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In this paper, we find analytic expressions of the lower partial moment and kappa index of linear portfolios when the returns are elliptically distributed. We also introduced the notion of Target Semi-Kurtosis of portfolio return and discuss the robust optimization Mean-LPM problem with nongaussian risk factors. Special attention is given to the particular case of a mixture of multivariate t-distributions with application for portfolio allocation of some ESG indices and the CAC 40 index.

Introduction

The concept of risk and its measurement is very important in economics, business and industry problems. Thus the literature about financial or insurance risk and performance measurement has increased continuously in the last three decades. Basel I, II, III and solvency II banking and insurance regulations for the determination of capital allocation have increased the importance or the risk measurement. Variance which is the square of the standard deviation has several mathematical properties that are very useful such as the decomposition rules. Thus it has been the common risk measure used in portfolio optimization since the introduction of mean-variance model in the seminal work of [START_REF] Markowitz | Portfolio Selection[END_REF]. For a long time, the standard deviation as a risk measure has been used in risk modeling, asset pricing theory and portfolio risk. However, the use of variance as a risk measure has been criticized by several authors. Variance measures upside as well as downside risk. Investors should however be more interested in maximizing upside risk than minimizing it. [START_REF] Markowitz | Portfolio Selection: Efficient Diversification of Investments[END_REF] noted that variance is invariant under reflection; it does not recognize asymmetry with asset return distributions, and it considers favorable and adverse outcomes in the same way. The nobel prize Markowitz suggested that semi-variance which is, a particular case of the lower partial moment (LPM), may serve as an objective function for portfolio construction. Among all criticisms against variance as a risk measure, the risk literature has recognized the importance of distinguishing between adverse and favorable results, and this has been a serious area of research. Regarding the choice of the returns probability density function (pdf), the literature has developed hugely during the last decades, and there is a strong evidence on that excess kurtosis and also skewness are important take into account some statistical stylized fact observed,via the returns time series analysis. For example, how useful is the mixture of multivariate elliptical distribution as regards other distributions proposed in the literature for modeling an adjusted-risk portfolio performance. Bucley That's why, among several alternatives to supplied variance as a risk measure, the LPM plays an important role in the analysis of risks and in other areas such as in income/poverty studies because it only penalizes the downside deviation. Also, many of the theoretical and experimental research in risk identification and measurement shows that corporate heads are mostly concerned with one sided risk, the so-called "downside risk", that measures the distance between the risky situation and a real fixed threshold. Unlike variance, LPM avoids the minimization of upside risk and its gives investors the option to select the order of his utility function. Note that, psychologists studies of Mao (1970), [START_REF] Unser | Lower partial moments as measure of perceived risk: an experimental study[END_REF] and Veld and Veld-Merkoulova (2008) suggested LPM over variance as a measure of the investor's perception of risk. In the microeconomics area, the relationship between stochastic dominance and the LPM, under certain nested utility function classes, was developed by several authors such as [START_REF] Bawa | Optimal Rules for ordering uncertain prospects[END_REF][START_REF] Bawa | Safety-first, stochastic dominance, and portfolio choice[END_REF]. The latter author shows that the ordering of portfolios for an investor with a certain class of utility function is equivalent to the ordering provided by the LPM under certain conditions. Because the ordering involves evaluating the LPM for each threshold accross the entire return domain, its follows that LPM is very attractive in utility theory. In fact, it allows the evaluation of the LPM degree for individual investors with varying preferences. The concept of LPM is closely related concepts of shortfall minimization, which likewise attemps to minimize downside risk relative to a predetermined benchmark of some type.These approaches also have expected utility representations. For more details on this research areas, see [START_REF] Stutzer | A portfolio performance index[END_REF][START_REF] Stutzer | Portfolio choice with endogenous utility: A large deviations approach[END_REF], Haley et al.(2013), [START_REF] Haley | Shortfall minimization and the naive (1/N) portfolio: an out-of-sample comparison[END_REF] but also [START_REF] Haley | Shortfall portfolio selection: a bootstrap and k-fold analysis[END_REF] which explores the empirical performance of the 4th-order shortfall portfolio selection rule (among others) in a vein similar to our proposed TSK method.

One of the most popular downside risk measures is the lower partial moment (LPM). The entry of LPM in portfolio theory has mainly been driven by [START_REF] Bawa | Optimal Rules for ordering uncertain prospects[END_REF], [START_REF] Fishburn | Mean-risk analysis with risk associated with below target returns[END_REF] and Nawrocki (1991Nawrocki ( , 1992[START_REF] Nawrocki | A brief history of downside risk measures[END_REF]. The LPM recognizes asymmetry within return distributions and does not involve the size of favorable outcomes. The LPM takes into account the size of adverse returns, that are below a define and fix threshold. Because LPM can be viewed as the expected value of a powered put option on the returns of a portfolio, it agrees with the intuitive notion of risk. Consider a portfolio with a random return X and assume that an individual has a target return τ . An outcome larger than τ is non-risky and desirable, then individual faces only a one-sided risk called downside risk that occurs when X falls below τ . Therefore LPM provides a measure that a specified minimum return (target return) may not be earned by a financial investment. It is clear that LPM provides a summary statistic for the downside risk. For a given integer n, the n th order LPM of a random variable X yields a measure known as a Target Semi-Variance (TSV) for n = 2, the so-called Target Semi-Kurtosis (TSK) for n = 4...etc. One reason for the interest in LPM measures of risk such as TSV is that they reflect investor's preferences better than the traditional measure such as variance. Because TSV and TSK penalize any extremely low returns in the same way that variance and kurtosis penalize extreme values in either direction, TSV and TSK respectively fit investors risk preferences better than respectively variance and TSK. In regard to performance measurement, we focus on the Kappa index but, in order to find more motivations on the relevance of our performance measure, (see Chen et al. (2014), Zakamouline and Koekebakker (2009), [START_REF] Eling | Does the choice of performance measure influence the evaluation of hedge funds ?[END_REF] and references therein.

In this paper, we find analytic expressions of the lower partial moments and kappa index of linear portfolios when the returns are elliptically distributed. Special attention is given to the particular case of a mixture of multivariate t-distributions. We also introduced the so-called Target Semi-Kurtosis that take into account the leptokurticity for the return portfolio that is below the target τ .

The paper is organized as follows: section 2 recalls the definitions of the LPM and the Kappa index risk-adjusted performance measure. Section 3 describes LPM and kappa index for portfolios with mixture of elliptical distributions risk factors. In section 4, we introduce the Mean-LPM portfolio optimization with elliptical distributed risk factors; special attention given to the mixture of t-Student distributions. Section 5 discusses parameters estimation and section 6 concludes.

Lower Partial Moments and Kappa Index

As it has been mentioned in Unser (2002), investors are often only interested in an evaluation of outcomes values that are below a given real target τ . This feature yields the importance of downside risk measures (see, e.g. Ebert 2005) such as LPM. The lower partial moment (LPM) of order n > 0 of the portfolio return R p , given a threshold return τ is defined as:

(1) LPM n (τ ) = E[max(τ -R p , 0) n ].
Instead of Sharpe Ratio index, the so-called Kappa index can be defined by using the lower partial moment (LPM) as a standard deviation in the denominator of the Sharpe ratio. This yields the Kappa index introduced by Kaplan and Knowles (2004) as follows:

(2)

K n (τ ) = E(R p ) -τ (LPM n (τ )) 1 n 
.

When τ = E(R p ) = µ • w, LPM 2 (τ ) corresponds to the semi-variance. In general, for n > 0 an odd number, LPM n (E(R p )) is the semi-moment of par order n (i.e. semi-variance (n=1), semi-kurtosis (n=4)). In the Bawa and Linderberg (1977) framework to characterize equilibrium, risk is defined as deviation below the riskfree interest rate (i.e. τ = r f ). In this case the Kappa index will produce preference rankings congruent with the use of a piecewise power-linear utility function of the form:

(3)

u(x) = x, x ≥ τ ; x -c(x -τ ) n , x ≤ τ .
Replacing n = 1 in (2), we get the Omega ratio performance measure (see Keating and Shadwick (2002)). For n = 2, we get the Sortino ratio (see Kazemi et al.,2004).

Remark 2.1. The order n of the LP M n measure determines the type of the utility functions consistent with that risk measure. LP M 1 is consistent with all utility functions such that (-1) m u (m) < 0 for m = 1, 2. LP M 2 is valid for all risk averse functions displaying skewness preference ((-1) m u (m) < 0 for m = 1, 2, 3). In general, LP M p+1 is valid for all risk averse functions displaying p th -moment preference ((-1) m u (m) < 0 for m = 1, 2, . . . , p). Thus the familiar HARA class is entirely consistent with LP M 1 , while all utility function u displaying DARA are consistent with LP M 2 since DARA implies u (3) > 0. Haley et al.(2013) connects shortfall rules to HARA representations.

LPM and Kappa Index of portfolios with log-elliptically distributed returns

We will use the following notational conventions for the action of matrices on vectors: single letters x, y, • • • will denote row vectors

(x 1 , • • • , x n ), (y 1 , • • • y k ).
The corresponding column vectors will be denoted by x t , y t ,the t standing more generally for taking the transpose of any matrix. Matrices A = (A ij ) i,j , B , etc. will be multiplied in the usual way. In particular, A will act on vectors by leftmultiplication on column vectors, Ay t , and by right multiplication on row vectors, xA; x

• x = xx t = x 2 1 + • • • + x 2
k will stand for the Euclidean inner product. A portfolio with time-t value Π(t) is called linear if its profit and loss ∆Π(t) = (Π(t) -Π(0))/Π(0) over a time window [0, t], is a linear function of the returns X 1 (t), . . . , X n (t) of its constituents over the same time period:

(4) R P = log Π(t) Π(0) ≃ k i=1 w i X i
where X i = log(S i (t)/S i (0)) is the risk factor of asset i in the time interval [0, t]. This will for instance be the case for ordinary portfolios of common stock, if we use percentage returns, and will also hold to good approximation with log-returns, provided the time window [0,t] is small. We will drop the time t from our notations, since it will be kept fixed, and simply write X j ,∆Π, etc. We also put

X = (X 1 , • • • , X k ), so that ∆Π = δ • X = δX t .
We now assume that the X j are elliptically distributed with mean µ and correlation matrix Σ = AA t : (X 1 , . . . , X k ) ∼ N (µ, Σ, ϕ).

This means that the pdf of X is of the form

f X (x) = |Σ| -1 g((x -µ)Σ -1 (x -µ) t ),
where |Σ| stands for the determinant of Σ, and where g : R ≥0 → 0 is such that the Fourier transform of g(|x| 2 ), as a generalized function on R n , is equal to ϕ(|ξ| 2 ) 1 . Assuming that g is continuous, and non-zero everywhere, the LPM is given as follows:

LPM n (τ, x) = E[max(τ -R p , 0) n ] = |Σ| -1/2 R k max(τ -R p , 0) n g((x -µ)Σ -1 (x -µ) t ) dx = |Σ| -1/2 {Rp≤τ } (τ -R p ) n g((x -µ)Σ -1 (x -µ) t )dx = |Σ| -1/2 { k i=1 wixi≤τ } τ - k i=1 w i x i n g((x -µ)Σ -1 (x -µ) t ) dx (5)
where in the precede integral x -µ = (x 1 -µ 1 , . . . , x k -µ k ) is a row vector and E denotes the mean probability operator. Changing variables to y = (x -µ)A -1 , 1 One uses ϕ as a parameter for the class of elliptic distributions, since it is always well-defined as a continuous function: ϕ(|ξ| 2 ) is simply the characteristic function of an X ∼ N (0, Id, ϕ). Note, however, that in applications we'd rather know g

dy =| A | dx , where Σ = A t A is a Cholesky decomposition of A, this becomes LPM n (τ, x) = |Σ| -1/2 { k i=1 wixi≤τ } τ - k i=1 w i x i n g((x -µ)Σ -1 (x -µ) t )dx = {wA•y≤τ -w•µ} (τ -w • µ -wA • y) n g(|y| 2 )dx (6)
Let R be a rotation which sends δA to (|δA|, 0, . . . , 0). Changing variables once more to y = zR, we obtain the equation

LPM n (τ, x) = {wA•y≤τ -w•µ} (τ -w • µ -wA • y) n g(|y| 2 )dx = {|δA|z1≤-w•µ+τ } (τ -w • µ -|wA|z 1 ) n g(|z| 2 )dz (7) If we write that |z| 2 = z 2 1 + |z ′ | 2 with z ′ ∈ R n-1
then we obtain the following expression:

(8) LPM n (τ, x) = R k-1 [ τ -w•µ |wA| +∞ (τ -w • µ -|wA|z 1 ) n g(z 2 1 + |z ′ | 2 )dz 1 ]dz ′ Next, by using spherical variables z ′ = rξ with ξ ∈ S k-2 , dz ′ = r k-2 dσ(ξ)dr, we have the following expression (9) LPM n (τ, x) = |S k-2 | +∞ 0 r k-2 -wµ t +τ |wA| -∞ τ -wµ t -|wA|z 1 n g(z 2 1 + r 2 )dz 1 dr, |S k-2 |
being the surface measure of the unit-sphere in R k-1 :

|S k-2 | = 2π k-1 2 Γ( k-1 2 )
.

We now introduce the parameter s = wµ t -τ |wA| and get the function LP M (τ ):

LPM n (τ, x) = 2π k-1 2 |wA| n Γ( k-1 2 ) -s -∞ +∞ 0 r k-2 (-s -z 1 ) n g(z 2 1 + r 2 )dr dz 1 = π k-1 2 Γ( k-1 2 ) |wA| n ∞ s (z 1 -s) n +∞ z 2 1 (u -z 2 1 ) k-3 2 g(u)du dz 1 , (10) 
where for the second line we changed variables u = r 2 + z 2 1 . and replaced z 1 by -z 1 . We then have proved the following result: Theorem 3.1. Let's assume that the portfolio's Profit & Loss function over the time window of interest is, to good approximation, given by ∆Π = w

1 X 1 + w 2 X 2 + . . .+w k X k , with constant portfolio weights w j . If the random vector X = (X 1 , • • • , X k )
of risk factors follows a continuous elliptic distribution, with probability density given by f

X (x) = |Σ| -1 g((x -µ)Σ -1 (x -µ) t
) where µ is the vector mean and Σ is the variance-covariance matrix, and where we suppose that g(s 2 ) is integrable over R, continuous and nowhere 0, then for a given n, τ ∈ R * + , the portfolio's Lower Partial Moment LP M is define as

(11) LPM n (τ, w) = π k-1 2 Γ( k-1 2 ) |wA| n ∞ s (z 1 -s) n +∞ z 2 1 (u -z 2 1 ) n-3 2 g(u)du dz 1 ,
where the parameter s = wµ t -τ |wA| with w = (w 1 , w 2 , . . . , w k ).

Remark 3.2. Note that |wA| has a clear financial interpretation, since

(12) |wA| = √ wΣw t ,
which is simply the portfolio's volatility, or the square of its variance. Moreover, if τ = r f is the risk free rate, then

(13) s = wµ t -τ |wA| = wµ t -τ √
wΣw t is the classical Sharpe ratio adjusted-risk measure of portfolio performance. It is clear that LPM n (τ, w) is a function of the Sharpe ratio. There is a kind of generalized Sharpe ratio approach in Zakamouline (2000).

Remark 3.3. One can do the integral over z 1 in ( 22): by Fubini,

LPM n (τ ) = π k-1 2 Γ( k-1 2 ) |wA| n +∞ s √ u √ s (z 1 -s) n (u -z 2 1 ) k-3 2 dz 1 g(u) du = π k-1 2 Γ( k-1 2 ) |wA| n n j=0 j!(n -j)! n! s j +∞ s √ u √ s (u -z 2 1 ) k-3 2 z n-j 1 dz 1 g(u)du (14) = π k-1 2 2Γ( k-1 2 ) |wA| n n j=0 j!(n -j)! n! s j +∞ s u-s 0 w k-3 2 (u -w) n-j-1 2 dw g(u)du = π k-1 2 2 |wA| n n j=0 j!(n -j)! n! Γ( n-j-1 2 ) Γ( n+k-j 2 ) s j +∞ s (u -s) n+k-j 2 -1 g(u)du (15) 
In the precede remark, we have used the following lemma: Lemma 3.4. (Cf. [START_REF] Gradshteyn | Ryzhik Table of integrals, series, and products[END_REF], page 312.) If Re(ν 1 ) > 0 and Re(µ) > 0, then

(16) z 0 x ν1-1 (x -w) µ-1 dx = z µ+ν1-1 B(ν 1 , µ),
with B(α, β) the Euler Beta function:

B(α, β) = Γ(α)Γ(β) Γ(α + β) .
Using the precede lemma with

ν 1 = k-1 2 , µ = n-j+1
2 and z = u -s in [START_REF] Haley | Shortfall minimization and the naive (1/N) portfolio: an out-of-sample comparison[END_REF], we have prove the following theorem: Theorem 3.5. Assume that the risk factors random vector X = (X 1 , • • • , X k ) of the portfolio follows a continuous elliptic distribution, with probability density given by f

X (x) = |Σ| -1 g((x -µ)Σ -1 (x -µ) t
) where µ is the vector mean and Σ is the variance-covariance matrix, and where we suppose that g(s 2 ) is integrable over R, continuous and nowhere 0. By applying Fubini to [START_REF] Haley | Shortfall minimization and the naive (1/N) portfolio: an out-of-sample comparison[END_REF], the lower partial moment LP M n (τ ) of the portfolio returns R p becomes [START_REF] El | Worst-case Value-at-risk and robust portfolio optimization: A conic programming approach[END_REF] LPM n,g (τ, w)

= ∞ s K n,k (s, u)g(u) du,
where s = wµ t -τ |wA| , w = (w 1 , w 2 , . . . , w k ) and the kernel function K n,k is given by:

(18) K n,k (s, u) = π k-1 2 2 |wA| n n j=0 j!(n -j)! n! Γ( n-j-1 2 ) Γ( n+k-j 2 ) s j (u -s) n+k-j 2 -1 .
The Kappa index of order n is given by [START_REF] Greselin | Constraint monotone EM algorithms for mixtures of multivariate t distributions[END_REF] κ n,g (τ, w) := wµ t -τ (LPM n,g (τ, w))

1 n
.

Corollary 3.6. For n = 4, τ = E(R p ) = w • µ then s = 0 and the lower semikurtosis of the portfolio return R p is given by

(20) LPM 4 (w • µ) = ∞ s K 4,k (w • µ, u)g(u) du
Corollary 3.7. In short-term Risk Management one can usually assume that µ ≃ 0. In that case, we have that

(21) LPM n (τ ) = π k-1 2 Γ( k-1 2 ) ∞ -τ |wA| (τ -|wA|z 1 ) n +∞ z 2 1 (u -z 2 1 ) k-3 2 g(u)du dz 1 .
3.1. The case of t-student Distributions. Like the multivariate normal distribution, multivariate t distributions belongs to the family of elliptically symmetric distributions, but with an additional parameter ν, called the degrees of freedom.

As ν tends to infinity, the t-distribution approaches the normal distribution. I now consider in detail the case where our elliptic distribution is a multivariate Student-t. We will, unsurprisingly, call the corresponding LP M the ∆-Student LPM.

In the case of multi-variate t-student distributions, the portfolio probability density function is given by:

f X (x) = Γ( ν+k 2 ) Γ(ν/2). |Σ|(νπ) k 1 + (x -µ) t Σ -1 (x -µ) ν ( -ν-k 2 ) , x ∈ R k and ν > 2.
Hence g is given by

g(s) = C(ν, k)(1 + s/ν) - (k+ν) 2 
, s ≥ 0, where we have put

C(ν, k) = Γ( ν+k 2 ) Γ(ν/2) (νπ) n .
Using this g in ( 22), we find that

LPM n (τ ) = C 1 (ν, k) n j=0 j!(n -j)! n! Γ( n-j-1 2 ) Γ( n+k-j 2 ) s j +∞ s (u -s) n+k-j 2 -1 (ν + u) - (k+ν) 2 du (22) Lemma 3.8. (cf. [16], formula 3.197(2)). If |arg u β | < π or |u| > |β| and 0 < Re(µ) < Re(-ν), then (23) +∞ u (x-u) µ1-1 (x+β) ν1 dx = u µ1+ν1 B (-µ 1 -ν 1 , µ 1 ) 2 F 1 -ν 1 , -µ 1 -ν 1 ; -ν 1 ; - β u .
where 2 F 1 (α; β, γ; w) is the hypergeometric function.

Applying the precede lemma [START_REF] Markowitz | Portfolio Selection[END_REF] to the integral part of equation ( 22) yields the following theorem:

Theorem 3.9. Assuming that ∆Π ≃ δ 1 X 1 + δ 2 X 2 + . . . + δ k X k with a multivari- ate Student-t random vector (X 1 , X 2 , • • • , X k )
with vector mean µ , and variancecovariance matrix Σ, the LP M n of a linear portfolio is given by: (24)

LP M n,ν (τ ) = C ν,n,s n j=0 Γ n-j-1 2 Γ ν-n+j 2 j!(n -j)! n! 2 F 1 k + ν 2 , ν + j -n 2 , k + ν 2 ; - ν s s j 2 where C ν,n,s = ν ν/2 |wA| n 2 √ πΓ(ν/2) s n-ν 2
and s = wµ t -τ |wA| . The kappa index of order n is given by ( 25)

κ n,ν (τ ) := wµ t -τ C ν,n,s n j=0 Γ( n-j-1 2 )Γ( ν-n+j 2 )j!(n-j)! n! 2 F 1 k+ν 2 , ν+j-n 2 , k+ν 2 ; -ν s s j 2 1 n
.

For the proof of the theorem [START_REF] Ho | Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms[END_REF], we can also use the following lemma:

Lemma 3.10. (cf. [16], formula 3.254(2)). If Re β u > 0, |u| > |β| and 0 < Re(µ) < Re(1 -2ν 1 ), then (26) 
+∞ u ((x-u) µ1-1 (x 2 +β 2 )) ν1 dx = Γ(µ 1 )Γ(λ 1 -µ 1 ) Γ(λ -2ν 1 )u -µ1+λ1 3 F 2 -ν 1 , λ 1 -µ 1 2 , λ 1 + 1 -µ 1 2 , λ 1 2 , 1 + λ 1 2 ; - β 2 u 2 .
where λ 1 = 1 -2ν 1 and 3 F 2 (α; β, γ; w) is the hypergeometric function.

In fact, using this g in ( 22), we find that ( 27)

LPM ST n (τ ) = π k-1 2 C(ν, k) Γ( k-1 2 ) ∞ wµ t -τ |wA| (τ -w • µ + |wA|z 1 ) n +∞ z 2 1 (u -z 2 1 ) k-3 2 1 + u ν - (k+ν) 2 du dz 1 then (28) LPM ST n (τ ) = C 1 (k, ν)|wA| n ∞ s (-s + z 1 ) n T (z 1 )dz 1 where C 1 (k, ν) = π k-1 2 C(ν,k) Γ( k-1 2 )ν -(k+ν) 2 = π k-1 2 Γ( ν+k 2 ) Γ( k-1 2 )Γ(ν/2) √ (νπ) k ν -(k+ν)
and

T (z 1 ) = +∞ z 2 1 (u -z 2 1 ) k-3 2 (ν + u) - (k+ν) 2 du (29)
The function T (z 1 ) can be evaluated with the help of another one of the integrals in [START_REF] Bawa | Safety-first, stochastic dominance, and portfolio choice[END_REF]: Lemma 3.11. (Cf. [START_REF] Gradshteyn | Ryzhik Table of integrals, series, and products[END_REF], page 314.) If |arg( w β )| < π, and Re(ν 1 ) > Re(µ) > 0 , then

(30) +∞ w (x -w) µ-1 (β + x) -ν1 dx = (w + β) µ-ν1 B(ν 1 -µ, µ),
with B(α, β) the Euler Beta function:

B(α, β) = Γ(α)Γ(β) Γ(α + β) .
Using formula [START_REF] Mclachlan | Finite mixture models[END_REF] with

ν 1 = (k+ν) 2 , µ = k-1 2 ,β = ν, and w = z 2 1 , and therefore, µ -ν 1 = -1+ν 2 and -µ + ν 1 = 1+ν 2 , we find that (31) T (z 1 ) = (z 2 1 + ν) -1+ν 2 B 1 + ν 2 , k -1 2 .
We have not finished yet, since we still have to integrate over z 1 in [START_REF] Leon | Screening rules and portfolio performance[END_REF]. We therefore have to evaluate

J(s, ν) = ∞ wµ t -τ |wA| (τ -w • µ -|wA|z 1 ) n )(z 2 1 + ν) -1+ν 2 dz 1 = |wA| n ∞ s (s -z 1 ) n )(z 2 1 + ν) -1+ν
2 dz 1 [START_REF] Morgan/Reuters | RiskMetrics Technical Document[END_REF] with s = wµ t -τ |wA| . For the latter integral, we will use another formula from [START_REF] Bawa | Safety-first, stochastic dominance, and portfolio choice[END_REF], in the case where λ = 1: Lemma 3.12. (cf. [START_REF] Gradshteyn | Ryzhik Table of integrals, series, and products[END_REF], formula 3.254(2)). If Re β u > 0, |u| > |β| and 0 < Re(µ) < Re(1 -2ν 1 ), then (33

) +∞ u ((x-u) µ1-1 (x 2 +β 2 )) ν1 dx = Γ(µ 1 )Γ(λ 1 -µ 1 ) Γ(λ -2ν 1 )u -µ1+λ1 3 F 2 -ν 1 , λ 1 -µ 1 2 , λ 1 + 1 -µ 1 2 , λ 1 2 , 1 + λ 1 2 ; - β 2 u 2 .
where λ 1 = 1 -2ν 1 and 3 F 2 (α; β, γ; w) is the hypergeometric function.

In our case, ν 1 = -1+ν 2 , (µ 1 -1)ν 1 = n. therefore µ 1 = -2n 1+ν + 1 and β 2 = ν. If we replace in [START_REF] Morgan/Reuters | RiskMetrics Technical Document[END_REF], we obtain the following expression:

J(s, ν) = |wA| n ∞ u (u -z 1 ) n (z 2 1 + ν) -1+ν 2 dz 1 = |wA| n ∞ u (u -z 1 ) µ1-1 (z 2 1 + ν) ν1 dz 1 . (34) 
Then

J(s, ν) = |wA| n Γ(µ 1 )Γ(λ 1 -µ 1 ) Γ(λ -2ν 1 )u -µ1+λ1 3 F 2 -ν 1 , λ 1 -µ 1 2 , λ 1 + 1 -µ 1 2 , λ 1 2 , 1 + λ 1 2 ; - ν u 2 = |wA| n+λ1-µ1 Γ(µ 1 )Γ(λ 1 -µ 1 ) Γ(λ -2ν 1 )(wµ t -τ ) -µ1+λ1 3 F 2 -ν 1 , λ 1 -µ 1 2 , λ 1 + 1 -µ 1 2 , λ 1 2 , 1 + λ 1 2 ; - ν|wA| 2 (wµ t -τ ) 2
with u = wµ t -τ |wA| . Hypergeometric 3 F 2 and 2 F 1 's have been extensively studies, and numerical software for their evaluation is available.

3.2. LPM with a mixture of elliptic Distributions. Mixtures of normal distributions have been largely considered in the literature such as [START_REF] Mclachlan | Finite Mixture Models[END_REF], since the early works of Karl Pearson over 100 years ago. However in the last decades, in presence of data with longer-than-normal tails, mixture of elliptical distributions such as the mixture of t-Student distributions have proved to be a more useful as they provide more realistic tails for real world data, see e.g Kotz et Nadarajah (2004) and Sadefo [START_REF] Sadefo Kamdem | Value-at-Risk and Expected Shortfall for Linear Portfolio with Elliptically Distributed Risk Factors[END_REF][START_REF] Kamdem | ∆-VaR and ∆-TVaR for portfolios with mixture of elliptic distributions risk factors[END_REF]. In the context of likelihood approach to mixture modeling, many authors follow the seminal works of Dempster et al. (1977) by using the expectation-maximization (EM) algorithm for estimating the parameters of the model. In particular, for more details about the parameters of a mixture of t-ditributions, see the R software package of Wang and McLachlan [START_REF] Wang | EMMIXskew: EM Algorithm for Mixture of Multivariate Skew Normal/t Distributions[END_REF] and some references therein.

Mixture distributions can be used to model situations where the data can be viewed as arising from two or more distinct classes of populations; see [START_REF] Mclachlan | Finite Mixture Models[END_REF] and some references therein. For example, in the context of Risk Management, if we divide trading days into two sets, quiet days and hectic days, a mixture model will be based on the fact that returns are moderate on quiet days, but can be unusually large or small on hectic days. In my knowledge, applications of mixture models to compute LPM have not been published. Here we sketch how to compute LPM when the portfolios risk factors follow a mixture of multivariate elliptic distributions, that is, a convex linear combination of elliptic distributions. Definition 3.13. We say that (X 1 , . . . , X n ) has a joint distribution that is the mixture of m elliptic distributions N (µ j , Σ j , ϕ j ) 2 , with weights {β j } (j=1,..,m ; β j > 0 ; m j=1 β j = 1), if its cumulative distribution function can be written as F X1,...,Xn (x 1 , . . . , x n ) = m j=1 β j F j (x 1 , . . . , x n ) with F j (x 1 , . . . , x n ) the cdf of N (µ j , Σ j , ϕ j ).

Remark 3.14. In practice, one could usually limit oneself to m = 2, due to estimation and identification problems.

We will suppose that all our elliptic distributions N (µ j , Σ j , ϕ j ) admit a pdf :

(35) f j (x) = |Σ j | -1/2 g j ((x -µ j )Σ j -1 (x -µ j ) t ).
The pdf of the mixture will then simply be

m j=1 β j f j (x). Let Σ j = A t j A j be a Cholesky decomposition of Σ j . Theorem 3.15. Let ∆Π = δ 1 X 1 + . . . + δ n X n with (X 1 , . . . , X n ) is a mixture of elliptic distributions, with density (36) f (x) = m j=1 β j |Σ j | -1/2 g j ((x -µ j )Σ -1 j (x -µ j ) t )
where µ j is the vector mean, and Σ j the variance-covariance matrix of the j-th component of the mixture. We suppose that each g j is integrable function over R, and that the g j never vanish jointly in a point of R m . By a linear combination of elliptical distributions, the lower partial moment LP M n (τ ) of the portfolio returns R p is

(37) LPM n (τ ) = k j=1 β j ∞ sj K n,k (s j , u)g j (u) du,
where s j = wµ t j -τ |wAj | and the kernel function K n,k is given by:

(38) K n,k (s j , u) = π k-1 2 2 |wA| n n h=0 h!(n -h)! n! Γ( n-h-1 2 ) Γ( n+k-h 2 ) s h j (u -s j ) n+k-h 2 -1
However, we shall see in the example of the multi-variate t-distribution which we will treat next, that it can be easier to work directly with the double integral version (3) instead of with (37).

3.2.1.

LPM with mixture of m Student-t distributions. Among the finite mixture, the finite t-Students mixture models (SMM) are tolerant for untypical data outliers. Thus, I now consider in detail the case where our mixture of elliptic distributions is a mixture of multivariate Student-t. We will, unsurprisingly, call the corresponding LP M the Delta SMM-LPM.

In the last decade, in presence of data with longer-than-normal tails, mixture of t-Student distributions have proved to be a more useful as they provide more realistic tails for real world data, see e.g Sadefo [START_REF] Kamdem | ∆-VaR and ∆-TVaR for portfolios with mixture of elliptic distributions risk factors[END_REF]. Moreover, the degrees of freedom of each t distribution can act as an adaptive robustness parameter, tuning the heaviness of the tails, see e.g. Lange et al. (1989). Thus, using mixture of t distributions with different degrees of freedom helps to automatically fit typical data points. A practical parameters estimation of a mixture of t-distribution can be realized using the R software package of Wang and McLachlan [START_REF] Wang | EMMIXskew: EM Algorithm for Mixture of Multivariate Skew Normal/t Distributions[END_REF] and Ho et al. [START_REF] Ho | Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms[END_REF].

In the case of the multi-variate t-Student distributions, the portfolio probability density function is given by: [START_REF] Sadefo Kamdem | Value-at-Risk and Expected Shortfall for Linear Portfolio with Elliptically Distributed Risk Factors[END_REF] h

X (x) = m j=1 β j Γ( νj +n 2 ) Γ(ν j /2). |Σ j |(ν j π) n 1 + (x -µ j ) t Σ -1 j (x -µ j ) ν j ( -ν j -n 2 
) ,

x ∈ R n and ν j > 2. Hence g j is given by

g j (s) = C(ν j , n)(1 + s/ν j ) - (n+ν j ) 2
, s ≥ 0, where we have put

C(ν j , n) = Γ( νj +n 2 ) Γ(ν j /2) (ν j π) n . Theorem 3.16. Assuming that ∆Π ≃ δ 1 X 1 + δ 2 X 2 + . . . + δ k X k with a mixture of m multivariate Student-t random vector (X 1 , X 2 , • • • , X k )
with vector mean µ j , and variance-covariance matrix Σ j , the the SMM-LPM of a linear portfolio is given by: ( 40)

LP M mixt (τ ) = m k=1 β j C ν k ,n,s n j=0 Γ n-j-1 2 Γ ν k -n+j 2 j!(n -j)! n! 2 F 1 k + ν k 2 , ν k + j -n 2 , k + ν k 2 ; - ν k s s j 2
where

C ν k ,n,s = ν ν k /2 k |wA k | n 2 √ πΓ(ν k /2) s n-ν k 2 and s = wµ t k -τ |wA k | . ( 41 
)
LP M mixt (τ ) = m l=1 β l n j=0   ν ν l 2 l Γ n-j-1 2 Γ ν l -n+j 2 2 F 1 k+ν l 2 , ν l +j-n 2 , k+ν l 2 ; -ν l √ wΣ l w t wµ t l -τ 2 √ π Γ ν l 2 (wµ t l -τ ) ν l -n-j 2 (wΣ l w t ) 2ν l -j 4 j!(n -j)! n!  
The kappa index of order n is given by ( 42)

κ mixt (τ ) := wµ t -τ (LP M mixt (τ )) 1 n
.

Remark 3.17. One might, in certain situations, try to model with a mixture of t-Student distributions which all have the same ν j = ν and the same mean µ j ≈ 0, and obtain for example a mixture of different tail behaviors by playing with the Σ j 's.

Utility Theory and Mean-LPM Portfolio Theory

4.1. Mean-LPM Portfolio theory. In this section, I modify classical portfolio theory so that the normal distribution can be relaxed by another elliptically distribution. Investors will instead of caring solely about means and variances, care about the so-called Target Semi-Moments such as the Target Semi-Kurtosis that will sufficiently consider leptokurticity for returns portfolio that are below the fixed real target τ .

4.2.

The portfolio choice problem with LPM. Consider an investor who is averse to LP M n,g (τ ) with target rate return τ . Let w = (w 1 , w 2 , . . . , w k ) and R = (R 1 , . . . , R k ) represent the raw vector of security returns. Assume that R follows an elliptic distribution with mean vector µ, the variance-covariance matrix Σ and the density generator function g. Following [START_REF] Rockafellar | Conditional Value-at-risk for general loss distributions[END_REF], the investor's optimal portfolio choice problem can be represented by ( 43) min w∈W LPM n,g (τ, w)

where

W = {w = (w 1 , . . . , w k ) ∈ [0, 1] k / k i=1 w i = 1, r f w k+1 + µw t =
E} where E is the expected return of the investor, and r f is the risk free interest rate. Equation ( 43) represents the fact that the (downside risk-averse) investor chooses the optimal portfolio weights such that the relevant risk measure (LPM n,g ) is minimized for a specified value of the expected portfolio return E.

In the special case where we consider t-Student distribution, g is given by

g(s) = C(ν, k)(1 + s/ν) - (k+ν) 2 , s ≥ 0, with C(ν, k) = Γ( ν+k 2 ) Γ(ν/2)

√

(νπ) n . Using this g in ( 37) and using [START_REF] Ho | Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms[END_REF], we find w 0 ∈ W such that (44)

w 0 := arg min w∈W n j=0       j!(n -j)!ν ν/2 Γ n-j-1 2 Γ ν-n+j 2 2 F 1 k+ν 2 , ν+j-n 2 , k+ν 2 ; -ν wµ t -τ √ wΣw t 2n! √ πΓ(ν/2) wµ t -τ √ wΣw t ν-n-j 2 (wΣw t ) -n/2       where W = {w = (w 1 , . . . , w k ) ∈ [0, 1] k / k i=1 w i = 1, w k+1 r f + µw t =
E} where E is the expected return of the investor, and r f is the risk free interest rate. 2009), we can assume that the random vector X of portfolio risk factors density generator function is belong to a certain set of density generators functions G that characterize elliptic distributions. We can then develop a robust portfolio policy when the density generator function g X ∈ G. Definition 4.1. The worst-case n-degree lower partial moment (n ≥ 0) of the portfolio return R P with respect to g is defined as

(45) W LP M n (τ, w) := LP M n,g0 (τ, w 0 ) = sup g∈G LP M n,g (τ, w)
where LP M n,g (τ, w) is given in [START_REF] Haley | Shortfall minimization and the naive (1/N) portfolio: an out-of-sample comparison[END_REF] or in [START_REF] Rockafellar | Conditional Value-at-risk for general loss distributions[END_REF].

We can obtain a robust portfolio optimization in the case where only a partial information about the distribution of the portfolio risk factors is known (e.g. elliptic distribution). The robust selection is achieved by minimizing the worstcase downside risk measure W LP M n (τ, w), which results in the following min-max problem: [START_REF] Unser | Lower partial moments as measure of perceived risk: an experimental study[END_REF] LP M n,g0 (τ, w 0 ) := min

w∈W sup g∈G LP M n,g (τ, w)
where

W = {w = (w 1 , . . . , w k ) ∈ [0; 1] k / k i=1 w i = 1, µw t =
E} where E is the expected return of the investor. 

n j=0 j!(n -j)!ν ν/2 Γ n-j-1 2 Γ ν-n+j 2 2 F 1 k+ν 2 , ν+j-n 2 , k+ν 2 ; -ν wµ t -τ √ wΣw t 2n! √ πΓ(ν/2) wµ t -τ √ wΣw t ν-n-j 2 (wΣw t ) -n/2 (48) 
min

w∈W sup ν∈]2,+∞[ n j=0   ν ν 2 Γ n-j-1 2 Γ ν-n+j 2 2 F 1 k+ν 2 , ν+j-n 2 , k+ν 2 ; -ν √ wΣw t wµ t -τ 2 √ π Γ ν 2 (wµ t -τ ) ν-n-j 2 (wΣw t ) 2ν-j 4 j!(n -j)! n!   where s = wµ t -τ |wA| . C ν,n,s = ν ν/2 2 √ πΓ(ν/2)
5. Parameters estimation 5.1. GO-GARCH covariance matrix. The GO-GARCH model was proposed by van der Weide [START_REF] Van Der Weide | GO-GARCH: a multivariate generalized orthogonal GARCH model[END_REF] . The starting point of the model is that an observed vector of risk factors can be expressed as a non-singular linear transformation of independent latent factors that have GARCH type conditional variance specification. Following Van der Weide [START_REF] Van Der Weide | GO-GARCH: a multivariate generalized orthogonal GARCH model[END_REF], I put forward a three step estimation method that is numerically attractive and easy to implement. The first two steps define a method of moments (MM) estimator for the linear transformation with a good convergence regardless of the dimension. The identification of linear transformation is done by using the fact that latent factors are heteroscedastic. All that is assumed is that the factors exhibit persistence in variance and have finite moments. The third and final step involves estimation of the univariate GARCH-type model for each factors.

5.1.1. GO-GARCH model with elliptic distribution. In the definition of elliptic distribution N (µ t , Σ t , g), we can consider a dynamic covariance matrix Σ t . The random vector X t = (X 1t , . . . , X nt ) ⊤ be the n-dimensional column vector process of risk factors (ie: log-returns) with conditional mean vector µ t that is assumed to be known or correctly fitted, decompose as (49)

X t |F t-1 = µ t + η t ∼ N (µ t , Σ t , g),
where η t is the zero mean random vector with covariance matrix Σ t , that is independent dependent on F t-1 the information set available up to time t-1 (filtration) on which X t is adapted and

(50) Σ t = var (X t /F t-1 ) = Z t H t Z t and µ t = E(X t /F t-1 )
are respectively a positive definite F t-1 -measurable dispersion conditional variance matrix depending on time, where H t is the n × n diagonal matrix defined by (51)

Z 2 t = diag(ω i ) + diag(θ i ) • X t-1 X ⊤ t-1 + diag(β i ) • Z 2 t-1
, where the symbol • is the Hadamard product of two matrices, that is element-byelement multiplication and the F t-1 -measurable conditional mean. The matrix H t is defined via Q by

Q t = (11 ′ -A 1 -A 2 )Ω + A 1 • η t-1 η ⊤ t-1 + A 2 • Q t-1 (52) where η t = Z -1 t X t ∼ N (0, H t , g), Ω = E η t η ⊤ t
is the unconditional correlation matrix which is estimated using the sample correlation of the standardized residuals

η t , A 1 = θθ ′ with θ = (θ 1 , . . . , θ n ), A 2 = ββ ′ with β = (β 1 , . . . , β n ), β ′ is the transpose of β and
(53)

H t = (diag(Q t )) -1/2 Q t (diag(Q t )) -1/2 .
In fact, for each i = 1, . . . , n, we can write (54)

h it =   1 - n j=1 α ij -β j   + n j=1 α ij y 2 i,t-1 + β i h i,t-1
with α ij , β i ≥ 0 and n j=1 α ij + β i < 0. Paper [START_REF] Engle | Theoretical and Empirical Properties of Dynamic Conditional correlation multivariate Garch[END_REF] gives necessaries conditions for R t to be positive definite. step 1 : We find the marginal density function of the risk factor X it as:

f i (x i ) = |Σ| -1/2 R n-1 g xΣ -1 x t dx -i ,
where dx -i = dx 1 dx 2 . . . dx i-1 dx i+1 . . . dx n . step 2 : Since the precede step 0 gives the marginal density function, the parameters ω i , θ i and β i of the sequence of the univariate GARCH models of equation ( 51) may be estimated by maximizing the n marginals univariate likelihoods

l(θ i ) = T t=1 log (f i (X it )) , i = 1, . . . , n.
Then the matrix D t and the standardized residuals, η t = D -1 t X t may be estimated. step 3 : To estimate the matrix Ω in equation , we used the sample covariance matrix of the residuals estimated in Step 2. step 4 : Finally, using the estimated D t and Ω, the likelihood

l(θ) = T t=1 - 1 2 log|Σ t | + log(g(X t Σ -1 t X ′ t )) ,
is maximized with respect to the parameters A 1 , A 2 and g, for a moderate number k of assets in the portfolio. Consider the polar decomposition of Z:

(55) Z = SU
where S is the positive definite symmetric matrix, and U is an orthogonal matrix.

It is easy to see that S is a squared root of the unconditional covariance matrix (e.g.

H is an identity matrix) and that it can be written as S = P L 1/2 P t , where P LP t is the spectral decomposition of Σ t . Thus, estimating Z may be reduced to the problem of identifying the orthogonal matrix U from the conditional information. It's follows that, the unconditionally standardized returns s t = Σ -1/2 η t follows a GO-GARCH specification s t = U y t with an orthogonal link matrix U . where µ j is the parameter location, Σ j is a positive definite variance-covariance matrix and ν j is the degree of freedom of the j-th distribution for j = 1, 2, . . . , k.

The parameter space is

(57) Θ = {θ ∈ R k(4+3q+q 2 ) 2 / k 1 β k = 1, β k ≥ 0, |Σ j | > 0 for j = 1, 2, . . . , k}
Following Shoham (2002), we recall the main steps of the EM algorithm for the mixture of t distributions. The EM algorithm generates a sequence of estimates {θ (m) } where θ (0) ∈ Θ denotes the initial guess and θ (m) ∈ Θ for m ∈ N is such that the sequence L(θ (m) ) m∈N is not decreasing. The E-step, on the (m + 1)-th iteration of the EM algorithm, requires the calculation of the conditional expectation of the complete-data likelihood function Q(θ, θ (m) ) := ln(L c (θ), evaluated using the current fit θ (m) for θ. See [START_REF] Greselin | Constraint monotone EM algorithms for mixtures of multivariate t distributions[END_REF] for more details on the estimation of the parameters for mixture of elliptical distributions.

Application to a portfolio with ESG assets Data

Socially responsible stock market indices are derived from conventional indices after a filtering process (screening) in order to retain only indices that meet ESG requirements. We will make below a presentation of the socially responsible stock market indices of our study:

• Calvert Social Index: The index was created in 2000 by Calvert Investments as a benchmark of large companies considered to be socially responsible or ethical following the success of the Domini 400 social index; It includes publicly traded companies in the United States using Calvert's social criteria: environment, workplace issues, product safety, community relations, arms procurement, operations international law and human rights. 6.1. Portfolio optimal allocation that maximize Kappa Ratio. We build a portfolio containing the various ESG indices mentioned above. After an estimation of the parameters of the probability density function of the multivariate Student law governing the evolution of the vector of returns of the various assets of the portfolio considered, we will estimate the parameters according to the available data. We will also determine the covariance matrix (Go-GARCH), then finally the optimal allocation that maximizes the Kappa ratio. For τ = 0%, n = 4, the risk free rate r f = 0 and the expected return of the investor is 0, 05%, we the following optimal allocation portfolio by minimizing the lower partial moment of the portfolio daily returns: Assets CAC 40 CALVERT DJSI FTSE4GOOD JSI Weights (W ) 0,00 % 0,00 % 11,42 % 88,58 % 0,00 % Sharpe Ratio 0,287 % 0,999% 0,471 % 3,675 % 0,141 % with LP M 4 (τ = 0) = 0, 00005%. For τ = 0%, n = 2, the risk free rate r f = 0 and the expected return of the investor is 0, 05%, we the following optimal allocation portfolio by minimizing the lower partial moment of the portfolio daily returns: Assets CAC 40 CALVERT DJSI FTSE4GOOD JSI Weights (W ) 0,00 % 0,00 % 0 % 100 % 0,00 % Sharpe Ratio 0,287 % 0,999% 0,471 % 3,675 % 0,141 % with LP M 2 (τ = 0) = 0, 01246% and Kappa ratio max κ = 0, 53%.

We can notice to take into account the extreme risks, it would be better to measure the risk with lower partial moment for n = 4. Thus, we take into account the semi-kurtosis for returns below a certain threshold τ . In this case, based on the historical profitability data used for our study, we obtain that it would be necessary to invest 100% of the wealth in FTSE4GOOD. Remark 6.2. Since historical returns are very volatile during the period of the Covid-19 pandemic, in order to take this change of regime into account, we distinguish 2 volatility regimes before the Covid and after the covid 19. Thus, we mix two laws of Student, one of which corresponds to the sub-period before Covid 19 and the second corresponds to the sub-period after the end of February 2020 until December 31, 2020. Indeed, for m = 2 in (36), after estimation based on historical prices returns, we obtained the degree of freedom ν 1 = 1.038068 and ν 2 = 11.433607 of mixture of two standard multivariate tdistributions, with the coefficients β 1 = 0.99163713 and β 2 = 0.00836287. Note that in [START_REF] Niguèz | Flexible distribution functions, higherorder preferences and optimal portfolio allocation[END_REF], β 1 + β 2 = 1. From [START_REF] Niguèz | Flexible distribution functions, higherorder preferences and optimal portfolio allocation[END_REF], for the first regime, the Go-GARCH co-variances matrix Σ By comparing the two previous matrices, we can see that the Covid-19 pandemic increases the systematic risk in the second regime covering the sub-period from March to December 2020. Indeed, the coefficients of the covariance matrix Σ 2 are often far superior to those of the matrix of the first regime Σ 1 .

Conclusion

This paper provides analytical expressions of the lower partial moment and the risk-adjusted performance (kappa index) of a linear portfolio with mixture of elliptically distributed risk factors. After introducing the notion of target semi-kurtosis, we also discuss the classical and robust Mean-LPM portfolio optimization problem. After then we provide some discussion concerning estimation of parameters with data. Indeed, to illustrate our new model, we considered a portfolio of some ESG indices and the CAC 40 index, which allowed us to estimate the parameters of the model from historical data over the period from 01/01/2018 to 12/31/2020.

  et al.(2008) used Gaussian mixture, Murray et al.(2014) use Skew t mixture. For other mixture distributions, see McLachlan et al.(2019) and some references therein).
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 3 Worst case Elliptical LPM. In this paper, following Duan et al.(
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 31 WLPM with Student distribution. If we consider the family of Student distributions, we obtain the following robust portfolio min-max formulation:

5. 2 .

 2 Parameters estimation for the mixture of elliptic distributions distributions. Consider the likelihood L(Θ) based on a sample X drawn from (39) with parameters (56) θ = (β 1 , . . . , β k , µ 1 , . . . , µ k , Σ 1 , . . . , Σ k , ν 1 , . . . , ν k )

  • FTSE4Good Index: The index was created following a partnership signed in 2001 between the London Stock Exchange and the social rating agency EIRIS with the assistance of UNICEF. It excludes companies engaged in tobacco, weapons, the nuclear industry; • Dow Jones Sustainability Index (DJSI): The index that was created to replicate the performance of the benchmark Dow Jones Stoxx Index, excludes indices of alcohol producing companies , tobacco and gambling. The selection of securities for the index is based on data provided by the Swiss rating agency SAM; • Jantzi Social Index (JSI): This is a Canadian stock market index created in 2000. It is based on the SP/TSX composite benchmark index. It depends on the Canadian rating agency Jantzi sustainalytics. • CAC40: Created in 1987, the CAC 40 is the main stock market index in Paris. Its first listing was decided on December 31, 1987 but it entered into force on June 15, 1988. It is a basket made up of 40 stocks of French companies. These companies are chosen from among the 100 French companies with the largest securities trading volumes. Each company has a determined weight in relation to its capitalization on NYSE Euronext.

  For our study, we consider the time series of the indices (CAC 40, CALVERT, DJSI, FTSE4GOOD and JSI) over the period from January 01, 2018 to December 31, 2020. Note that in part, these historical price data have been affected by the Covid-19 pandemic (in particular on the under-period from February 20, 2020 to December 31, 2020). After calculating the time series of daily logarithmic returns, we present in the following table the mean, the standard deviation (volatility), the skewness and the kurtosis of the returns over the period considered.

	Assets		CAC 40 CALVERT	DJSI	FTSE4GOOD	JSI
	Mean		0,007 %	0,037 %	0,008 %		0,0055%	0,003 %
	Volatility		2,267 %	3,746 %	1,598 %		1,509 %	2,193 %
	Excess Kurtosis	24,38	23,32	26,62		15,79	22,64
	Skewness		-0,6619	0,0399	-0,4725		-0,8429	-0,1464
	Sharpe Ratio		0,287 %	0,999%	0,471 %		3,675 %	0,141 %
	Remark 6.1. Following (22), after estimation based on historical prices returns,
	we obtained the degree of freedom ν = 2, 50044 of the standard multivariate
	tdistribution, and the Go-GARCH co-variances matrix is as follows:
			CAC 40	CALVERT	DJSI		FTSE4GOOD	JSI
	CAC 40	0.04499 % 0.02163 % 0.02375 %	0.01663 %	0.033006 %
	CALVERT	0.02163 %	0.03749%	0.01759 %	0.02408 %	0.02062 %
	DJSI	0.02375 %	0.01759%	0.01846 %	0.01423 %	0.02107 %
	FTSE4GOOD 0.016625 % 0.024078% 0.014232 %	0.023309 %	0.016791 %
	JSI	0.033006 % 0.020619% 0.021068 %	0.016791%	0.041482%

  1 of the first Student distribution is obtained as follows: , for the first regime, the Go-GARCH co-variances matrix Σ 1 of the first Student distribution is obtained as follows:

		CAC 40 CALVERT	DJSI	FTSE4GOOD	JSI
	CAC 40	0.12337% 0.09919%	0.07727%	0.08056 %	0.09049%
	CALVERT	0.09919% 0.24321%	0.08993%	0.12972 %	0.09388%
	DJSI	0.07727% 0.08993% 0.06471 %	0.07009%	0.06500%
	FTSE4GOOD 0.08056% 0.12972%	0.07009%	0.12266%	0.07825%
	JSI	0.09050% 0.09388%	0.06500%	0.07825%	0.11087%
	From (36)CAC 40 CALVERT	DJSI	FTSE4GOOD	JSI
	CAC 40	1,26385% 0.42545%	0.71211%	1,31114 %	1,36091%
	CALVERT	0.42545% 1,50631%	0,29481%	1,36335 %	0,80869%
	DJSI	0.71211% 0,29481% 0,53147 %	0.70107%	0.81579%
	FTSE4GOOD 1,31114% 1,36335%	0,70107%	2,31686%	1,62519 %
	JSI	1,36091% 0,80869%	0.81679%	1,62519%	1,6330723%