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Abstract
This paper focuses on tomographic reconstruction for nuclear medicine
imaging, where a classical approach consists to maximize the likelihood
of Poisson distributed data using the iterative Expectation Maximiza-
tion algorithm. In this context and when the quantity of acquired data
is low and produces low signal-to-noise ratio in the images, a step for-
ward consists to incorporate a total variation prior on the solution
into a MAP-EM formulation. This prior is not differentiable. The nov-
elty of the paper is to propose a convergent and efficient numerical
scheme to compute the MAP-EM optimizer, alternating regular max-
imum likelihood maximization steps and TV-denoising solved using
the convex-duality principle of Fenchel-Rockafellar. The main theoret-
ical result is the proof of stability and convergence of this scheme.
We also present some numerical experiments where we compare the
proposed algorithm with some other algorithms from the literature.
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1 Introduction
Emission tomography is based on detecting radiation emitted from the patient,
enabling clinicians to identify the position and size of tumours, to control the
quality of a treatment or to conduct diagnostic procedures such as coronary
perfusion. Important issues relating to the invasive character of this type of
imaging is the reduction of the tracer dosage and acquisition time. As a con-
sequence, the clinical emission data uses to be strongly affected by Poisson
noise.

Tomographic reconstruction is an inverse problem that may be solved by
analytic or iterative algorithms. Analytic algorithms, based on the inversion
of the Radon transform, are fast but produce noisy images. Iterative ones may
integrate knowledge on the detection process, on the data noise and on the
expected image. For instance, the positivity constraint is naturally ensured
by some of these algorithms. The most widespread iterative algorithm for
nuclear medicine tomography is the Maximum Likelihood Expectation Maxi-
mization (MLEM) algorithm ([1, 2]) with its variants from which we may
cite for instance the ordered subsets expectation maximization (OSEM [3])
and the row action maximum likelihood algorithm (RAMLA [4]). This class
of algorithms aim to determine the image of mean intensities most likely to
have produced the observed data. In the family of bayesian methods, the
Stochastic Origin Ensemble (SOE) algorithm was more recently proposed by
A. Sitek ([5]). For each voxel from the volume, SOE produces the Monte-Carlo
estimation of the posterior distribution while MLEM produces only its mean.

When compared to algebraic algorithms, MLEM shows faster convergence
and better robustness to the outliers. According to [6], this is explained by
the fact that MLEM can be seen as a preconditioned gradient method. On
the other hand, it tends to produce areas of intensity accumulation in regions
where the intensity should be uniform. As emphasised e.g., in [7, 8], this result
is not related to the algorithm, but rather to the maximum likelihood solution
itself. In the reconstructed image, the signal is thus embedded in the noise
and at least it is necessary to interrupt the iterations well before convergence
and to smooth the result (see e.g., [9]). Early stopping of the iterations and
post-smoothing reduces variance of the noise but also blurs the edges and may
mask small sources. Moreover, it is known that early stopping of the iterations
conducts to biased images. Finally, stopping the iterations does not ensure
that the reconstructed image will have the desired properties from the point of
view of the user’s a priori information, and post-smoothing is likely to reduce
concordance between solution and data. Snyder and Miller ([10]) constrain the
solution to belong to the space of smooth functions, or “sieves”. Each element
of this space is the convolution of a function with a Gaussian kernel. They
show how the MLEM iterations should be adapted to directly produce such
a solution. The method is however quite sensible to the choice of the kernel
([11]).

A priori information can be included into the reconstruction process in a
proportion that will ensure best compromise between smoothness and data
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fidelity. Shift-invariant priors give unsatisfactory results in terms of bias and
resolution because the likelihood is shift-variant. Shift-variant quadratic pri-
ors were proposed e.g., in [12, 13]. The use of the total variation prior is
appealing when one attempts to obtain images with smooth regions separated
by sharp edges. The resolution of linear inverse problems with total variation
regularization was tackled in the context of a Gaussian noise and `2-norm for
instance in [14, 15]) Priors based on the total variation semi-norm ([16]) have
been proposed for Poisson distributed data for instance in ([17–21]). They
require advanced algorithms due to the complexity and non-differentiability
of the total variation prior. A smooth approximation was used in ([22, 23]), in
conjunction with the one-step-late algorithm initially proposed in [24]. Having
the same complexity as MLEM, and developed in the Maximum A Posteriori
(MAP) formalism, this algorithm was reported as unstable.

For large data sizes these algorithms can be computationally challenging.
A solution is then to use only a part of the projections at each update, as in the
OSEM approach [3], that is however not convergent. A variant proposed in [25]
belongs to the class of diagonally preconditioned gradient ascent algorithms
and was shown to converge to the solution of the maximum of the likelihood,
penalized with a differentiable prior. An other approach, adapted to non-
differentiable priors, consists to use the stochastic version of the Primal-Dual
Hybrid Gradient (PDHG) initially developed by Chambolle and Pock ([26]).
This approach has been studied in [27]. In the same idea of reducing the
computational burden, variance-reduction algorithms have been studied in
[28].

In the rest of this section we recall the formalism of tomographic inverse
problems with Poisson-distributed data and some algorithms dedicated to its
resolution in presence of a non-differentiable penalty term. We also recall the
definition of the total variation semi-norm and some related basic results that
will be used in the paper. At the end of the section we give the outline of the
paper.

1.1 Tomographic inverse problem with Poisson likelihood
We consider a volume containing the source of gamma photons is divided in
J spatial locations called pixels or voxels, indexed on j = 1, . . . , J . The emis-
sion counts at the various locations are independent and the value xj of the
jth pixel is a realization of a Poisson random variable with mean value λj .
The values x cannot be observed directly with a detector placed outside the
object. Radiation escaping the object is detected by the elements of a detec-
tor as numbers yi of events, i = 1, . . . , I. These numbers also follow Poisson
distributions with mean values µi and the observations are independent. For
a given pixel j and a given detector element i, tij is the probability that a
photon emitted at pixel j will be detected at detector i. The system matrix
of the detection system (also called transition matrix) is then T = (tij). The
entry sj of the sensitivity vector s = (sj)j=1,...,J is defined as the probability
of a photon emitted at pixel j to be detected somewhere in the camera. For



Springer Nature 2021 LATEX template

4 Tomographic reconstruction from Poisson distributed data

each pixel j, we obviously have the relation:

sj =
I∑
i=1

tij = T ∗1, (1)

where T ∗ is the ajoint of T and corresponds to the backprojection operation.
The vector 1 has all the entries equal to one. The vector y of detected events
approximately matches Tx, more precisely the means verify the equation µ =
Tλ.

In [29] the non observable variable x is called complete data and the
observed y are called incomplete data. The objective is then to estimate the
means λ of the complete data from the observed values y of the incom-
plete data. To facilitate the presentation and without loss of generality, all
the developments hereafter are presented for the two-dimensional case. The
three-dimensional case can then be easily derived and the results remain true
with minor changes that we will specify when necessary. From the discrete
point of view, we assume that the image λ is a two-dimensional matrix of size
J = N × N reorganised as a J-dimensional vector. We denote by X and Y
the Euclidean spaces RN×N = RJ and RI , respectively. Additionally, we will
suppose that all the entries of λ are strictly positive, i.e. in the set D = (R∗+)J .

Given the observations y, an estimation of the vector λ can be obtained
as the solution of the maximum of the log-likelihood function

`(λ|y) = −
I∑
i=1

J∑
j=1

tijλj +
I∑
i=1

yi ln

 J∑
j=1

tijλj

− I∑
i=1

ln(yi!). (2)

The concavity of the log-likelihood implies that its maximum is global. When
rank(T ) = J , the linear application of matrix T is injective and thus the
Hessian is negative definite. The likelihood has then a strict maximum and an
unique maximum solution. When rank(T ) < J , the Hessian is negative semi-
definite and there may be multiple solutions for the maximum. Computing the
maximum of the log-likelihood, or equivalently the minimum of its negative,
benefits from addition of prior information.

1.2 The regularized problem
In this work we focus on non-differentiable priors and in particular on total
variation regularization. The regularized reconstruction problem consists to
minimize an energy F in the form of:

F (λ) = L(Tλ) +G(λ), (3)

where L and G are convex, lower semi-continuous (l.s.c.) and ’simple’, and T :
X → Y is a bounded linear operator. In our case, T is the tomographic projec-
tion, its matrix has all elements positive, and L(Tλ) = −`(λ|y)− 〈log(y!),1〉
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is the negative log-likelihood function (from which we withdraw the constant
term) given in (2). The function L is thus defined on the strictly-positive
orthant (R∗+)I by:

L(µ) =
I∑
i=1

µi −
I∑
i=1

yi ln(µi) = 〈µ− y log(µ),1〉 (4)

with ab the Hadamard product of a and b, denoting the vector with compo-
nents aibi and log(a) is the vector with components log(ai). The function F
will be supposed to be coercive and proper.

1.3 Classical gradient based algorithms
The functional F from (3) is composed of two convex terms whose second
non-smooth term needs to be treated implicitly to avoid stability problems.
There are many methods including the primal dual hybrid gradient (PDHG) of
Chambolle and Pock [26], from which Douglas-Rachford splitting and ADMM
can be seen as particular cases. PDHG was adapted for tomographic appli-
cations with TV prior for instance in [19, 30]. We recall hereafter the PDHG
algorithm that we use for comparison in different numerical experiments by
referring to the work of Anthoine et al [19].

The proximal operator prox τH [u] of a function H, l.s.c., coercive and
convex, is defined as:

prox τH [u] = (I + τ∂H)−1(u) = arg min
v

{
1
2τ ‖u− v‖22 +H(v)

}
,

where ∂H is the sub-gradient of H. The convex conjugate, also called Fenchel-
Legendre transform of H is:

H∗(u) = sup
v
{〈v,u〉 −H(v)} (5)

The dot-product, the `2-norm and the domain on which the sup, arg min are
taken depend on the space on which H is defined. The PDHG algorithm for
the minimization of (3) is then:

µ(n+1) = (I + σ∂L∗)−1(µ(n) + σTλ(n))
λ

(n+1) = (I + τ∂G)−1(λ(n) − τT ∗µ(n+1))
λ(n+1) = 2λ(n+1) − λ(n)

, (6)

and the sequence (λ(n)) converges to a minimum of F when the descent steps
τ and σ verify τσ‖T‖2 < 1. As L is well defined for µ > 0 (component-wise),
addition of a positivity constraint on the projection Tλ (easier to implement
compared to a constraint on λ), is also examined in [19, 30]. Expression of prox
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operators and of the complex conjugate can be found in these publications, as
well as discussions about practical implementation.

1.4 EM algorithm
The Expectation-Maximization (EM) algorithm introduced in [29] allows to
accelerate the optimization compared to more classical gradient algorithms
and can be interpreted as a pre-conditioned scheme which preserves physical
properties of the desired solution. When applied to (3) without regulariza-
tion term, it allows to compute a positive estimation of the maximum of the
log-likelihood (2). One thus obtain the maximum likelihood expectation max-
imization algorithm (MLEM) proposed for nuclear imaging applications in
[1, 2]. Starting from an arbitrary vector λ(0) ∈ D, the (n+ 1)th estimation of
the maximum likelihood is given by:

λ
(n+1)
j = λ

(n)
j

1
sj

I∑
i=1

tij
yi

J∑
k=1

tikλ
(n)
k

, (7)

and the EM algorithm always decreases the value of the likelihood function.
The convergence of the algorithm to the maximum of the likelihood was proved
by Lange and Carson in [1] for strictly concave likelihood function and was
proved in the general case by A.N. Iusem in [31].

The MLEM algorithm is both simple and efficient and thus is widely used.
Its convergence speed is related to the system matrix. When the system matrix
only accounts for the geometry of detection the convergence may be relatively
fast and the result noisy. For this reason the iterations must be stopped before
too much high frequencies are introduced. On the contrary, when the system
matrix also models some convolution introduced by e.g., the detectors or the
attenuation in the patient, the convergence is slow and the higher frequencies
are hardly recoverable.

Introduction of a priori information helps in both cases to obtain a smooth
and precise image in a reasonable time. This a priori information can be added
easily in the Bayesian formalism and leads to maximum a posteriori (MAP)
formulations. When the prior is a differentiable function, the proof of conver-
gence of the algorithm naturally fits the EM developments from [29]. This is
not any more the case when the prior is not smooth, for instance for the TV
prior.

1.4.1 TV prior and Sawatzky algorithm
Let TV be the total variation semi-norm, whose definition is recalled in section
§1.5. In order to incorporate in the EM algorithm the prior G = αTV ,
Sawatzky et al. [17, 20] proposed a stable explicit-implicit scheme composed
of two steps:



Springer Nature 2021 LATEX template

Tomographic reconstruction from Poisson distributed data 7

• The MLEM step (7), which can be expressed in matrix form as:

λ(n+1/2) = λ(n)

s
T ∗
[ y

Tλ(n)

]
,

the multiplication and division of vectors being computed element-wise;
• A weighted TV-denoising step

λ(n+1) = λ(n+1/2) − ω(n)∂G(λ(n+1)), (8)

with
ω(n) = λ(n)

s
.

This approach is very close to an alternating minimization where the weight
ω(n) acts as a kind of preconditioner.

Additionally, the authors explain how the implicit equation (8) can be
solved by minimizing the functional

λ(n+1) = prox ω(n)G(λ(n+1/2))

= arg min
λ

{
1
2

∥∥∥∥ 1√
ω(n)

(λ− λ(n+1/2))
∥∥∥∥2

2
+G(λ)

}
,

using a slightly modified version of the Chambolle’s algorithm [32]. Although
this approach allows to obtain good approximations in practice, there is to
our knowledge no rigorous justification of convergence of this optimization
algorithm. In this work, we are interested in a slightly different approach which
is inspired from [29], whose advantage is to keep a variational point of view
associated to the functional L to deduce more easily a proof of convergence of
the algorithm.

1.4.2 EM variational approach with non smooth
regularization term

The algorithm we propose is inspired from the Expectation Maximization
algorithm introduced in [29] for maximum a posteriori (MAP) problems with
smooth priors and reads as follows:
• MLEM step, where (7) is used to compute an intermediate solution:

λ(n+1/2) = λ(n)

s
T ∗
[ y

Tλ(n)

]
. (9)

• Denoising step, where images corrupted with Poisson noise are denoised
according to the prior G through the minimization:

λ(n+1) ∈ arg min
u∈D

{Hn(u) +G(u)}. (10)
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with Hn defined for u ∈ D as:

Hn(u) = 〈u− λ(n+1/2) log(u), s〉, (11)

and Hn(u) = +∞ elsewhere.

In particular, we will show that this scheme converges well to a minimizer of F
from (3). We will also focus on the resolution of the denoising step in the spe-
cific case of TV prior G(u) = αTV (u). More precisely, we adapt Chambolle’s
algorithm [32] to Poisson denoising and derive a purely dual minimization
algorithm for which we establish the convergence.

1.5 Total Variation semi-norm
Total variation denoising is known to promote smoothness in images while still
conserving sharp edges ([14–16, 32]). It tends to produce almost homogeneous
regions separated by sharp frontiers. This type of regularization has a strong
interest in particular for low dose acquisitions where the goal is to identify the
shape of the objects in the volume ([14, 17–20, 23]).

Let Ω be an open subset of R2. The standard total variation is defined for
functions u ∈ L1(Ω) by

TV (u) = sup
{∫

Ω
u(x)divd(ϕ(x))dx : ϕ ∈ C1

c (Ω; R2), |ϕ(x)| ≤ 1 ∀x ∈ Ω
}
.

(12)
In particular, it is well known ([32]) that the functional TV is finite if and only
if the distributional derivative Du of u is a finite measure on Ω. Moreover, if u
has a gradient ∇u ∈ L1(Ω), then TV (u) =

∫
Ω |∇u(x)|dx. An other interesting

particular case is u = χQ the characteristic function of a smooth set Q, when
TV (u) can be identified to the perimeter of Q : TV (u) =

∫
∂Q

1dσ.
The discrete total variation of u is then defined by

TV (u) =
∑

1≤i,j≤N
|(∇du)i,j |, (13)

where |y| :=
√
y2

1 + y2
2 for all y = (y1, y2) ∈ R2. Here, the discrete gradient

∇du is a vector in Z = X ×X given by (∇du)i,j = ((∇du)1
i,j , (∇du)2

i,j) with

(∇du)1
i,j =

{
ui+1,j − ui,j , if i < N

0, if i = N
, (∇du)2

i,j =
{
ui,j+1 − ui,j , if j < N

0, if j = N
.

Notice that an equivalent definition of TV (u) is

TV (u) = sup {〈ϕ,∇du〉Z : ϕ ∈ Z such that |ϕi,j | ≤ 1, i, j = 1, . . . , N}
(14)
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where 〈p, q〉Z =
∑
i,j(p1

i,jq
1
i,j + p2

i,jq
2
i,j). Finally, let us remark that

〈ϕ,∇du〉Z = −〈divd(ϕ),u〉X as soon as the discrete divergence divd(ϕ) is
defined by

(divd(ϕ))i,j =


ϕ1
i,j − ϕ1

i−1,j , if 1 < i < N
ϕ1
i,j , if i = 1

−ϕ1
i−1,j , if i = N

+


ϕ2
i,j − ϕ2

i,j−1, if 1 < j < N
ϕ2
i,j , if j = 1

−ϕ2
i,j−1, if j = N

.

1.6 Outline of the paper
We show in section 2 that an iterative sequence (λ(n))n≥0 defined by (10) and
λ(0) > 0 (element-wise), converges to a minimizer of F . In section 3 we focus
on the numerical computation of a solution of (10) in the case of a TV regular-
ization term. We then introduce a descent algorithm based on a dual approach
and prove its stability under classical assumptions on the step size. Finally,
in the last section, we give numerical comparisons of our both denoising and
reconstruction algorithms. We compare the denoising algorithm with PDHG
of Chambolle and Pock ([26]) applied to (10), where λ(n+1/2) is replaced with
a noisy image, realization of a multi-variate Poisson distribution with parame-
ter the well-known Shepp-Logan phantom in 2D. The reconstruction algorithm
(9)-(10) is compared to PDHG in the version developed by Anthoine et al.
[19] and to the algorithm from Sawatzky et al. [17].

2 MAP-EM algorithm for non-differentiable
regularizers

The minimization problem (3) is led complicated by the presence of the lin-
ear operator T , which is the projection operator in tomography. The main
idea in what follows is to separate the operations related to tomographic
reconstruction from regularization, that becomes a simple denoising of the
intermediate solution. If λ(n) is the solution at iteration n, the intermediate
solution λ(n+1/2) is computed with the MLEM equation (9), and λ(n+1) is the
solution of the weighted Poisson denoising problem (10).

In the EM formalism, the first step is derived from an expectation and the
second is a maximization, by taking the negative of the expression in (10).
Not all known regularizers G are logarithms of a probability distribution. We
will however keep in the following the similarities with the EM algorithm and
the name MAP-EM.

2.1 Proof of convergence for the MAP-EM algorithm

For λ′ ∈ D, let us denote λ′ = λ′

s
T ∗
[ y
Tλ′

]
. We introduce the surrogate

function U(λ|λ′) that is defined by

U(λ|λ′) = 〈λ− λ′ log(λ), s〉+G(λ), (15)
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for λ ∈ D and is infinite elsewhere. Note that equation (10) consists to calcu-
late λ(n+1) that minimizes the surrogate U(λ|λ(n)) = Hn(λ) +G(λ). We will
suppose that for any given λ′ ∈ D, U(·|λ′) is coercive and proper. The follow-
ing lemma characterizes the solution of the minimum of function F from (3).
Its proof is given in Appendix A.

Lemma 1 A vector λ∗ is a minimum of F if and only if
λ∗ ∈ arg min {U(λ|λ∗) : λ ∈ D}. (16)

Definition 1 Let M : D → D be a continuous mapping such that if
λ′ /∈ arg min {U(λ|λ′) : λ ∈ D}, (17)

then M(λ′) should verify
U(M(λ′)|λ′) < U(λ′|λ′), (18)

otherwise M(λ′) = λ′.

The next theorem shows that the mapping M decreases the value of the
cost function F except when the minimum is already attained, and establishes
the link between the minima of F and the fixed points of M . The proof is
given in Appendix B.

Theorem 2 For any mapping M satisfying the properties from definition 1, the
following properties hold.

(i) For all λ′ /∈ arg min {U(λ|λ′) : λ ∈ D} we have

F (M(λ′)) < F (λ′).

(ii) A vector λ∗ is a fixed point of M if and only if

λ∗ ∈ arg min {U(λ|λ∗) : λ ∈ D}. (19)

(iii) The set of fixed points of M coincides with the set of points where F attains
its minimum: for all λ∗ ∈ D,

[M(λ∗) = λ∗ ⇔ λ∗ ∈ arg min {F (λ) : λ ∈ D}] . (20)

Let (λ(n))n∈N be a recurrent sequence produced by M , i.e., for all n ∈ N∗,
λ(n+1) = M(λ(n)) and λ(0) is some given initial value in D. We show now
that the sequence (λ(n))n∈N converges to a minimizer of F at least when F
is strictly convex. Note that the strict convexity of F was not required in the
seminal paper [29], but the proof given therein is flawed. To the best of our
knowledge there is no general proof of convergence for the MAP-EM algorithm,
and the proof given for the particular case of the Poisson-MLEM algorithm by
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A.N. Iusem in [31] cannot be adapted easily to MAP. However, the theoretical
strict convexity could be obtained by addition of a second regularization term
with a very small coefficient that makes its numerical influence on the result
negligible.

Theorem 3 For any sequence (λ(n))n∈N produced by an algorithm M the following
properties hold.

(i) The sequence (F (λ(n))) is non-increasing and converges to a minimum of
F .

(ii) If (λ(nk)) is a convergent sub-sequence of (λ(n)) with limit λ∗, then λ∗ ∈
arg min {F (λ) : λ ∈ D}.

(iii) If F is strictly convex,

lim
n→+∞

λ(n) = arg min {F (λ) : λ ∈ D}.

The proof is given in Appendix C.
We showed that a minimizing sequence for F can be obtained by choosing

λ(n+1) solution of the minimization problem (10) or at least find a λ(n+1) such
that

U(λ(n+1)|λ(n)) < U(λ(n)|λ(n)).
Equation (10) was previously published in [24] for differentiable priors.

The same equation results in the smooth case directly from [29] and was also
derived in [18, 33].

2.2 Discussion on the numerical implementation
Solutions for the numerical calculation of the MAP estimator were already
proposed in the literature. In [24], an explicit scheme with complexity similar
to the one of the MLEM algorithm was proposed. The solution of (10) satisfies:

λ(n+1) = s

s+∇G(λ(n+1))λ
(n+1/2). (21)

In practice, the implicit scheme (21) can be replaced by the explicit one hav-
ing the unknown λ(n+1) replaced by λ(n). The (smoothed) total variation
regularization comes as a particular case and was studied in [22] and [23]. It
was however observed that the explicit scheme is unstable and requires very
low regularization parameters. The semi-implicit scheme from [18] also seems
unstable which shows that it is important to treat the non-smooth term implic-
itly. For example, it is possible to use the the Chambolle-Pock algorithm in
the case of Poisson TV-denoising. One may note that for all u ∈ RJ , we have
TV (u) = α‖∇du‖1, discrete sum of the gradient-magnitude images |∇du|.
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Equation (10) is thus of the form

arg min
u

{Hn(u) + Γ(∇du)} , (22)

where the function Hn is defined in (11) and Γ = α‖·‖1 is defined for v ∈ Z as

Γ(v) = α
J∑
j=1
|vj |. (23)

This optimisation problem can be solved using the PDHG algorithm ([26]).
The algorithm is initialized with some τ, σ > 0, θ ∈ [0, 1], u0 ∈ D, v0 ∈ Z
and u0 = u0. A sequence (ul) of approximations of the solution is calculated
in the following primal-dual algorithm:

vl+1 = prox σΓ∗(vl + σ∇dul)
ul+1 = prox τHn

(ul − τdivdvl+1)
ul+1 = ul+1 + θ(ul+1 − ul)

. (24)

The proximal operator prox τH(u) can be calculated explicitly as

prox τHn
(u) = 1

2

(
(u− τs) +

√
(u− τs)2 + 4τsλ(n+1/2)

)
. (25)

As shown in [26], the dual Γ∗ is the indicator function

Γ∗(v) = δBox(α)(v) =
{

0 if maxj |vj | ≤ α
+∞ if maxj |vj | > α

(26)

which gives then
[prox σΓ∗(v)]j = vj

|vj |
min(|vj |, α). (27)

Although this algorithm is very efficient for computing the solutions of
(10), we are interested in a purely dual optimization algorithm by inspiring
from Chambolle’s algorithm [32]. The objective is to obtain a faster algorithm
in the first iterations compared to a primal-dual approach.

3 Dual algorithm for Poisson TV-denoising
Let λ̃ be a noisy image, realization of a multi-variate Poisson law and s a vector
of strictly positive weights. The objective of this section is to numerically
approximate u∗, solution of:

min
u
{H(u) +G(u)} , (28)
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where H(u) = 〈u − λ̃ logu, s〉 and G = αTV with TV the discrete total
variation function defined in (14). To solve (28), we now propose an alternative
to the PDHG algorithm based on a dual approach.

3.1 Formulation of the dual problem
As the functions H and G are proper convex and lower semi-continuous, the
Fenchel-Rockafellar duality theorem states that if H∗ and G∗ are the convex
conjugates of H and G, then

inf
u
{H(u) +G(u)} = − inf

p
{H∗(p) +G∗(−p)} . (29)

If u∗ is a minimizer of H + G then there exists a solution p∗ of the dual
problem such that p∗ ∈ ∂H(u∗) and −u∗ ∈ ∂G∗(−p∗).

The following lemmas aim at defining the form of the solution p∗ of the
dual problem and then the form of the solution u∗ of the primal problem.
Their proofs are given in Appendices D and E.

Lemma 4 For all p ∈ X such that p < s (component-wise), the Fenchel-Legendre
transform of H equals

H∗(p) = C −
〈

log(s− p), sλ̃
〉
, (30)

with C independent of p, and is infinite elsewhere.

We denote
S = {ϕ ∈ Z : |ϕj | ≤ 1, j = 1, . . . , J}. (31)

Let h be the application:

h(ϕ) = H∗(−αdivd(ϕ))− C = −〈log(s+ αdivd(ϕ)), sλ̃〉, (32)

which is infinite if any of the components of s+αdivd(ϕ) is not strictly positive.

Lemma 5 Any solution of the dual problem (29) has the form p∗ = −αdivd(ϕ∗),
where:

ϕ∗ ∈ arg min
ϕ∈S

h(ϕ). (33)

The minimizer u∗ of the primal problem should verify u∗ > 0 (component-
wise). Since H is differentiable for u∗ > 0, p∗ = ∇H(u∗) and we get

u∗ = sλ̃

s− p∗
. (34)

However, the inequality u∗ > 0 may not be verified for (34). Let smin be the
minimum of the vector s. The proof of the following lemma is based on lemma
5 and on equation (34) and can be found in Appendix F.
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Lemma 6 If the regularization parameter verifies α < smin/4, any solution u∗ of
the primal problem writes:

u∗ = sλ̃

s+ αdivd(ϕ∗) . (35)

with ϕ∗ ∈ arg min
ϕ∈S

h(ϕ). This solution is component-wise positive.

Remark 1 The inequality α < smin/4 can be a limiting factor in particular in the
case of strong noise for which it is necessary to use a sufficiently large regularization
parameter α. The direct consequence is that the solution u∗ of the primal problem
does not exist in D. This convergence assumption clearly shows a limitation of a
purely dual resolution of the denoising part compared to a primal dual Chambolle-
Pock type approach.

In the rest of the paper we assume that α < smin/4. The proof of conver-
gence of the algorithm producing a minimization sequence for h rely on the
Lipschitz continuity of the gradient of h on S.

Lemma 7 If α < smin/4, the function h defined in (32) is convex and continuously
differentiable on its domain. Its gradient is Lipschitz on S with constant

Lh = 8α2 ‖sλ̃‖∞
(smin − 4α)2 . (36)

Proof The Fréchet derivative of h satisfies for ϕ ∈ Z such that s+αdivd(ϕ) > 0 and
ψ ∈ Z the equation:

h′(ϕ)(ψ) = −α
〈

sλ̃

s+ αdivd(ϕ) , divd(ψ)
〉
, (37)

thus
‖∇h(ϕ)−∇h(ϕ′)‖2 = sup

‖ψ‖2=1
|h′(ϕ)(ψ)− h′(ϕ′)(ψ)|

= α2 sup
‖ψ‖2=1

∣∣∣∣〈 sλ̃divd(ϕ− ϕ′)
(s+ αdivd(ϕ))(s+ αdivd(ϕ′)) ,divd(ψ)

〉∣∣∣∣
≤ α2‖divd(ϕ− ϕ′)‖2 sup

‖ψ‖2=1

∥∥∥∥ sλ̃divd(ψ)
(s+ αdivd(ϕ))(s+ αdivd(ϕ′))

∥∥∥∥
2
.

As shown in [32], ‖divd(ϕ− ϕ′)‖22 ≤ 8‖ϕ− ϕ′‖22 and ‖divdψ‖22 ≤ 8, thus

‖∇h(ϕ)−∇h(ϕ′)‖2 ≤ 8α2
∥∥∥∥ sλ̃

(s+ αdivd(ϕ))(s+ αdivd(ϕ′))

∥∥∥∥
∞
‖ϕ− ϕ′‖2.

Since we have ‖divd(ϕ)‖∞ ≤ 4 on S, it follows that

‖∇h(ϕ)−∇h(ϕ′)‖2 ≤ 8α2 ‖sλ̃‖∞
(smin − 4α)2 ‖ϕ− ϕ

′‖2,

thus the gradient of h is Lipschitz on S with constant given in (36).
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The second derivative of h is

h′′(ϕ)(ψ)(ψ̃) =
〈

sλ̃

(s+ αdivd(ϕ))2 , α
2divd(ψ)divd(ψ̃)

〉
,

and thus h is convex as

h′′(ϕ)(ψ)(ψ) =
〈

sλ̃

(s+ αdivd(ϕ))2 , α
2divd(ψ)2

〉
≥ 0.

�

Remark 2 When the coefficient of regularization is sufficiently small, i.e α << 1, the
constant Lh can also be approximated by

Lh ' 8α2‖λ̃/s‖∞. (38)

3.2 A convergent Chambolle-like scheme for Poisson
denoising

In this subsection we derive an algorithm to compute a solution of (33). From
(37), as the conjugate of divd is −∇d, the gradient of h is

∇h(ϕ) = α∇d

(
sλ̃

s+ αdivdϕ

)
. (39)

Now, given µ ∈ R the Lagrange multiplier associated to the constraint |ϕj | ≤
1, the Karush-Kuhn-Tuker condition reads:

∀j ∈ {1, . . . , J} α

(
∇d

(
sλ̃

s+ αdivdϕ

))
j

+ µjϕj = 0, (40)

with either |ϕj | = 1 and µj > 0, or |ϕj | < 1 and µj = 0. Moreover, as in the
latter case we also have ∣∣∣∣∣∣

(
∇
(

sλ̃

s+ αdivdϕ

))
j

∣∣∣∣∣∣ = 0,

we see that for all j,

µj = α

∣∣∣∣∣∣
(
∇d

(
sλ̃

s+ αdivdϕ

))
j

∣∣∣∣∣∣ . (41)

Following the idea of Chambolle’s algorithm ([32]), we consider a semi-implicit
gradient descent scheme and we show that it converges to a solution ϕ∗ of
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(33). With some minimization step τ > 0 and the initial value ϕ(0) = 0 we
then consider the scheme

ϕ
(k+1)
j = ϕ

(k)
j −τ

(
∇d

(
sλ̃

s+ αdivdϕ(k)

))
j

−τ

∣∣∣∣∣∣
(
∇d

(
sλ̃

s+ αdivdϕk

))
j

∣∣∣∣∣∣ϕ(k+1)
j ,

(42)
which can be written equivalently as

ϕ
(k+1)
j =

ϕ
(k)
j − τz

(k)
j

1 + τ |z(k)
j |

, with z(k) = ∇d

(
sλ̃

s+ αdivdϕ(k)

)
. (43)

Hereafter we show the convergence of the sequence of iterates to the
solution of (33).

Theorem 8 Let α < smin/4 and τ < α/Lh. Then the sequence (h(ϕ(k))) with ϕ(k)

defined in (43) is decreasing and converges to a minimum of h on S.

Proof It is easy to show by induction that |ϕ(k)
j | ≤ 1 for all j = 1, . . . , J and all

k ∈ N. As the functional h is convex and with gradient Lh-Lipschitz on S, it follows
from a classical result (see e.g., [34]) that for all k ∈ N,

h(ϕ(k+1)) ≤ h(ϕ(k)) + 〈∇h(ϕ(k)),ϕ(k+1) − ϕ(k)〉+ Lh
2 ‖ϕ

(k+1) − ϕ(k)‖22.

Let us note η = (ϕ(k+1) − ϕ(k))/τ . As ∇h(ϕ(k)) = αz(k), we obtain

h(ϕ(k+1))− h(ϕ(k)) ≤ τ
(
α〈z(k),η〉+ τ

Lh
2 ‖η‖

2
2

)
,

From (42) it follows that for all j ∈ {1, . . . , J},

ηj = −z(k)
j − |z(k)

j |ϕ
(k+1)
j ,

which is well defined as s + αdivdϕ(k) > 0. To simplify the equations, we denote
hereafter |z(k)| the vector with entries |z(k)

j |, `2-norms of two-dimensional vectors.
From the last two equations we then obtain

h(ϕ(k+1))− h(ϕ(k)) ≤ −α(‖z(k)‖22 + 〈z(k), |z(k)|ϕ(k+1)〉)

+τ Lh2

(
‖z(k)‖22 + 2〈z(k), |z(k)|ϕ(k+1)〉+ ‖z(k)ϕ(k+1)‖22

)
.

Now, as ‖ϕ(k+1)‖∞ ≤ 1, it holds ‖z(k)ϕ(k+1)‖22 ≤ ‖z(k)‖22 thus

h(ϕ(k+1))− h(ϕ(k)) ≤ (−α+ τLh)
(
‖z(k)‖22 + 〈z(k), |z(k)|ϕ(k+1)〉

)
.

Finally, as 〈z(k), |z(k)|ϕ(k+1)〉 ≥ −‖z(k)‖22 and α − τLh > 0, we have shown that
h(ϕ(k+1)) ≤ h(ϕ(k)) for all k ∈ N.
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Let ` = lim
k→+∞

h(ϕ(k)). The bounded sequence (ϕ(k)) has a converging subse-

quence (ϕ(km)) with limit some ϕ∗ ∈ Z. Passing to the limit in (43) we obtain that
the subsequence (ϕ(km+1)) also converges to some ϕ̃ ∈ Z that satisfies:

ϕ̃ = ϕ∗ − τz∗

1 + τ |z∗| , with z∗ = ∇d

(
sλ̃

s+ αdivdϕ∗

)
. (44)

With the same arguments as above it can be shown that
h(ϕ̃)− h(ϕ∗) ≤ (−α+ τLh)

(
‖z∗‖22 + 〈z∗, |z∗|ϕ̃〉

)
≤ 0.

Moreover, as ` = lim
m→+∞

h(ϕ(km)) = lim
m→+∞

h(ϕ(km+1)), we deduce that h(ϕ̃) =

h(ϕ∗). Thus ‖z∗‖22 + 〈z∗, |z∗|ϕ̃〉 = 0, which implies that z∗ + |z∗|ϕ̃ = 0. From (44)
it follows that ϕ∗ = ϕ̃ and it satisfies the equation

∇d

(
sλ̃

s+ αdivdϕ∗

)
+
∣∣∣∣∇d( sλ̃

s+ αdivdϕ∗

)∣∣∣∣ϕ∗ = 0,

which is the Euler equation for the dual problem. Finally,

lim
k→+∞

h(ϕ(k)) = ` = min
ϕ∈S

h(ϕ).

�

Remark 3 Note that the case α > smin/4 can be treated numerically by reducing
the minimization step τ and taking

z(k) = ∇d

(
max

{
sλ̃

s+ αdivdϕ(k) , 0
})

, (45)

which seems to stabilize the algorithm for large values of α. Indeed, this modified
dual approach can be viewed as a projection of the primal variable

u(k) = sλ̃

s+ αdivdϕ(k) ,

on (R+)J . However, the convergence is not guaranteed any more.

Remark 4 For the three-dimensional case, the hypotheses of theorem 8 becomes
α < smin/6 and τ ≤ α/Lh where

Lh = 12α2 ‖sλ̃‖∞
(smin − 6α)2 . (46)

3.3 A FISTA acceleration of the dual minimization
problem

Recall that the objective is to compute a solution of ϕ∗ ∈ arg minϕ∈S h(ϕ),
with S = {ϕ ∈ Z : |ϕj | ≤ 1, j = 1, . . . , J}. An iterative semi-implicit
algorithm can be read as

ϕ(k+1) = PS(ϕ(k) − τ∇h(ϕk)),
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where PS is the projection on S:

PS(ϕ) =
(

ϕ1

max(|ϕ1|, 1) , . . . ,
ϕJ

max(|ϕJ |, 1)

)
.

At the difference of the previous algorithm, the convergence of this new
version is not insured, but has the advantage to allow for a FISTA proce-
dure. Indeed, in a certain sense, the up-mentioned scheme can be viewed
as an ISTA approach ([35]) which alternates minimization of a smooth (h)
and non smooth (projection on S) energy. Note that a proof of convergence
of the FISTA acceleration under very general assumptions has been estab-
lished in [36]. Unfortunately, we cannot apply this result because it requires a
function h convex and Lipschitz, which is indeed the case but only on S. How-
ever we observe in our numerical experiments a convergence under the same
assumptions as for our non-accelerated dual algorithm.

4 Numerical experiments
In this section we investigate the numerical behaviour of the proposed algo-
rithms that we compare to some reference algorithms from the literature. For
Poisson denoising, our reference is PDHG. For the reconstruction problem, a
comparison will be made with the Sawatzky algorithm ([17]) and with PDHG
as described in (6), following [19]. Our simulations are done with Matlab on
the Shepp-Logan phantom (see figure 1).

Fig. 1 The Shepp-Logan phantom.

4.1 Comparison of denoising algorithms
Hereafter we show the results for two levels of noise, and we compare the
dual algorithm from 3, the FISTA accelerated dual projected algorithm from
subsection 3.3 and the Chambolle-Pock algorithm in its original version 2.2.

We first rescaled the Shepp-Logan phantom with a factor that will deter-
mine the level of the Poisson noise. A rescaling of 100 was used to illustrate
the methods in a situation with moderate noise and a rescaling of 10 was used



Springer Nature 2021 LATEX template

Tomographic reconstruction from Poisson distributed data 19

to illustrate a high level of noise. Indeed, as the variance and mean are equal
for Poisson noise, the ratio between mean and standard-deviation increases
with the mean. We added a small constant value (0.01) to the result in order
to avoid zero-valued pixels in the image and finally we simulated Poisson dis-
tributed noisy images with these means. The noisy images are shown in the
first line of figure 2.

We ran the PDHG algorithm with parameters σ = 0.2 and τ = 0.8. These
values were chosen after a grid search in [0.2, 1] × [0.2, 1] and gave the best
results for moderate noise. The regularization parameter α was set to 0.2 for
moderate noise and 0.7 for strong noise. The sensitivity was set to the constant
vector with all entries equal to one.

Figure 2 shows the denoised images at convergence, after 5000 iterations.
The iterations could be stopped much earlier for a very similar result, but
the idea was to stay coherent with the convergence analysis from figure 3. It
can be seen that for moderate noise, the two algorithms give the same result
at convergence. For strong noise, the stability constraint α < smin/4 is not
satisfied any more and the FISTA algorithm fails. The dual algorithm, with
the adaptations from remark 3, still works in this case.

The convergence rate of the two algorithms is shown in figure 3. The image
at iteration 104 is taken as reference and the error is calculated in the `1

norm. It can be seen that for mild noise, the FISTA accelerated dual algorithm
converges faster than Chambolle-Pock, in the first iterations. For strong noise,
the Chambolle-Pock algorithm is better suited.

4.2 Application to tomography
In this section, we investigate numerically the behaviour of our global scheme
for tomography, consisting to alternate MLEM steps (9) with TV-denoising
steps (10) in a TV MAP EM algorithm. We compare the results in terms of
reconstructed images and convergence rates with the Sawatzky algorithm and
with PDHG in its version Anthoine et al. [19].

We also test a FISTA version. Indeed, in a certain sense, the up-mentioned
scheme can be viewed as an ISTA approach ([35]) which alternates minimiza-
tion of a smooth and a non smooth energy, and could further be accelerated
by adding a FISTA step. The algorithm becomes :
• ISTA Scheme

λ̃(n+1) ∈ arg min
u∈D

{〈u− λ(n+1/2) log(u), s〉+G(u)},

with λ(n+1/2) = λ(n)

s T ∗
[

y
Tλ(n)

]
.

• Inertial parameter step

tn+1 = 1 +
√

1 + 4t2n
2 ,
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Fig. 2 Noisy and denoised images, for two levels of noise. On the left, a mild Poisson noise
was simulated from the Shepp-Logan phantom from figure 1, after multiplication of the
original by 100. On the right, a strong noise was simulated, with the Shepp-Logan phantom
multiplied by 10. Noisy images (top row), denoising using Chambolle-Pock (second row),
dual (third row) and FISTA accelerated dual (last row) algorithms. The denoised images
are displayed at iteration 5000.

• FISTA update

λ(n+1) = λ̃(n+1) + (tn − 1)
tn+1

(λ̃(n+1) − λ̃(n))
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(a) moderate noise (b) strong noise
Fig. 3 Convergence for the dual algorithm compared to Chambolle-Pock for the two levels
of noise from figure 2. The error is calculated as the natural logarithm of the `1 norm between
the current iteration and the iteration 104.

where t1 = 1 and λ̃(0) = 1.

The Shepp-Logan phantom shown in figure 1 is first scaled by a factor 10.
This means that each of the 2562 pixels emits in average between 0 and 10
photons. Ideal Radon projections of the phantom were calculated for angles
running from 0◦ to 175◦ in steps of 5◦. Random values for empirical projections
were drawn from a multi-variate Poisson law having mean the theoretical
projections. The total number of counts is then about 3×106. Ideal projections
and their noisy counterparts are shown for comparison in figure 4.

(a) Ideal projections (b) Noisy projections
Fig. 4 Sinograms of the Shepp-Logan phantom: (b) without noise, (c) with Poisson random
noise.

In this test, where the number of projections and the number of counts are
low, the quality of the image reconstructed without any smoothing is low too.
For comparison, in figure 5 we show the analytic reconstruction including the
Hamming filter and the MLEM reconstruction after 50 iterations and Gaussian
post-smoothing.

We added a total variation penalty term to the negative log-likelihood and
solved numerically for the minimum of the energy with different algorithms
mentioned in the paper. The value of the regularization coefficient α was set
to 0.02, where this value gave in a subjective analysis the best compromise



Springer Nature 2021 LATEX template

22 Tomographic reconstruction from Poisson distributed data

(a) Analytic (b) MLEM
Fig. 5 (a) The analytic reconstruction from noisy projections including Hamming filtering
and (b) the MLEM solution after 50 iterations and Gaussian smoothing with σ = 2.

between smoothness of the homogeneous regions and image contrast. We do
not deal in this work with the choice of the regularization parameter and we
redirect the reader to specific literature that tackles this task (see e.g., [37–
40]). For PDHG we set the two parameters σ and τ to the values 0.1 and
0.3 that gave in this experiment the best convergence rate. All the methods
require an internal TV denoising loop. The number of TV iterations was set
to 200 in all algorithms.

As figures of merit we plot the total energy calculated from equation (3)
and the mean squared error,

MSE(λ̂) = 1
J
‖λ̂− λ‖2, (47)

where λ is the reference image. The results are plotted in figure 6 for 1000
iterations.

Fig. 6 Figures of merit for the comparison between the proposed dual method (blue line),
Sawatzky et al. method (red dashed-line) and Anthoine et al. method (yellow dotted-line).
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The method proposed by Anthoine et al. does not use the capability of the
EM algorithm to rapidly increase the likelihood and converges slowly com-
pared to the proposed TV MAP EM and the Sawatzky et al. methods. These
last methods have very similar convergence properties. As shown in figure 7
after 1000 iterations the reconstructed images and extracted central vertical
profiles are relatively close to each other.

Fig. 7 Comparison between the proposed TV MAP EM method (first row), Sawatzky et
al. (second row) and Anthoine et al. (third row) methods after 1000 MLEM iterations. The
second column shows the central vertical profiles extracted from the images in the first
column.

In figure 8 we evaluate the influence of the FISTA acceleration technique
on the convergence speed of the dual algorithm. After 200 iterations (this
number was set according to the convergence curves shown in figure 6) the
results with and without FISTA are the same. However, the FISTA technique
allows to reach the numerical convergence in about 30 iterations whereas it
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requires more than 50 iterations for the dual method without FISTA tech-
nique. The differences between figures 7 and 8 are due to the fact that the
noise realizations between the two experiments are different.

Fig. 8 FISTA acceleration strongly improves the convergence of the TV MAP EM
algorithm.

5 Discussions
Regarding the TV Poisson denoising problem that appears as a subproblem
in the MAP-EM approach, we compared three different algorithms that com-
pute the solution: the PDHG algorithm, the proposed Chambolle-type dual
approach, and the FISTA dual approach. These three algorithms were applied
to the Shepp-logan phantom with moderate and strong Poisson noise. For mod-
erate noise, the dual FISTA approach is more efficient in the first iterations
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but the PDHG algorithm has asymptotically better convergence properties.
For strong noise which requires a large regularization parameter that do not
verify the convergence assumptions obtained theoretically, the FISTA algo-
rithm does not converge and the proposed dual Chambolle-type scheme seems
to converge but very slowly. On the other hand, the PDHG algorithm keeps
its good convergence properties in this case, which shows its flexibility and
robustness. In our application to tomography, the use of the dual algorithm as
a step of the TV EM MAP scheme can be interesting. It is indeed not neces-
sary in this case to compute the optimal solution of the denoising problem but
only a good approximation by performing in general only one or two hundreds
iterations.

For the tomography application with TV regularization, we also compared
three different algorithms: the Sawatzky approach, our MAP-EM algorithm
with inner dual Poisson TV-denoising and Anthoine’s approach based on a
PDHG. In our numerical experiment, all three algorithms converge to very
similar solutions. The Sawatzky approach and our MAP-EM with internal dual
Poisson denoising also show a very similar convergence rate and seem to be
more efficient than Anthoine’s approach, at least for our choice of parameters.
These results seem to be in agreement with the use of EM algorithms over
gradient approaches.

We see many advantages to MAP-EM. First, the outer loops may be very
expensive as it requires the application of a back-projection operator. Reducing
their number can reduce the computational cost despite the inner iterations.
The second argument is that the Chambolle-Pock algorithm requires choosing
some internal parameters that influence the convergence. However, methods
exist to compute these parameters in a way that greatly accelerates and sta-
bilizes the algorithm. For the final choice, the user should compare the cost
of back-projection with the cost of denoising, cost that depends on the avail-
ability of projector/back-projection operators running on graphic processing
units in parallelized algorithms. Finally, a FISTA accelerated technique can
be applied to the TV MAP EM algorithm which also seems to have very good
properties in terms of convergence rate. Attention should be paid however to
the fact that the positivity of the solution may be lost with the FISTA scheme.

In this work we do not deal with accelerations as the ordered subsets
expectation maximization and our theoretical developments do not fit into this
framework. It is however very likely that a TV-regularized version of OSEM
could be obtained by introducing TV-denoising either between the OSEM
iterations or between the epochs of each iteration. In a convergent OSEM
approach as the one developed in [25], the regularization coefficient might
need to be modified during the iterations and this can be done by modifying
the weights s in the denoising model. It is thus likely that the TV MAP
EM algorithm can be further improved. A stochastic version of the PDHG
also exists [27], and once again the choice of the algorithm should be done
depending on the cost of the projection and back-projection operators for the
target imaging modality.



Springer Nature 2021 LATEX template

26 Tomographic reconstruction from Poisson distributed data

6 Conclusions
In this paper we adapt the maximum-a-posteriori expectation maximization
framework to non-smooth convex priors, aiming to maximize an energy com-
posed of a likelihood function and a prior distribution. Its specificity is to
split the search for the optimal value in an expectation step that allows to
move from an optimization problem in the domain of incomplete data (in
our case the projections) to a simpler one in the domain of complete data
(in our case the image), and a maximization step for the new criterion. We
then deduce consistency and convergence results for the MAP-EM algorithms.
Total variation regularization of tomographic images calculated from Poisson
distributed data is then derived from as a particular case. For the maximiza-
tion step we lean on the Fenchel-Rockafellar duality principle and we propose
a simple and efficient algorithm developed following the ideas that A. Cham-
bolle first introduced for fidelity terms expressed with the `2-induced distance.
We then succeed to prove its convergence to the solution at least for regu-
larization parameters that do not exceed a given upper bound. The resulting
MAP-EM algorithm is both consistent and relatively fast and successfully
competes experimentally with other algorithms proposed in the literature for
the resolution of the same problem. Our results also tend to show that FISTA
acceleration allows to further improve the convergence speed although we are
aware that our setup is different from the one where FISTA was originally
proposed.
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Appendix A Proof of Lemma 1
For a given λ′ ∈ D and any λ ∈ D, we denote K(λ|λ′) = F (λ) − U(λ|λ′).
Let us start with some results concerning K(λ|λ′). We have:

K(λ|λ′) =
I∑
i=1

J∑
j=1

tijλj −
I∑
i=1

yi log(
J∑
j=1

tijλj)−
J∑
j=1

sjλj +
J∑
j=1

sjλ′j log(λj).

Since
I∑
i=1

J∑
j=1

tijλj =
J∑
j=1

sjλj , thus

K(λ|λ′) =
J∑
j=1

sjλ′j log(λj)−
I∑
i=1

yi log(
J∑
j=1

tijλj). (A1)

The partial derivatives of K(·|λ′) are:

∂K(·|λ′)
∂λj

(λ) = sj
λ′j
λj
−

I∑
i=1

tijyi
J∑
k=1

tikλk

.

We recall that λ′ is the vector with entries λ′j =
λ′j
sj

I∑
i=1

tijyi∑
k tikλ

′
k

. This implies

that for all λ′ ∈ D
∇K(·|λ′)(λ′) = 0. (A2)

The logarithm being a concave function, by the Jensen inequality we obtain
for all i ∈ {1, . . . , I} that:

log(
J∑
j=1

tijλj) = log

 J∑
j=1

tijλ
′
j∑

k tikλ
′
k

λj
λ′j

+ log(
∑
k

tikλ
′
k)

≥
J∑
j=1

tijλ
′
j∑

k tikλ
′
k

log
(
λj
λ′j

)
+ log(

∑
k

tikλ
′
k)

thus

K(λ|λ′) ≤
J∑
j=1

sjλ′j log(λj)−
I∑
i=1

yi

J∑
j=1

tijλ
′
j∑

k tikλ
′
k

log
(
λj
λ′j

)
−

I∑
i=1

yi log(
∑
k

tikλ
′
k)

=
J∑
j=1

sjλ′j log(λj)−
J∑
j=1

sjλ′j log
(
λj
λ′j

)
−

I∑
i=1

yi log(
∑
k

tikλ
′
k)
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=
J∑
j=1

sjλ′j log(λ′j)−
I∑
i=1

yi log(
∑
k

tikλ
′
k),

which implies that for all λ,λ′,

K(λ|λ′) ≤ K(λ′|λ′). (A3)

Proof of Lemma 1: Let λ∗ be a minimum of F . From (A3), for all λ ∈ D, K(λ|λ∗) ≤
K(λ∗|λ∗) thus U(λ|λ∗) ≥ U(λ∗|λ∗) and equation (16) is verified. Conversely, if
λ∗ verifies (16) then 0 ∈ ∂U(· |λ∗)(λ∗) = ∂F (λ∗) − ∇K(·|λ∗)(λ∗). From (A2),
∇K(·|λ∗)(λ∗) = 0, thus 0 ∈ ∂F (λ∗) and λ∗ is a minimum of F . �

Appendix B Proof of Theorem 2
Proof (i) From the definition of K and from (A3) it follows that

F (M(λ′)) = U(M(λ′)|λ′) +K(M(λ′)|λ′)
≤ U(M(λ′)|λ′) +K(λ′|λ′).

Then from (18) and again the definition of K we obtain the result.
(ii) If λ∗ is a fixed point of M then U(M(λ∗)|λ∗) = U(λ∗|λ∗). Equation (19)

follows from definition 1. The reciprocal is obvious by the definition of M .
(iii) This property immediately follows from (ii) and Lemma 1.

�

Appendix C Proof of Theorem 3
Proof (i) The fact that the sequence (F (λ(n))) is non-increasing is a direct conse-
quence of theorem 2 (i). It is clear that (λ(n)) is bounded. Indeed, if this would
not be the case, a sub-sequence (λ(nk)) such that limk→+∞ ‖λ(nk)‖ = +∞ may
be extracted. Since F is coercive, the sequence (F (λ(nk))) would not be bounded
either, which comes in contradiction with the fact that (F (λ(n))) is non-increasing
and bounded below by the minimum of F . Let (λ(nk)) be a convergent sub-sequence
of (λ(n)) with limit λ∗. Then the sub-sequence (λ(nk+1)) is also convergent and
tends to M(λ∗). The sequence (F (λ(n))) being non-increasing and bounded below,
it converges and

lim
n→+∞

F (λ(n)) = lim
k→+∞

F (λ(nk)) = lim
k→+∞

F (λ(nk+1)),

thus F (M(λ∗)) = F (λ∗). From theorem 2 (i) we then deduce that

λ∗ ∈ arg min {U(λ|λ∗) : λ ∈ X},

and from the same theorem it results that λ∗ is a fixed point of M and λ∗ ∈
arg min {F (λ) : λ ∈ X}. Thus

lim
n→+∞

F (λ(n)) = F (λ∗) = min{F (λ) : λ ∈ X}.
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(ii) As an immediate consequence of the proof of (i) we have:

F (λ∗) = lim
k→+∞

F (λ(nk)) = lim
n→+∞

F (λ(n)) = min{F (λ) : λ ∈ X}.

(iii) If F is strictly convex there is an unique

λ∗ ∈ arg min {F (λ) : λ ∈ X}.

From (ii), any convergent sub-sequence of (λ(n)) has to converge to λ∗, thus the
sequence converges to the same limit. �

Appendix D Proof of Lemma 4
Proof From the definition of the Fenchel-Legendre transform we have:

H∗(p) = sup
u
{〈u,p〉 −H(u)} = sup

u

{
〈u,p− s〉+ 〈λ̃ logu, s〉

}
.

If for some j ∈ {1, . . . , J}, pj ≥ sj then

lim
uj→+∞

(
uj(pj − sj) + sj λ̃j log(uj)

)
= +∞.

By taking all other entries of u as ones, it can be seen that H∗(p) is infinite. In the
case p < s component-wise, the resolution of the Euler equation associated to the
optimization problem shows that

H∗(p) =
〈

sλ̃

s− p ,p
〉
−H

(
sλ̃

s− p

)
. (D4)

Finally, we have

H∗(p) = −
〈

sλ̃

s− p , s− p
〉

+
〈

log sλ̃

s− p , sλ̃
〉

=
〈

log(sλ̃)− 1, sλ̃
〉
−
〈

log(s− p), sλ̃
〉

= C −
〈

log(s− p), sλ̃
〉
,

with C =
〈

log(sλ̃)− 1, sλ̃
〉

independent from p. �

Appendix E Proof of Lemma 5
Proof The Fenchel-Legendre transform of the total variation G is (see [32]):

G∗(p) = δαK(p), (E5)

where K = {divdϕ : ϕ ∈ Z such that |ϕj | ≤ 1, j = 1, . . . , J}, and δ is the indicator
function,

δαK(p) =
{

0 if p ∈ αK
+∞ otherwise .

Thus the solution p∗ of the dual problem can be expressed as p∗ = −αdivdϕ∗, and
the conclusion follows now from lemma 4. �
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Appendix F Proof of Lemma 6
Proof If ϕ ∈ S, we have ‖divdϕ‖∞ ≤ 4 and then for α < smin/4 we obtain

s+ αdivdϕ ≥ smin − 4α > 0.

The function h is thus finite and continuous on the compact set S. h is thus bounded
and ϕ∗ exists. The positivity of u∗ is obvious from the previous inequality. �
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[28] Kereta, Ž., Twyman, R., Arridge, S., Thielemans, K., Jin, B.: Stochastic
EM methods with variance reduction for penalised PET reconstructions.
Inverse Problems 37(11), 115006 (2021)

[29] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological) 39, 1–38 (1977)

[30] Sidky, E.Y., Jørgensen, J.H., Pan, X.: Convex optimization problem pro-
totyping for image reconstruction in computed tomography with the
Chambolle-Pock algorithm. Physics in Medicine and Biology 57(10),
3065–3091 (2012). https://doi.org/10.1088/0031-9155/57/10/3065

[31] Iusem, A.N.: A short convergence proof of the EM algorithm for a specific
Poisson model. Brazilian Journal of Probability and Statistics 6(1), 57–67
(1992)

https://doi.org/10.1109/23.819305
https://doi.org/10.1109/42.52985
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1088/0031-9155/57/10/3065


Springer Nature 2021 LATEX template

Tomographic reconstruction from Poisson distributed data 33

[32] Chambolle, A.: An algorithm for total variation minimization and appli-
cations. Journal of Mathematical Imaging and Vision 20(1-2), 89–97
(2004)

[33] Yan, M., Bui, A.A., Cong, J., Vese, L.A.: General convergent expectation
maximization (EM)-type algorithms for image reconstruction. Inverse
Problems & Imaging 7(3), 1007–1029 (2013)
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