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Numerical homogenization of fiber reinforced layer in large elastic

deformation using a decoupled iterative method

Karoui S. * Mansouri K. � Renard Y. � Arfaoui M. § Homolle T. ¶ Bussetta P. �

June 20, 2023

Abstract

We propose a procedure to approximate the large elastic deformations of a fiber reinforced
layer by a two-scale decoupled homogenization numerical procedure. The nonlinear micro
and macroscopic scales are strongly coupled in most homogenization methods which is very
costly. Our method consists in decoupling the micro and macro scales by considering separate
boundary value problems and an intermediate anisotropic constitutive law optimised over a
training set. We propose an iterative procedure based on this method which allows to improve
the quality of the approximation to get closer to the coupled homogenization and keeping a
reasonable computational cost. We perform representative numerical studies for a layer with
heterogeneous hyperelastic material in order to demonstrate the capability and reliability of
the proposed method and test several intermediate constitutive laws.

Keywords: hyperelasticity, decoupled homogenization method, composite layer, large deformation.

1 Introduction

The existence of fiber-reinforced rubber-like composites in natural and artificial materials and
structures has long been known and has been the subject of study in many fields including manu-
facturing, plants, geomechanics, and biomechanics. At a macroscale, some fiber reinforced rubber-
like composites, such as soft tissues [27], appear homogeneous, yet at a specific microscale, they
exhibit fibrous microstructure behaviour. At a macroscopic observation scale, several other re-
inforced rubber-like composites, such as the fiber-reinforced layers in the tyres that serve as the
subject of this study (see also [53]), appear heterogeneous. These materials and structures are
classified as fiber-embedded composites and can be physically represented as a pliable matrix ma-
terial with aligned cylindrical stiffer fiber inclusions. Two methodologies can be used to model
the mechanical behaviour of these materials: micro-mechanical [64] and macro-mechanical phe-
nomenology [116]. The micro-macro or homogenization technique is useful for comprehending and
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designing the physical behaviour of materials. However, this method is expensive for commercial
use, particularly for nonlinear material behaviour [28]. The macro-mechanical phenomenological
continuum technique, where the model’s parameters are calibrated using data from macroscopic
experiments, is an effective and straightforward way to construct constitutive equations [116]. De-
spite having these desirable characteristics, these phenomenological models are hampers by a lack
of actual knowledge about the microstructure of fiber-reinforced rubber-like composites.

Thus, the scientific objective of this paper is the development of a mechanical and numerical
methodology linking the micromechanical and the macromechanical phenomenological approaches
while keeping their advantages and reducing their inconveniences. This is the decoupled homoge-
nization method. To do this, the fiber and the matrix will be considered as hyperelastic materials.
This is a first approximation which can be enriched in other works.

Classical homogenization theory [18, 19, 33, 92, 93, 5] has long been an essential tool to charac-
terize the behaviour of composite materials with periodic or quasi-periodic microstructures and to
derive numerical approximations at reasonable costs, especially in the context of linear materials
where homogenized constitutive laws can often be identified with a limited number of parameters
to be determined. Homogenization methods, one of the first multiscale approaches in mechanics,
can be classified based on problem formulation. These classifications include concurrent meth-
ods, where both scales are simultaneously addressed within the problem formulation, allowing for
the utilization of different length and time scales in a single domain[24]. Hierarchical methods
establish a hierarchical connection between scales, coupling distinct scales within the same do-
main region [112]. Hybrid methods combine elements from different methods, leveraging their
respective strengths. Examples of hybrid methods include multigrid methods, the generalized fi-
nite element method, wavelet-based methods, and quasi-continuum methods [107], [59] and [80].
In recent years, there has been a significant increase in contributions that have further developed
computational homogenization (CH) methods or utilized them for multiscale analysis in materials.
These advancements have led to numerous applications in various areas, including porous me-
dia [106];[127];[122], cellular materials [67];[47], polycrystalline metals[100], technical textiles [23],
granular materials [52], trabecular bone [121], composite plates [36], and Li-ion battery cells [91].
These examples highlight the diverse range of materials and systems where CH methods have been
successfully applied for multiscale analysis, driving advancements in the field of material science
and engineering.

In the context of the homogenization of hyperelastic composites [39, 40, 72] apart for very
specific situations in terms of constitutive laws used at the microscopic scale and even in terms of
loading (see [9, 11, 34, 35, 12, 54]), it is not possible to identify the homogenized law in the nonlinear
case which makes the decoupling between the micro and macroscopic scales impossible to reach.
This has given rise to the development of the so-called computational homogenization, which has
motivated a very large number of studies [14, 66, 60]. We refer for instance to the monograph [123]
and the references therein for an overview of computational homogenization techniques. A classical
numerical strategy to keep the micro-macro coupling is the use of the so called FE2 approximation
[83, 104, 21, 22, 113]. This type of strategy (also called multilevel finite element method) consists
in solving a finite element approximation on the RVE (representative volume element of the micro-
structure) at each integration point of a finite element method for the macroscopic problem. It
gives very good results, but is extremely expensive in terms of computational resources, even when
model reduction strategies are applied (as proposed for instance in [125, 61, 38, 16]). A discussion of
the extension to second order homogenization for an enhanced accuracy can be found for instance
in [77] and the references therein, however, this kind of strategy is even more computationally
expensive which can represent a serious obstacle to its use.

Within this frame of reference, the decoupled numerical method introduced by Terada et al.
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[111] allows to recover computational cost comparable to a classical structural mechanics calcula-
tion with a homogeneous material (see also [81, 90] for further developments). This is at the cost
of an additional approximation on the homogenized law whose shape is preselected with a more or
less important number of parameters. This law aims at characterizing the global response of the
micro-structure at the RVE level, at least in the solicitation range of interest for the macroscopic
level. The method can be used either with simple homogenized laws, in the case such a specific
simple law can be expected, or either with more complex or even fully parametric laws. A possibil-
ity in order to identify a fully parametric law is to take advantage of the approximation property of
artificial neural network (see [50, 48]). An optimization of the homogenized law parameters is per-
formed off-line on a training set composed of numerical experiments coming from a finite element
approximation of the boundary value problem (BVP) defined at the micro-scale on the RVE. The
shape of the chosen homogenized law is obviously crucial for the proper functioning and efficiency
of the method. Once parameters of the homogenized law have been identified, it can be used to
represent the micro-scale response and then to evaluate the macro-scale response. In the context
of modern continuum mechanics [116], Rivlin developed in a series of papers [85, 87, 88, 89, 86] a
formalism for the modelling of large elastic deformations of isotropic materials. The main idea of
this theory is based on Georges Green’s method established in 1840 [115] by modelling the elastic
behaviour with a strain energy function: the elastic material is named hyperelastic material. The
effect of fiber reinforced material was first analyzed by resolving some boundary value problems
of an isotroipic hyperelastic matrix reinforced with inextensible cords [1]. This exact analytical
approach uses the semi-inverse method [115]. Another way to model the effect of fiber reinforced
material was initiated by [17]. The strain energy is assumed to be a function of some strain invari-
ants that are used to model the fibres directions effect with some structural tensors [57, 6]. This
phenomenological approach was used to develop some popular hyperelastic anisotropic models
[120, 7, 49, 42, 43, 44]. The analysis of the ellipticity, convexity, polyconvexity or other inequality
[56] of constitutive law was extended to anisotropy in [96, 2] among others.

Note that the decoupled homogenization numerical method discussed in reference [111] does
not address the interface problem. Recent studies such as [102], [46], [101], and [31] have employed
innovative multiscale approaches to address the complexities associated with interface and crack
behaviour.

The main objective of this study is to propose a computational homogenization strategy for a
fiber reinforced layer in large elastic deformation having the best possible compromise in term of
computational cost and reliability. For this purpose, based on the decoupled method of Terada et
al. [111], we perform a comparison of two different homogenized transversly isotropic hyperelastic
potentials with moderate number of parameters. Moreover, we introduce an iteration method
to improve the approximation error of the decoupled homogenization strategy. This method, by
taking into account the deformation state of the structure at the macroscopic scale, allows to better
approach the coupled FE2 method while keeping a much lower numerical cost.

The paper is organized as follows. Section 2 introduces the homogenization in large deforma-
tions. Section 3 describes the decoupled computational homogenization and a comparison of some
different homogenized potentials in term of a local error. In section 4, the tests are on the macro
scale on a fiber reinforced layer. A comparison is done both in term of local error and global error
with a fully discretized heterogeneous layer. We introduce in section 5 our iterative method and
test its effectiveness in term of local and global error. Finally, a conclusion is drawn in section 6.
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2 Two-scale boundary-value problem homogenization

In order to introduce the two-scale homogenization for the large deformation of a micro-structured
composite material, we describe first the macro-scale description, then the micro-scale one and
finally the coupling between the two scales.

2.1 Macro-scale description

Consider a continuum body that occupies the reference configuration B̃0 with the boundary ∂B̃0
and the outward unit normal vector Ñ where each point is labeled by the macro-scale reference
position vector X ∈ B̃0. It is mapped to the spatial current configuration B̃t with the boundary
∂B̃t and the surface normal unit vector ñ, labeled by its current position x via the nonlinear
deformation function ϕ̃(X) = ũ(X)+X, where ũ being the macro-scale displacement field, written
as x = ϕ̃(X) ∈ B̃t (see fig. 1). The macro-scale deformation gradient F̃ = GradX(ϕ̃(X)) linearly
relates a reference line element dX ∈ B̃0 to a spatial current line element dx ∈ B̃t, by

dx = F̃.dX. (1)

For a macroscopic heterogeneous body, subjected to loading and constraints and in the absence
of inertia effects, the macro-scale equilibrium equation is expressed as

∇X.P̃ + b̃ = 0 in B̃0, (2)

where P̃ is the macro-scale first Piola–Kirchhoff stress tensor and b̃ is the body forces on the
reference configuration B̃0. Here, ∇X denotes the divergence operator with respect to material
macro-scale coordinates. The body is subjected to Neumann and Dirichlet boundary conditions

P̃.Ñ = T̃0 on ∂B̃N0 ,
ũ = ũ0 on ∂B̃D0 ,

(3)

where T̃0 is the given applied density on the reference configuration, ũ0 the prescribed displacement
on ∂B̃D0 and {∂B̃N0 , ∂B̃D0 } are partitions of ∂B̃0.
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Figure 1: Two-scale coupled homogenization

2.2 Micro-scale description

The mechanical behaviour of the material micro-structure is identified through a representative
volume element (RVE). Ideally this RVE should include a sampling of all micro-structural hetero-
geneities that occur in the composite at a length scale that should be smaller than the character-
istic length of the relevant macroscopic field variation, but sufficiently larger than the micro-scale
physics and micro-fluctuations. In particular, it is very important in the homogenization of a
fibrous material that the fiber/matrix ratio is maintained on both scales, see classical textbooks
on homogenization theory [65, 25].

In this work the representative volume element (RVE) is usually taken to be a unit cell, due
to the scale independence of the equation and boundary conditions and by neglecting the effects
due to the onset of instability phenomena [58] ,[30] ,[32]. The spatial position, denoted Y , in
the micro-scale reference configuration B0 of the unit cell domain, and the spatial position y in
the micro-scale current configuration Bt , are introduced. These two positions are related by the
micro-scale deformation as follows:

y = ϕ(X;Y) = Y + w(X;Y), (4)

where
w(X;Y) = H̃(X).Y + u∗(X;Y) + c(X), (5)

is the micro-scale displacement of the unit cell, H̃ is the macro-scale displacement gradient defined
as H̃(X) = ∇Xũ(X), u∗ is the fluctuation displacement, in our case assumed to be exposed to
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the periodic boundary condition on the RVE external boundary ∂B0 and c is a constant vector
independent of Y, derived from the integration of the micro-scale deformation gradient defined as

F(X;Y) = ∇Yϕ(X;Y) = ∇Yw(X;Y) + 1 = H(X;Y) + 1, (6)

where 1 is the metric tensor (whose components form the identity matrix in a orthonormal reference
frame) and H is the micro-scale displacement gradient given by

H(X;Y) = ∇Yw(X;Y) = H̃(X) + ∇Yu∗(X;Y), (7)

where H̃ = 1
|B0|

∫
B0 HdV and |B0| is the reference volume of the RVE (in our case, |B0| = 1).

The macro-homogeneous deformation tensor F̃ is related to the micro-scale deformation gra-
dient tensor for every point at the micro-scale by

F(X;Y) = F̃(X) + ∇Yu∗(X;Y). (8)

In the absence of body forces, the micro-scale self-equilibrium equation for the unit cell RVE
in terms of the micro-scale first Piola–Kirchhoff stress tensor P and its response function F(F) is
given by {

∇Y.P = 0 in B0
P = F(F) in B0

(9)

subjected to periodic boundary conditions

w|
∂B[J]0

−w|
∂B[−J]0

= w[J ] −w[−J ] = H̃.L[J ] on ∂B[J ]0 (J = 1, 2, 3), (10)

where ∂B[J ]0 and ∂B[−J ]0 indicate a pair of opposite external faces of the RVE (see fig. 1) and L is
called the side vector connecting the material points on opposite external forces of the RVE, and
the periodic boundary condition are defined as

L[J ] := Y|
∂B[J]0

−Y|
∂B[−J]0

(J = 1, 2, 3). (11)

Here, ∇Y denotes the divergence operator with respect to material micro-scale coordinates
and F is a functional defining the constitutive law.

2.3 Micro-macro coupling

The first order coupling homogenization is based on the idea of computing the overall response of
the micro-scale problem, in particular the macro-scale first Piola–Kirchhoff stress tensor P̃, by pre-
scribing the macroscopic deformation gradient F̃ onto the micro-problem. Microscopic quantities
are related to their macroscopic counterparts through volume averaging over the RVE [40, 72, 55].

The macro-scale deformation gradient can be written as the volume average of the correspond-
ing micro-scale deformation gradient over the RVE derived from (6)

F̃ =
1

|B0|

∫
B0

FdV = H̃ + 1. (12)

The insertion of the micro-scale deformation gradient tensor (8) into (12) leads to

1

|B0|

∫
B0

FdV = F̃ +
1

|B0|

∫
B0

∇Yu∗(X;Y)dV = F̃ +
1

|B0|

∫
∂B0

u∗(X;Y)⊗NdA, (13)
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where we use the divergence theorem to transform the volume integral to surface integral over the
undeformed boundary ∂B0 of the RVE with outward normal vector N.

It is clear that in order to satisfy the relation between the micro-scale deformation gradient
tensor and the macro-scale one (10), the contribution of the micro-fluctuation field u∗(X;Y ) must
vanish at the macro level, which means to prescribe the following adequate boundary conditions

u∗|
∂B[J]0

= u∗|
∂B[−J]0

(J = 1, 2, 3). (14)

The macro-scale first Piola–Kirchhoff stress tensor P̃ can be defined as the volume average of
the corresponding micro-scale stress P over the unit cell RVE as

P̃ =
1

|B0|

∫
B0

PdV. (15)

Considering the periodicity condition, the micro Piola traction vector T satisfies an anti-
periodicity conditions on the unit cell boundary ∂B0 with N being the outward unit normal vector
on the corresponding surface in the reference configuration

T[J ] + T[−J ] = 0 where T[J ] = P.N[J ], (16)

from which the average Piola traction vector can be derived

T̃
[J ]
i = P̃iJ = N[i].T̃[J ] = N[i].(P̃.N[J ]) = N[i].

(
1

|∂B0|

∫
∂B0

P.N[J ]dA

)
=

1

|∂B[J ]0 |

∫
∂B[J]0

T
[J ]
i ds,

(17)

where |∂B[J ]0 | is the area of the RVE boundary ∂B[J ]0 and P̃iJ is the iJ component of the macro-scale
first Piola–Kirchhoff stress tensor, the area average of the corresponding micro-scale Piola traction

vector T
[J ]
i at the unit cell boundary ∂B[J ]0 . This relation is of great interest for the numerical

computation of P̃ .
A standard requirement is the satisfaction of the Hill–Mandel condition [40, 55] that requires

the volume average of the variation of work performed on the RVE to be equal to the increment
of local work on the macro-scale, formulated as

1

|B0|

∫
B0

P : δFTdV = P̃ : δF̃T . (18)

The boundary conditions of the RVE that satisfy the Hill-Mandel condition must be determined
in order to solve the micro-problem. These are determined using Hill’s lemma

1

|B0|

∫
B0

P : δFTdV − P̃ : δF̃T =

∫
∂B0

[δϕ− δF̃.Y].[P.N− P̃.N]dA. (19)

In our case, the periodic displacement, anti-periodic traction boundary conditions and (15) are
sufficient to satisfy the Hill–Mandel condition.

The coupled micro-macro homogenized problem can be summarized as follows; the micro-scale
BVP is to be solved for each X ∈ B̃0 for the set of solutions w from (5), F from (6), H from
(7) that satisfies the micro-scale equilibrium equation (9) along with the periodic condition (10),
while the macro-scale BVP is for F̃(12), P̃(15) that satisfies (12), (15) and (2). It is noted that
the micro-scale BVP can be solved only if the macro-scale solution is given and vice versa.

This coupled homogenization method allows to define analytical effective behaviour of het-
erogeneous materials for simple and special classes of uniform boundary conditions and materials
constituents models behaviours. These analytic results are of both theoretical and practical im-
portance and will be used in this work. For complexes situations, computational methods were
developed (see interesting review in [28]) but they remain highly expensive for industrial applica-
tions.
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3 Micro-macro decoupled computational homogenization

To overcome the computational cost due to the coupled homogenization method, some decoupled
numerical approaches for homogenizing heterogeneous materials have been developed [112, 108,
109, 124, 10, 111, 110].

The principle of this method, which is related to the work of Terada and his co-workers [111],
is the decoupling between the microscopic and macroscopic scales carried out by the a priori
choice of a parametric homogenized law. The parameters of this law are adjusted to minimize the
deviation with respect to a series of numerical tests (such as uniform tension, uniform compression
and shearing tests) performed on a finite element approximation of the microscopic problem on
the RVE. Once the parameters of the law have been optimized, it can be used to compute the
deformation at the macroscopic level without solving many microscopic problems simultaneously.
This obviously leads to the reduction of computational cost, compared for instance with the FE2

strategy. The quality of the approximation depends of course on the choice of the form of the
parametric homogenized law as well as on the strategy of choice of the set of tests (that we will
call in the following the training set). In the following sections we describe the details of this
method.

3.1 Selection of a parametrized homogenized law

As shown in the previous sections, the variables exchanged between the scales are the macro
displacement gradient H̃ and the average of the micro first Piola-Kirchhoff stress tensor P̃ . In
order to analyze the micro and macro problems separately, the macro-homogenized constitutive
relationship inherent in the micro-structure and its mechanical behavior is approximated by an
appropriate constitutive model. In simple situations, including the fiber reinforced matrix we
consider, a possible way to design such constitutive model is to assume that the macroscopic
material responses inherit the microscopic ones except for anisotropic behavior. Consequently, at
this stage, and considering large elastic deformation, one has to select a parametrized elastic law,
i.e., the macro-scale second Piola–Kirchhoff stress tensor

S̃h(p, H̃),

depending on a certain number of parameters

p = (p1, p2, ..., pnpara).

In the hyperelastic framework, the elastic law derives from a potential W̃h(p, H̃), in the sense that
[74]

S̃h(p, H̃) =
∂W̃h

∂Ẽ
(p, H̃) = 2

∂W̃h

∂C̃
(p, H̃),

where C̃ = (H̃+1)T (H̃+1) is the right Cauchy-Green deformation tensor and Ẽ = 1
2(C̃−1) the

Green-Lagrange one. Often, the parametrized law is linear with respect to the coefficients, which
means that it reads

S̃h(p, H̃) =

npara∑
i=1

piS̃
i
h(p, H̃), (20)

or

S̃h(p, H̃) = 2

npara∑
i=1

pi
∂W̃ i

h

∂C̃
(H̃),
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in the hyperelastic case, with S̃ih(H̃) = 2
∂W̃ i

h

∂C̃
(H̃).

Even if this strategy can be applied in the case of fully parametric homogenized laws, as
it is presented for instance in [126, 28] where interpolation functions are used to describe the
homogenized potential, our objective in this study is to consider laws having a restricted number
of parameters and allowing a low cost numerical modelling of the global structure.

3.2 Numerical material testing, definition of a training set

The idea is to “train” the law (i.e. to fit its parameters) on the response of the microstructure
represented on the RVE for a representative set of solicitations. This is done by solving a finite
element approximation of the BVP (9)-(10) for each solicitation. In our case, we select a set of
ntests gradients

H̃[α], α = 1...ntest.

Then, each gradient H̃[α] induces a finite element computation which allows in return to cal-
culate the corresponding average of the first Piola-Kirchhoff tensor P̃[α] through the relation (17).
In our case, the computation are performed using GetFEM [84] with Lagrange quadratic elements
on the mesh represented on fig. 2 and a fifth-order cubature method with 15 points. This mesh
has been selected after a numerical convergence test to ensure a good quality of the solution at a
reasonable cost. Then, the second Piola-Kirchhoff tensor S̃[α] is obtained using

S̃[α] = (1 + H̃[α])−1P̃[α]. (21)

Figure 2: uni-directional fiber reinforced composite, geometry and finite element mesh

The tests are more or less expensive depending on the complexity of the microstructure rep-
resented in the RVE and the refinement of the finite element approximation. As far as we are
concerned, the microstructure being relatively simple, the computations on the RVE are relatively
cheap although on a three-dimensional RVE. In our case, the chosen unit cell model for the trans-
verse isotropic material consists of two different materials: the matrix and the fiber. The matrix
is assumed to be a cubic sample filling the three dimensional space in [0, 1]3 with an inclusion of
cylindrical shape. The FE mesh is generated taking into account the interface between the fiber

9



and the matrix, using tetrahedral elements. We employ, for the fibers and matrix, a fixed Poisson’s
ratio (νf , νm) and Young’s modulus defined as

Ef = cEm, (22)

where c is the contrast constant and (f,m) are indices that refer to the fibers and the matrix,
respectively.

Finally, we can apply to each solicitation a weight w[α] > 0, so that at the end of this step we
obtain a training set made of triplets

H̃[α], S̃[α], w[α], α = 1...ntest.

For the identification of the coefficients of the chosen potential to be as representative as
possible, it is important to give a sufficiently varied panel of solicitations. We apply 6 basic
patterns (and some combinations) of macroscopic strains by imposing displacement gradient H̃,
introduced in table 1. Here, h and (ε1, ε2, ε3) are the specified and unspecified components of the
macro-scale displacement gradient H̃i(i = 1, ..., 6), respectively. We choose the limiting strain level
such that h ∈ [−0.5, 0.5]. The values of (ε1, ε2, ε3) are fixed to (0, 0, 0) in the compressible case
and are determined to satisfy the following volume conservation condition in the incompressible
case:

det(H̃(X) + 1) = 1.

Pattern-1: Uniaxial tension in the direction of x Pattern-4: xy shear

H̃1 =

h 0 0
0 ε2 0
0 0 ε3

 H̃4 =

ε1 h 0
h ε2 0
0 0 ε3


Pattern-2: Uniaxial tension in the direction of y Pattern-5: xz shear

H̃2 =

ε1 0 0
0 h 0
0 0 ε3

 H̃5 =

ε1 0 h
0 ε2 0
h 0 ε3


Pattern-3: Uniaxial tension in the direction of z Pattern-6: yz shear

H̃3 =

ε1 0 0
0 ε2 0
0 0 h

 H̃6 =

ε1 0 0
0 ε2 h
0 h ε3


Table 1: Deformation patterns on the RVE

3.3 Identification of the homogenized law

Once the training set has been determined, the identification of coefficients of the homogenized law
S̃h(p, H̃[α]) is performed using a least squares optimization, by minimizing the following quantity:

J(p) =
1

2ω∗

ntest∑
α=1

w[α]

∥∥∥S̃h(p, H̃[α])− S̃[α]
∥∥∥2∥∥∥S̃[α]

∥∥∥2 , (23)

with ω∗ =
∑ntest

β=1 w
[β] the sum of the weights, and ‖·‖ the Frobenius norm for second order tensors.
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This minimization can be performed with or without constraints on the values of the param-
eters. For instance, most constitutive laws have coefficients that are intended to remain positive
and ensure interesting properties (such as polyconvexity) with positive coefficients [98, 96]. In
this case, constraining the coefficients to remain positive can avoid modelling problems (such as
spurious zero energy deformations).

In the specific case where the homogenized law S̃h(p, H̃[α]) is linear with respect to its coeffi-
cients, i.e. in the form (20), and if no constraints on the parameters are considered, the minimiza-
tion of (23) leads to the following linear system:

A

 p1
...

pnpara

 = L, with


All = 1

ω∗

∑ntest
j=1 w[j] 1

‖S̃[j]‖2
S̃lh : S̃lh,

Ail = 1
2ω∗

∑ntest
j=1 w[j] 1

‖S̃[j]‖2
S̃lh : S̃ih ∀i 6= l,

Ll = −1
ω∗

∑ntest
j=1 w[j] 1

‖S̃[j]‖2
S̃lh : S̃[j].

Of course, the last step of the method, once the homogenized law is identified, is to solve
the macro-scale BVP using this constitutive law, generally approximated also by a finite element
method. Moreover, since the homogenized law is approximated within the framework of a two-
variables boundary value problem derived from a homogenization theory, the macro response
obtained using this model can be regarded as approximating the data of the micro problem at
each material point.

3.4 Example of the NeoHookean hyperelastic law for both fiber and matrix

The validity of the micro-macro computational decoupled homogenization procedure developed
in section 3 is investigated by comparison of its predictions with an explicit expression for the
effective behaviour of fiber composites [40, 72] developed initially for an incompressible transverse
isotropic hyperelastic behaviour (i.e. when both D1,m and D1,f goes to infinity) in [13]. For
computational reasons, the fiber and the matrix of the RVE micro-structure are represented by a
nearly incompressible NeoHookean potential

WNH,i = C01,i(I1 − 3) +D1,i(J − 1)2 (i = f,m), (24)

where J = det(F) is the Jacobian of the deformation, I1 = tr(C) is the invariant of the isochoric

Cauchy-Green strain tensor C = FT .F = J−2/3FT .F = I
−1/3
3 C with F = J−1/3F and I3 =

det(C) = J2, C01,i and D1,i are given coefficients that can be related to Young’s modulus and
Poisson’s ratio by the formula

C01,i =
Ei

4(1 + νi)
, D1,i =

Ei
6(1− 2νi)

, (25)

where we take Ei and νi as the Young modulus and the Poisson coefficients of the fiber and the
matrix materials with Ef = 203 GPa and Em = Ef/c, with c the constrast.

The strain energy decomposition defined by (24) governs a slightly compressible material be-
haviour. If the material behaviour is incompressible, i.e. the coefficients D1,i → ∞, that energy
corresponds to the NeoHookean potential corresponding to the simplest phenomenological and
molecular constitutive model function of rubber like materials [114]. However, its capability to
predict experimental data is poor especially at high values of deformation. Nevertheless, the Neo-
Hookean strain energy model is essentially to deduce analytic solutions of boundary-value problems
[74] within the framework of finite elasticity.
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The explicit expression for the effective behaviour of fiber/matrix RVE composite is developed
by DeBotton and his co-workers in [13] exploiting the analytical homogenized method [40, 72]. The
resulting homogenized law is an incompressible transversely isotropic NeoHookean hyperelastic
model [13]. An extension to a nearly incompressible behaviour will be exploited in this work

W̃h =
µ̃

2
(I1 − 3) +

µ− µ̃
2

(I4 +
2√
I4
− 3) +D(J − 1)2, (26)

where I4 = A.C̃A, A is the unit vector along the fiber in the reference configuration, and the
coefficients µ̃ and µ are scalar-valued material parameters given by

µ̃ = µm
(1 + cf )µf + (1− cf )µm
(1− cf )µf + (1 + cf )µm

,

µ = µfc
f + µmc

m,

(27)

with 0 < cf < 1 the volume fraction of fiber, cm = 1 − cf the volume of fraction of matrix and
µf , µm the infinitesimal shear modulus of the fiber and matrix, respectively.

For transversely hyperelastic behaviour, the decomposition (26) was first adopted in [120] and
[42] and is also adopted by the quasi-totality of commercial and open-source finite element codes.

(a) µ̃ vs contrast (b) µ̄ vs contrast

Figure 3: Identification of the coefficients µ̃ and µ̄ for Poisson coefficient ν = 0.49 and for contrast
c ∈ [1, 2500].

Please note that the value c = 1 is utilized to validate the implementation of the methodology.
The test are performed with ν = νf = νm varying from 0.49 to 0.4999 and with cf = 0.196.

No specific numerical treatment has been used for the finite element approximation of the quasi-
incompressible matrix apart the use of quadratic elements. We verified the absence of locking
phenomenon by checking the regularity of the deformation with respect to the Poisson ratio when
it approaches 0.5. We perform the identification of the parameters of the homogenized law (26)
with a training set composed of 50 experiments for each of the 6 simple patterns of table 1 and
also for 9 additional patterns which are combinations of the simple ones as H̃i+H̃j for i ∈ {1, 2, 3}
and j ∈ {4, 5, 6}. The 50 experiments are regularly distributed in a logarithmic scale up to a
deformation of 30% and we use uniform weights (ω[α] = 1 in (23)). Then, we compare the results
with the theoretical values (27).
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(a) µ̃ vs contrast (b) µ̄ vs contrast

Figure 4: Identification of the coefficients µ̃ and µ̄ for Poisson coefficient ν = 0.4999 and for
contrast c ∈ [1, 2500].

The result of the identification, presented on fig. 3 for a Poisson coefficient ν = νf = νm = 0.49,
shows a relatively good agreement between the identified value of µ̃ and its theoretical value. On
the contrary, there is a significant difference for µ̄. This a priori means that ν = 0.49 is not close
enough to the incompressibility. The differences are much smaller on fig. 4 for a Poisson coefficient
ν = νf = νm = 0.4999 closer to the incompressibility limit for which the theoretical values (27)
are valid. Overall, these numerical experiments show that the identification based on a training
set allows to identify the homogenized law with a good accuracy.

4 Local error

In the case of the previous section, the homogenized law has been identified exactly and therefore
the decoupling does not induce additional approximation. In the general case where this identifica-
tion cannot be done exactly, the form of the chosen homogenized law corresponds to an additional
approximation. One way to measure the approximation made once the identification is done on a
particular training set, is to compute the local error between the homogenized law and the average
of second Piola-Kirchhoff tensor calculated on the RVE. For this purpose, the following local error
is introduced:

Err(H̃[α]) =

∥∥∥S̃h(p, H̃ [α])− S̃[α]
∥∥∥∥∥∥S̃[α]

∥∥∥ .

This error must be zero for any H̃ [α] in the case of exact decoupling. In the following sections, we
present numerical studies of this local error for different choices of homogenized laws.

For the rest of this study, the fiber is represented by a Saint-Venant Kirchhoff hyperelastic law
for which the potential reads

W̃SV K =
λf
2

[tr(E)]2 + µf tr(E2), (28)

with λf =
Efνf

(1+νf )(1−2νf ) and µf =
Ef

2(1+νf )
and Ef = 203GPa, νf = 0.3. This model only extends

the geometrically linear Hooke elastic material model to the geometrically nonlinear region as has
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been presented in [117]. Even though it appears to have deficiencies in large strain areas, it has
since attracted a lot of interest [3] [4] [95].

The matrix is represented by a compressible Mooney-Rivlin hyperelastic potential

WMR = c01,m(I1 − 3) + c10,m(I2 − 3) + d1,m(J − 1)2, (29)

with c01,i = Em
4(1+νm) , c10,i = 0.15c01,i, d1,i = Em

6(1−2νm) and νm = 0.49 and for different values of Em

corresponding to different contrasts c =
Ef
Em

.
The incompressible version of the hyperelastic model (29) was first published by Melvin Mooney

in [62] and Ronald Rivlin later defined it in terms of invariants [88]. It is also to be noted that the
Mooney-Rivlin (MR) model is an extension of the NeoHookean model that attempts to improve
the accuracy by including a linear dependence on the second invariant I2 of the strain energy [45].

In both of the homogenized potentials below, we will study the difference between the local
error results of the identified coefficients of the homogenized law using the Sequential Least Squares
Programming (SLSQP) method. In this study, we will impose the constraints on positivity of
the coefficients to preserve the consistency of the law and the training set is still build using 50
experiments for each of the 6 simple patterns of table 1 and also for 9 additional patterns as
described in section 3.4.

4.1 Slightly compressible hyperelastic model : original decoupled Kaliske’s
transversely isotropic law

One way to develop hyperelastic models is to extend existing incompressible hyperelastic models
to compressible behaviour. This is done by assuming an additive split of the strain energy into
two parts: a volumetric Wvol strain energy depending on volume change invariant J and a iso-
choric (deviatoric) Wisc one function of isochoric strain C̃. This is inspiring by the multiplicative
decomposition of the deformation gradient introduced in [26]:

W̃h(C̃, J ;A) = Wvol(J) +Wisc(C̃;A), (30)

This decomposition (30), originally proposed for isotropic behaviour when the hydrostatic
Cauchy stress is a function only of J [73], should verify some constraint. For incompressible
behaviour J = 1, the strain energy W̃h(J = 1, C̃;A) should recover a known incompressible
hyperelastic model with the constraint Wvol(J = 1) = 0 and depend on (I4, I5) invariant [51]. In
the case of small deformations, the strain energy should be compatible with the linear elasticity
theory. Notice that the split into bulk and deviatoric strain energies has the convenience of
facilitating material identification through bulk and shear responses. This decoupled sum of strain
energies is also crucial for improving the finite element implementation to avoid numerical locking
problems for nearly incompressible analysis [103]. Attention should be made for material behaviour
that is not nearly incompressible, the decomposition leads to unphysical responses [15].

The key question addressed here is if the decomposition (30) is also available for anisotropic
behaviour. For the moment, the strain energy decoupled form is adopted.

In this work, the homogenized material is modelled by a hyperelastic potential as a sum of a
volumetric energy function of the Jacobian Wvol which is the response of the material to volume
changes and an isochoric energy function Wisc depends only on the distortional part of the defor-
mation which can be divided into Wiso and Waniso for the energy contributions of the matrix as
domineering ground substance and and the fibers, respectively:

Wvol = D(J − 1)2, (31)

Wisc = Wiso(I1, I2) +Waniso(I4, I5;A), (32)
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where the isochoric invariants of C̃ are defined as I2 = 1
2(tr2(C̃) − tr(C̃

2
)), for the first layer

I4 = A.C̃A, I5 = A.C̃
2
A and A still being a unit vector along the layer fiber.

(a) c = 10 (b) c = 150

(c) c = 2000
Figure 5: Local error for Kaliske’s transverse isotropic law with respect to the deformation and
three different contrasts

The isochoric strain energy density function of Kaliske, as presented in [49] and in particular
used in a similar context for periodic unidirectional composite layer in [111], reduces to

Wiso =
3∑
i=1

ai(I1 − 3)i +
3∑
j=1

bj(I2 − 3)j , (33)

Waniso =
6∑

k=2

ck(I4 − 1)k +
6∑
l=2

dl(I5 − 1)l. (34)

The tests are performed for a range of deformations up to 30% and for three different contrast
values (c = 10, c = 150 and c = 2000).
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(a) c = 10 (b) c = 150

(c) c = 2000
Figure 6: Local error for the variant of Kaliske’s transverse isotropic law with respect to the
deformation and three different contrasts

The local errors shown in fig. 5 are quite large, except for the lowest contrast value (c = 10)
and even for small deformations. Our interpretation of this very poor approximation for a high
value of the contrast is that isochoric invariants I1, I2, and especially I4 and I5 being insensitive
to uniform compression, the only term in Kaliske’s law which is responsible for the response to a
uniform compression is the volumetric one. This means in particular that a uniform compression
result in an isotropic response, even for a high value of the contrast, which is not the expected
behavior. Our conclusion is that Kaliske’s law cannot be used for a high value of contrast in
the context of our study (nearly incompressible matrix and compressible fiber) and we therefore
propose a variant for the anisotropic part in the next section.

The analysis done below is corroborated by theoretical and numerical works. In fact, it seems
that the decomposition was generalized to anisotropic behaviour [120] and [41] without theoretical,
numerical and experimental analysis. Firstly, it is shown that the fibers play no role for a cube or
a sphere under hydrostatic tension [37] [68] [118] [71] [29] [79]. Secondly, the decomposition is not
compatible with anisotropic linear elastic theory [94] [20] [78] [63] as it is expected to be for any
nonlinear theory [82].
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4.2 Modified slightly compressible hyperelastic model : Variant of Kaliske’s
transverse isotropic law

Following the conclusion of the previous section that the deficiency of Kaliske’s law comes from
the fact that isochoric invariants are used even for the anisotropic part, which does not fit well
with the numerical experiments on the RVE, we propose a variant of this law replacing the strain
energy density function (34) for the anisotropic part by the following one which uses standard
invariants:

Waniso =

6∑
k=2

ck(I4 − 1)k +

6∑
l=2

dl(I5 − 1)l. (35)

This enrichment of the anisotropic part of hyperelastic model (34) was first proposed in [71]
[119] and its prediction capability was attested in [70]. Notice that another enrichment of the
anisotropic part of hyperelastic model (34) was proposed in [29] by assuming that the hydrostatic
Cauchy stress is a function of volume change and anisotropic invariants. There are also other
theoretical contributions to overcome the drawback of the volumetric/deviatoric strain energy
decomposition performed in [78][63].

The corresponding local errors can be seen in fig. 6. The error level is slightly higher for the
contrast (c = 10) for moderate deformations. Along with this, there is a huge improvement of the
approximation for high values of contrast, with less than 5% of error and no degradation for large
deformations.

In the context of the rest of our study, we will focus on a high value of contrast (c = 2000)
compatible with a couple of materials such as rubber and steel. Consequently, we will consider
only this variant of Kaliske’s law instead of the original one.

4.3 Bonet’s transverse isotropic law

An alternative approach to avoid the drawback of the volumetric/isochoric multiplicative decom-
position of the deformation gradient can be described well by the fiber-reinforced continuum me-
chanics theory of [17, 105]. To do this, a phenomenological approach is usually adopted and the
anisotropic compressible hyperelastic potential is expressed in various functional forms such as a
series of polynomials or exponentials within the framework of the invariant theory [97, 99, 8, 75, 76].

In this work, Bonet’s transverse isotropic potential [7] is considered, which is a combination of
an isotropic strain energy density function Wiso characterising the rubber type of materials in the
large strain (NeoHookean potential), and a transverse one Wtrn defined as follows:

W̃h = Wiso +Wtrn, (36)

Wiso = µiso(
1

2
(I1 − 3)− ln(J)) +

λiso
2

(ln(J))2, (37)

Wtrn = (atr + btr ln(J) + ctr(I4 − 1))(I4 − 1)− (
1

2
atr + dtr ln(J))(I5 − 1), (38)

where I1 = tr(C̃), I4 = A.C̃A, I5 = A.C̃2A, and A still being a unit vector along the fiber
in the reference configuration. Note that we consider an improved version of [69] instead of the
original one in [7] where btr ln(J) replaces btr(I1 − 3) and dtrn ln(J)(I5 − 1) is added to improve
the identification of the homogenized material parameters [51]. This strain energy decomposition
(36) into isotropic (37) and anisotropic (38) parts was suggested in [42] to simplify the model
complexity and to facilitate model’s parameters experimental identification.
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(a) c = 10 (b) c = 150

(c) c = 2000
Figure 7: Local error for Bonet’s transverse isotropic law with respect to the deformation and
three different contrasts

This hyperelastic model decoupled assumption is motivated by physical arguments coming
from the fiber and matrix behaviour which are assumed isotropic. At small deformation, the
fibres, which are more rigid than the matrix, are less active and then the behaviour is governed by
isotropic strain energy part. At large deformation, the fibres come into play (it is their role), the
anisotropic strain energy part pilots the mechanical behaviour.

The numerical tests are identical to those performed for Kaliske’s traditional decoupled model
in the previous section. After identification, the local errors are shown in fig. 7 for three selected
deformation patterns of table 1 and two additional mixed ones. A local error less than 5% is
only obtained for a low contrast (c = 10) and for small deformations (less than 1%). Moreover,
for that contrast, there is an important degradation of the approximation for large deformations.
For a high contrast (c = 150 and c=2000) the maximal local error is about 10% for moderate
deformations. The degradation for large deformations is less important, except for the last mixed
deformation pattern (compression z and xy shear).
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5 Correction method

5.1 Test on a complete fiber reinforced layer

In order to test the relevance of the homogenization procedure, we make a comparative test be-
tween the deformation of a fully meshed fiber reinforced layer and of the same structure using the
homogenized law. The tests are conducted with quadratic Lagrange elements in our finite element
library GetFEM++ [84] (using a fifth-order cubature method with 15 points).

(a) Full mesh (b) Mesh for the homogenized layer

Figure 8: Meshes for the fiber reinforced layer: (a) mesh of the fibers and matrix for the full
computation and (b) simpler mesh for the homogenized law

(a) Bonet’s law (b) Kaliske variant’s law

(c) fully meshed model
Figure 9: Comparison of the deformation of the layer obtained after homogenization with Bonets’s
law (a), Kaliske variant’s law (b) and without homogenization with the fully meshed model (c).

Denoting Ũe the approximated displacement of the complete FE model and Ũh the one which
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uses the homogenized law, we consider the following relative global error

Err =

∥∥∥Ũh − Ũe

∥∥∥∥∥∥Ũe

∥∥∥ , where
∥∥∥Ũe

∥∥∥ =

(∫
B̃0
|Ũe|2dṼ

)1/2

.

Of course, this error reflects several approximations: the finite element one, the homogenization
principle itself and finally, what’s interest to us, the approximation due to the choice of parametric
constitutive law in the decoupled homogenization.

The meshes used for the heterogenous computation and the homogenized one are represented
in fig. 8. These meshes has been selected after a convergence test and ensure a good quality of
the solution and, as far as we checked, no numerical locking effects. The deformation obtained for
the fully meshed model, the homogenized one using Bonet’s law and the homogenized one using
Kaliske variant’s law can be seen in fig. 9 for comparison. A zoom of a superposition of the three
deformations is also presented in fig. 10 where it is possible to see that Kaliske variant’s law allow
a slightly better approximation than Bonet’s law.

Figure 10: Zoom of the superposition of the deformation for the three situations: full model,
homogenized one with Bonet’s law, homogenized one with Kaliske variant’s law

5.2 Correction method

In order to improve the quality of the approximation provided by the decoupled method, we propose
an iterative method whose objective is to adapt the optimization of the homogenized law to the
considered structural computation at a much lower computational cost than the FE2 method [22].

The reference configuration B̃0 of the macroscopic structure is divided into a certain number
of parallelepipedic element volumes

B[α]p , α = 1...nvol,

distributed all over the structure. As far as possible, the chosen volumes should be representative
of the micro-structure. However, this does not seem mandatory and their number should not be
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excessive in order not to penalize the calculation time. These volumes can also be placed in zones
of interest of the considered structure. The proposed method can then be divided into the following
steps:

1. Determine a training set by the choice of H̃[α], α = 1...ntest deformation patterns and the
computation of the corresponding S̃[α] by ntest computations on the micro-scale BVP. Choose
a set of weights w[α], α = 1...ntest.

2. Perform the identification of the coefficients of the homogenized law with the considered
training set by minimization of (23).

3. Compute a finite element approximation uh of the displacement of the structure by solving
numerically the decoupled macro-scale BVP using the homogenized law.

4. On each volume B[α]p , compute numerically the average of deformation

H̃[α]
p =

1

|B[α]p |

∫
B[α]p

∇uhdV,

and the corresponding average of second Piola-Kirchhoff tensor S̃
[α]
p by nvol computations on

the micro-scale BVP.

5. Loop to step 2 with the initial training set completed by H̃
[α]
p , S̃

[α]
p , α = 1...nvol with some

chosen weights w
[α]
p , α = 1...nvol.

In order to test the correction method, we use different weights ω = 1, 10, 100 for the deforma-
tion test flexion with two fixed edges with a deformation force density of 2MPa and in our case
the number of parallelepipedic element volumes of the layer is nvol = 50 (the weights for the initial
training set are kept uniform to the value ω = 1),

Fig. 11 shows the error distribution between the heterogeneous reference solution and the
homogenized problem solution before and after a correction step using Bonet’s potential. The
global error and the local errors on the element volumes of the layer are reported in table 6. We
can see a significant improvement from the first iteration for all considered weights, whether on

the global error or on the local errors. In the considered case, the weight of w
[α]
p = 10 for the layer

volumes seems to be the best compromise, a weight of w
[α]
p = 100 degrades a little the results. We

can also notice that the next iterations (2 and 3) do not allow to improve the errors, either global
or local. These errors remain very close or even with a slight degradation. We can conclude that
the main part of the correction in this case is done at the first iteration of correction.

Figure 11: Error distribution before correction for Bonet’s potential (left) and after correction
(right)
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Before correction weight
After correction

1 iteration 2 iterations 3 iterations

Global error
Errg = 10.13%

1 Errg = 4.33% Errg = 4.75% Errg = 4.72%

10 Errg = 1.65% Errg = 1.8% Errg = 1.77%

100 Errg = 1.81% Errg = 1.67% Errg = 1.68%

Average local
Erral = 18.31%

1 Erral = 12.48% Erral = 12.77% Erral = 12.74%

error on layer 10 Erral = 10.19% Erral = 10.07% Erral = 10.09%

volume elements 100 Erral = 9.34% Erral = 9.25% Erral = 9.24%

Table 6: Layer’s global and local errors for Bonet’s potential for a contrast c = 2000

Fig. 12 and table 7 show the same experiments but using the variant of Kaliske’s potential.
Overall, it can be seen that the error level is comparable and slightly lower than that for Bonet’s
potential, although this does not represent a significant advantage.

Figure 12: Error distribution before correction for the variant of Kaliske’s potential (left) and after
correction (right)

Before correction weight
After correction

1 iteration 2 iterations 3 iterations

Global error
Errg = 8.31%

1 Errg = 3.24% Errg = 3.47% Errg = 3.46%

10 Errg = 1.65% Errg = 1.75% Errg = 1.74%

100 Errg = 1.72% Errg = 1.65% Errg = 1.66%

Average local
Erral = 18.04%

1 Erral = 12.98% Erral = 13.14% Erral = 13.12%

error on layer 10 Erral = 9.61% Erral = 9.82% Erral = 9.86%

volume elements 100 Erral = 9.19% Erral = 9.32% Erral = 9.30%

Table 7: Layer’s global and local error for Kaliske’s potential variant for a contrast c = 2000

These results on the considered experiment, show that quite low levels of error can be reached
with both Bonet’s and Kaliske variant potential with the proposed method, at the considered
deformation level. Even if Bonet’s potential gives slightly larger errors, it can be a good compromise
since the number of parameters to be identified is more restricted than for the Kaliske variant
potential (5 instead of 16) which leads to a lower computational cost.
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6 Conclusion

The aim of this study was the design of a homogenization procedure having a relatively low
computational cost and ensuring a good accuracy in the framework of fiber reinforced layers in
large elastic deformations. We presented an iterative method whose numerical cost is intermediate
between the decoupled method of Terada et al. [111] and the FE2 method and tested two isotropic
transverse laws, Bonet’s and Kaliske variant’s ones, having a small number of parameter, still in
the aim to limit the computational cost.

This method allows a substantial gain in accuracy at a much lower numerical cost than the FE2.
As a comparison, on the numerical study that we presented on section 5.2, each iteration of our
method requires a standard finite element structural computation using the homogenized law, a
computation on the RVE for each of the 50 elementary volumes of the layer and the identification
of the coefficients of the homogenized law (which is done in an extremely short time). On the
contrary, the FE2 method requires a calculation on the RVE for each Gauss point of the finite
element approximation (approximatively 20,000 in our case) and for each iteration of the Newton
algorithm used to solve the global problem (more or less 10 iterations in our case). This leads us
to estimate that our method requires about 1000 times less computing resources than the FE2

method in this case.
The numerical results in section 5.2 indicate that it is preferable to give large weight to nu-

merical experiments based on the layer deformation. However, the homogenized law obviously
cannot be trained solely on these layer deformations, as these can be relatively uniform in terms
of deformation and loading and lead to aberrant coefficients. It is therefore necessary to keep a
large panel of deformations from the table 1. The choice of the number of deformation patterns
and the range of deformation intensities (50 experiments for each of the 6 simple patterns of table
1 and also for 9 additional patterns distributed in a logarithmic scale up to a deformation of 30%)
enabled us to obtain a robust identification. Note also that only the experiments in section 3.4
attempt to approximate a case of strict incompressibility for the homogenized law. In this case,
the strategy to work with quasi-incompressible laws yielded very satisfactory results. For the test
cases in section 4, the materials on the RVE have Poisson’s ratios of 0.49 for the matrix and 0.3
for the fiber. Since the homogenized material has an intermediate Poisson’s ratio, it is quite far
from strict incompressibility.

From the presented numerical study, we conclude that original Kaliske’s law is not convenient
for high value of contrast of rigidity between the two materials and we propose a variant which
allows a better approximation.

Other classes of potentials, even fully parametric ones, could of course be considered in cases
the given precision would be insufficient. This would be the case for instance when the complexity
of the micro-struture or the level of deformation may induce some instabilities at the microscopic
level (for instance with debonding, buckling or micro-fracturing, see [30, 32]).

In this framework, as it is often very difficult to compute reference solutions on a complex
heterogeneous structure because of a prohibitive computational cost, the tests on local errors on
volume elements of the macroscopic structure allow to have an interesting estimate of the error
made by the choice of the homogenized law.

Acknowledgements

The present work is realized as a part of a scientific collaboration with La Manufacture Franccaise
des Pneumatiques MICHELIN. The authors are grateful for financial support and rich discussions.
It was also financially supported by the Tunis El Manar University and the “PHC Utique” program

23



of the French Ministry of Foreign Affairs and Ministry of higher education, research and innovation
and the Tunisian Ministry of higher education and scientific research in the CMCU project number
22G1123.

References

[1] Adkins, J. E., and Rivlin, R. S. Large elastic deformations of isotropic materials x. rein-
forcement by inextensible cords. Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences 248, 944 (1955), 201–223.
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