action makes S into a Galois extension of R with Galois group Γ.
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Let σ be an automorphism of g of order d. For i ∈ Z consider the eigenspace

gi = {x ∈ g : σ(x) = ξix}

Then g =
∑

i∈Z gi, and in fact g = ⊕
0≤i<d

gi. Out of this data we define the

corresponding loop algebra

(4.1) L(g, σ) = ⊕
i∈Z

gi ⊗ t
i

d ⊂ g⊗C Rd.

The simple but crucial observation is that L(g, σ) is stable under the action of R.
Thus L(g, σ) it is not only an infinite dimensional complex Lie algebra, but also an
R-Lie algebra. As we shall see, it is the algebra structure over this ring that allows
non-abelian cohomological considerations to enter into the picture.

It is an easy linear algebra exercise to verify that we have a natural Rd–algebra
isomorphism

(4.2) L(g, σ)⊗R Rd ≃ g⊗C Rd ≃ gR ⊗R Rd.

where gR := g ⊗C R. This shows that the R-Lie algebra L := L(g, σ) is a twisted
form of g⊗CR. It therefore corresponds to an Aut(gR) torsor X over Spec(R). More
precisely X = IsomR−Lie(gR, L).

6

We can now formulate Burban’s questions (essentially verbatim except for some
notation changes):

Question 1: Let L′ be a Lie algebra over the ring C[z]. Assume L′ is free as a
module and that for any complex number b the quotient Lie algebra L′/(z − b)L′ is
isomorphic to g. Does it follow that L′ is isomorphic to g ⊗C C[z] (as a Lie algebra
over C[z])?

Question 2: Similarly, let L′ be a Lie algebra over the ring C[z, z−1] which we
assume is free as a module and such that for any b ∈ C× the quotient L′/(z − b)L′ is
isomorphic to g. Does it follow that L′ is isomorphic to a loop algebra (with respect
to an automorphism of g of finite order)?

To answer these questions we take S = Spec(R) where R = C[t] or C[t±1], and
where L

′ and L are the OS-Lie algebra corresponding to L′ and g⊗C R respectively.
By Proposition 3.7 we see that L

′ corresponds to a torsor X′ over Spec(R) whose
class is an element of H1(R,Aut(g)).

As we have observed there is a split exact sequence of R-group schemes

(4.3) 1 → G → Aut(L) → Out(L) → 1

6 See [DG, III §4] for the material on torsors used in this section.
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where G is the split adjoint semisimple R-group scheme corresponding to g, and
Out(L) is the constant R-group scheme corresponding to the finite (abstract) group
Out(g) of the symmetries of the Coxeter-Dynkin diagram of g. This allow us to
compute the relevant H1 an thus determine the nature of X′, hence L′. According to
[CGP, Cor. 3.3], we have a bijection

H1(R,Aut(L))
∼

−→ H1(R,Out(L)).

Answer 1: If R = C[t] then H1
(

R,Out(L)) = 1 since R is simply connected. It
follows that H1

(

R,Aut(L)
)

= 1 and therefore that L′ ≃ g⊗k R.

Answer 2: If R = C[t±1] then furthermore H1(R,Out(L)) is the set of conjugacy
classes of the (abstract) group Out(g) which, in terms of forms of L, correspond
precisely to the loop algebras (see [P2] for details). Thus L′ is a loop algebra.
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