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A novel method for the numerical computation of the nonlinear normal modes (NNMs) of a highly flexible cantilever beam is presented. The flexible cantilever is modeled using a 2D finite element discretization of the geometrically exact beam model, wherein geometric nonlinearities relating to the rotation are kept entirely intact. The model is then solved using the proposed solution method, which is fully frequency domain-based and involves a novel combination of a harmonic balance (HBM) Fourier expansion with asymptotic numerical (ANM) continuation for periodic solutions. The NNMs are also calculated experimentally using a flexible cantilever specimen mounted to a shaker table. The experimental NNMs can be compared to their numerical counterparts in order to validate the frequency domain numerical technique.

INTRODUCTION

The scientific literature on the subject of cantilever beams is very dense across a variety of different studies. Modern studies on highly flexible beam structures often use the geometrically exact beam model, wherein any geometric nonlinearities related to the rotation of the structure are kept exact. Based on the work of Reissner [START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF] and Simo [START_REF] Simo | A finite strain beam formulation. The three-dimensional dynamic problem[END_REF], existing methods for the simulation of flexible beams often apply a finite element discretization and are typically resolved using time domain numerical schemes [START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF][START_REF] Jelenić | Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics[END_REF][START_REF] Zupan | The quaternion-based three-dimensional beam theory[END_REF].

In this paper, a novel method is introduced for the numerical simulation of highly flexible beams structures. This method proposes a finite element discretization of the geometrically exact beam model to be solved using a frequency domain numerical scheme as opposed to time domain formulations. The method of solving, rooted entirely in the frequency domain, illustrates the novelty of this approach. The discretized equations of motion are solving through a unique combination of the harmonic balance method (HBM) and asymptotic numerical method (ANM), the latter of which represents a continuation method based on pseudo-arclength parameterization and first mentioned in the work of . This unique scheme for the continuation of periodic solutions has several consequential advantages. Most importantly in the present context, this method allows direct and efficient computation of the nonlinear normal modes (NNMs) of the system. The NNMs in this context are defined as the periodic solutions of the free and undamped dynamical system [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamicist[END_REF], and represent a visual characterization of the nonlinear mode shape dependence on the amplitude of vibration, also called the backbone curve. They are equivalent to invariant manifolds of the phase space [START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF][START_REF] Touzé | Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[END_REF]. Several methods exist for their analytical calculation (see, for example, [START_REF] Touzé | Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes[END_REF]); their numerical and experimental calculations are described here.

ANALYTICAL BACKGROUND

The analytical background, including the derivation of the geometrically exact model and the subsequent finite element discretization, is outlined in detail in previous work [START_REF] Thomas | Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams[END_REF] and is therefore largely omitted for brevity. The 2D finite element model, based on a total Lagrangian nonlinear formulation and using Timoshenko beam elements, is written, for all time 𝑡:

𝑴𝒒̈+ 𝑪𝒒̇+ 𝒇 𝑖𝑛𝑡 (𝒒) = 𝒇 𝑒𝑥𝑡 (1) 
where 𝑴 and 𝑪 represent the mass and damping matrices, respectively, of size 3𝑛 × 3𝑛 for 𝑛 × 𝑛 degrees of freedom; 𝒒 the vector of the discretized degrees of freedom, of size 3𝑛; 𝒇 𝑖𝑛𝑡 (𝒒) the nonlinear internal force vector, which implicitly contains the stiffness matrix 𝑲 = 𝜕𝒇 𝑖𝑛𝑡 /𝜕𝒒| 𝒒=0 , of size 3𝑛; and 𝒇 𝑒𝑥𝑡 the external force vector, also of size 3𝑛. The nonlinear modes, however, are defined as the free solutions of the underlying conservative system. In this case, equation (1) contains no damping 𝑪𝒒̇ or forcing 𝒇 𝑒𝑥𝑡 terms. It is this autonomous system that is solved using the numerical scheme outlined in the next section in order to compute the nonlinear modes of the system.

NUMERICAL ANALYSIS

The numerical procedure for solving the finite element model described above is rooted in continuation of periodic solutions. A two-step, frequency-domain formulation for continuation of periodic solutions has been implemented into a custom solver coded in MATLAB. The custom solver, called MANLAB, is capable of tracing the solution(s) of periodic systems by combining the aforementioned two-step procedure: a harmonic balance method (HBM) modal expansion followed by asymptotic numerical method (ANM) continuation.

In the first step, the system unknowns 𝒖(𝑡) (the displacement of the cantilever beam, in the present case) are expanded as a Fourier series truncated to a number of harmonics 𝐻:

𝒖(𝑡) = 𝒖 0 + ∑ [𝒖 𝑘 𝑐 cos(𝑘𝛺𝑡) + 𝒖 𝑘 𝑠 sin(𝑘𝛺𝑡)] 𝐻 𝑘=1 (2) 
where 𝒖 0 , 𝒖 𝑘 𝑐 and 𝒖 𝑘 𝑠 represent the Fourier coefficients of the unknowns 𝒖(𝑡). It is known that solving via HBM proves difficult when 𝐻 is large or if the system contains complex (i.e. non-polynomial) nonlinearities, as is the case with geometric nonlinearities. This difficulty is easily resolved, however, given that the ANM procedure necessitates a unique procedure called the quadratic recast, whereby non-polynomial nonlinearities are "recast" as polynomial nonlinearities of quadratic order or less through the introduction of so-called auxiliary variables. For example, cos(𝜃) and sin(𝜃) may be redefined as 𝑐 = cos(𝜃) and 𝑠 = sin(𝜃) where 𝑐 and 𝑠 represent solutions of linear differential equations [START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF], yielding the term 𝑢 1 cos (𝜃) as 𝑢 1 𝑐 instead. The HBM is then easily applied to the larger system of simplified equations [START_REF] Guillot | A generic and efficient Taylor series-based continuation method using quadratic recast of smooth nonlinear systems[END_REF].

Finally, ANM continuation solves the system for 𝒖(𝑡) as a function of a varying parameter, called 𝜆. The ANM implements a pseudo-arclength parametrization to compute the branches of solution 𝒖(𝑡), a method which is derived in detail in [START_REF] Cochelin | Asymptotic-numerical method for Padé approximations for non-linear elastic structures[END_REF][START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF]. An appropriate phase condition is applied to the system in order to initialize the solution on the backbone, leading to calculation of the NNMs as 𝜆 increases.

EXPERIMENTS

An experimental setup capable of reproducing the behavior of the flexible cantilever in extreme amplitude vibration is designed using a vibration table. A slender, highly flexible cantilever beam specimen (29.1 cm × 1.3 cm × 0.4 mm, stainless steel) is mounted to a shaker table forced with a periodic signal 𝑭(𝑡) = 𝑭 0 cos (𝛺𝑡):

𝑴𝒖̈(𝑡) + 𝑪𝒖̇(𝑡) + 𝑲𝒖(𝑡) + 𝒇 𝑛𝑙 [𝒖(𝑡)] = 𝑭 0 cos (𝛺𝑡) (3) 
corresponding to the same parameters as defined above. Velocity measurements (captured via laser vibrometers) and the forcing of the table are routed through a dSpace MicroLabBox, which integrates a Phase-Lock Loop (PLL) control schematic [START_REF] Denis | Identification of nonlinear modes using phase-locked-loop experimental continuation and normal forms[END_REF]. The PLL controller governs the behavior of the system, permitting experimental calculation of the nonlinear normal modes (NNMS) based on the work of Peeters, Kerschen et al. [START_REF] Peeters | Dynamic testing of nonlinear vibrating structures using nonlinear normal modes[END_REF]. It is hypothesized that the NNMS, being defined as free solutions of the underlying conservative system 𝒖 𝒏 (𝑡):

𝑴𝒖̈𝑛(𝑡) + 𝑲𝒖 𝑛 (𝑡) + 𝒇 𝑛𝑙 [𝒖 𝑛 (𝑡)] = 0 (4) 
can be estimated experimentally by controlling the system such that a phase resonance is attained [START_REF] Denis | Identification of nonlinear modes using phase-locked-loop experimental continuation and normal forms[END_REF][START_REF] Peeters | Dynamic testing of nonlinear vibrating structures using nonlinear normal modes[END_REF]. The phase resonance occurs at a phase difference of 𝜋/2 between the relative position 𝒖 𝑛 (𝑡) and the forcing 𝑭(𝑡)) [START_REF] Denis | Identification of nonlinear modes using phase-locked-loop experimental continuation and normal forms[END_REF], or 𝜋 if measuring the relative velocity 𝒖̇𝑛(𝑡), a value that the PLL controller "locks" onto before increasing the forcing amplitude in order to trace the backbone curve of the system, equivalent to the NNMs. 

CONCLUSION

The modeling of highly flexible structures is a current and competitive subject of research, with new methods extending the capabilities of numerical modeling with each passing year. A novel method for the simulation of highly flexible cantilevers in the frequency domain along with an experimental comparison with physical reality were described. The proposed numerical scheme, rooted fully in the frequency domain, offers several advantages when compared with time domain formulations: most importantly, the capability to calculate directly the nonlinear normal modes (NNMs) of the system. Based on a finite element discretization of the geometrically exact beam model, this method is able to simulate the deformation of a flexible cantilever even at extreme amplitudes of vibration. Finally, the numerical results are compared to experiments based on flexible cantilever specimens in order to validate the accuracy of the proposed frequency domain numerical scheme.
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 1 Figure 1: (Left) views of the vibration table used in experiments involving transverse vibration of slender, flexible cantilevers and (right) a numerical simulation of extreme amplitude vibration of a flexible cantilever.
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 3 Figures 2 and 3: Amplitude of the first harmonic of the transverse displacement and NNMs at the tip of a cantilever beam, numerical simulations and experiments. (Left) numerical forced response and NNMs of a dimensionless cantilever beam. (Right) experimental forced response and NNMs of the cantilever beam system.
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