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ABSTRACT 

A novel method for the numerical computation of the nonlinear normal modes (NNMs) of a highly flexible cantilever beam 

is presented. The flexible cantilever is modeled using a 2D finite element discretization of the geometrically exact beam 

model, wherein geometric nonlinearities relating to the rotation are kept entirely intact. The model is then solved using the 

proposed solution method, which is fully frequency domain-based and involves a novel combination of a harmonic balance 

(HBM) Fourier expansion with asymptotic numerical (ANM) continuation for periodic solutions. The NNMs are also 

calculated experimentally using a flexible cantilever specimen mounted to a shaker table. The experimental NNMs can be 

compared to their numerical counterparts in order to validate the frequency domain numerical technique. 

Keywords:  Nonlinear modes, geometric nonlinearity, geometrically exact beam, finite element analysis, continuation 

methods 

INTRODUCTION 

The scientific literature on the subject of cantilever beams is very dense across a variety of different studies. Modern studies 

on highly flexible beam structures often use the geometrically exact beam model, wherein any geometric nonlinearities 

related to the rotation of the structure are kept exact. Based on the work of Reissner [1] and Simo [2], existing methods for 

the simulation of flexible beams often apply a finite element discretization and are typically resolved using time domain 

numerical schemes [3-5]. 

In this paper, a novel method is introduced for the numerical simulation of highly flexible beams structures. This method 

proposes a finite element discretization of the geometrically exact beam model to be solved using a frequency domain 

numerical scheme as opposed to time domain formulations. The method of solving, rooted entirely in the frequency domain, 

illustrates the novelty of this approach. The discretized equations of motion are solving through a unique combination of the 

harmonic balance method (HBM) and asymptotic numerical method (ANM), the latter of which represents a continuation 

method based on pseudo-arclength parameterization and first mentioned in the work of Damil and Potier-Ferry [6]. This 

unique scheme for the continuation of periodic solutions has several consequential advantages. Most importantly in the 

present context, this method allows direct and efficient computation of the nonlinear normal modes (NNMs) of the system. 

The NNMs in this context are defined as the periodic solutions of the free and undamped dynamical system [7], and represent 

a visual characterization of the nonlinear mode shape dependence on the amplitude of vibration, also called the backbone 

curve. They are equivalent to invariant manifolds of the phase space [8, 9]. Several methods exist for their analytical 

calculation (see, for example, [10]); their numerical and experimental calculations are described here.  



ANALYTICAL BACKGROUND 

The analytical background, including the derivation of the geometrically exact model and the subsequent finite element 

discretization, is outlined in detail in previous work [11] and is therefore largely omitted for brevity. The 2D finite element 

model, based on a total Lagrangian nonlinear formulation and using Timoshenko beam elements, is written, for all time 𝑡: 

𝑴𝒒̈ + 𝑪𝒒̇ + 𝒇𝑖𝑛𝑡(𝒒) = 𝒇𝑒𝑥𝑡            (1) 

where 𝑴 and 𝑪 represent the mass and damping matrices, respectively, of size 3𝑛 × 3𝑛 for 𝑛 × 𝑛 degrees of freedom; 𝒒 the 

vector of the discretized degrees of freedom, of size 3𝑛; 𝒇𝑖𝑛𝑡(𝒒) the nonlinear internal force vector, which implicitly contains 

the stiffness matrix 𝑲 = 𝜕𝒇𝑖𝑛𝑡/𝜕𝒒|𝒒=0, of size 3𝑛; and 𝒇𝑒𝑥𝑡  the external force vector, also of size 3𝑛. The nonlinear modes, 

however, are defined as the free solutions of the underlying conservative system. In this case, equation (1) contains no 

damping 𝑪𝒒̇ or forcing 𝒇𝑒𝑥𝑡  terms. It is this autonomous system that is solved using the numerical scheme outlined in the 

next section in order to compute the nonlinear modes of the system. 

NUMERICAL ANALYSIS 

The numerical procedure for solving the finite element model described above is rooted in continuation of periodic solutions. 

A two-step, frequency-domain formulation for continuation of periodic solutions has been implemented into a custom solver 

coded in MATLAB. The custom solver, called MANLAB, is capable of tracing the solution(s) of periodic systems by 

combining the aforementioned two-step procedure: a harmonic balance method (HBM) modal expansion followed by 

asymptotic numerical method (ANM) continuation. 

In the first step, the system unknowns 𝒖(𝑡) (the displacement of the cantilever beam, in the present case) are expanded as a 

Fourier series truncated to a number of harmonics 𝐻: 

𝒖(𝑡) = 𝒖0 + ∑ [𝒖𝑘
𝑐 cos(𝑘𝛺𝑡) + 𝒖𝑘

𝑠 sin(𝑘𝛺𝑡)]𝐻
𝑘=1         (2) 

where 𝒖0, 𝒖𝑘
𝑐  and 𝒖𝑘

𝑠  represent the Fourier coefficients of the unknowns 𝒖(𝑡). It is known that solving via HBM proves 

difficult when 𝐻 is large or if the system contains complex (i.e. non-polynomial) nonlinearities, as is the case with geometric 

nonlinearities. This difficulty is easily resolved, however, given that the ANM procedure necessitates a unique procedure 

called the quadratic recast, whereby non-polynomial nonlinearities are “recast” as polynomial nonlinearities of quadratic 

order or less through the introduction of so-called auxiliary variables. For example, cos(𝜃) and sin(𝜃) may be redefined as 

𝑐 = cos(𝜃) and 𝑠 = sin(𝜃) where 𝑐 and 𝑠 represent solutions of linear differential equations [14], yielding the term 𝑢1cos (𝜃) 

as 𝑢1𝑐 instead. The HBM is then easily applied to the larger system of simplified equations [12]. 

Finally, ANM continuation solves the system for 𝒖(𝑡) as a function of a varying parameter, called 𝜆. The ANM implements a 

pseudo-arclength parametrization to compute the branches of solution 𝒖(𝑡), a method which is derived in detail in [13, 14]. 

An appropriate phase condition is applied to the system in order to initialize the solution on the backbone, leading to 

calculation of the NNMs as 𝜆 increases. 

EXPERIMENTS 

An experimental setup capable of reproducing the behavior of the flexible cantilever in extreme amplitude vibration is 

designed using a vibration table. A slender, highly flexible cantilever beam specimen (29.1 cm × 1.3 cm × 0.4 mm, stainless 

steel) is mounted to a shaker table forced with a periodic signal 𝑭(𝑡) = 𝑭0cos (𝛺𝑡): 

𝑴𝒖̈(𝑡) + 𝑪𝒖̇(𝑡) + 𝑲𝒖(𝑡) + 𝒇𝑛𝑙[𝒖(𝑡)] = 𝑭0cos (𝛺𝑡)        (3)  

corresponding to the same parameters as defined above. 



 
Figure 1: (Left) views of the vibration table used in experiments involving transverse vibration of slender, flexible cantilevers and (right) a 

numerical simulation of extreme amplitude vibration of a flexible cantilever. 

Velocity measurements (captured via laser vibrometers) and the forcing of the table are routed through a dSpace 

MicroLabBox, which integrates a Phase-Lock Loop (PLL) control schematic [15]. The PLL controller governs the behavior 

of the system, permitting experimental calculation of the nonlinear normal modes (NNMS) based on the work of Peeters, 

Kerschen et al. [16]. It is hypothesized that the NNMS, being defined as free solutions of the underlying conservative system 

𝒖𝒏(𝑡): 

𝑴𝒖̈𝑛(𝑡) + 𝑲𝒖𝑛(𝑡) + 𝒇𝑛𝑙[𝒖𝑛(𝑡)] = 0         (4)  

can be estimated experimentally by controlling the system such that a phase resonance is attained [15, 16]. The phase 

resonance occurs at a phase difference of 𝜋/2 between the relative position 𝒖𝑛(𝑡) and the forcing 𝑭(𝑡)) [15], or 𝜋 if 

measuring the relative velocity 𝒖̇𝑛(𝑡), a value that the PLL controller “locks” onto before increasing the forcing amplitude in 

order to trace the backbone curve of the system, equivalent to the NNMs. 

  
Figures 2 and 3: Amplitude of the first harmonic of the transverse displacement and NNMs at the tip of a cantilever beam, numerical 

simulations and experiments. (Left) numerical forced response and NNMs of a dimensionless cantilever beam. (Right) experimental forced 

response and NNMs of the cantilever beam system. 



CONCLUSION 

The modeling of highly flexible structures is a current and competitive subject of research, with new methods extending the 

capabilities of numerical modeling with each passing year. A novel method for the simulation of highly flexible cantilevers in 

the frequency domain along with an experimental comparison with physical reality were described. The proposed numerical 

scheme, rooted fully in the frequency domain, offers several advantages when compared with time domain formulations: 

most importantly, the capability to calculate directly the nonlinear normal modes (NNMs) of the system. Based on a finite 

element discretization of the geometrically exact beam model, this method is able to simulate the deformation of a flexible 

cantilever even at extreme amplitudes of vibration. Finally, the numerical results are compared to experiments based on 

flexible cantilever specimens in order to validate the accuracy of the proposed frequency domain numerical scheme. 
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