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Abstract

We study a variant of a robust description source coding framework via its corresponding character-

ization, which is a relevant model for goal-oriented semantic information transmission. Considering two

individual single-letter separable distortion constraints and input and output data acting as the intrinsic

and extrinsic message, respectively, we first derive bounds on the optimal rates of the problem, as well as

necessary and sufficient conditions for these bounds to be tight. Subsequently, we prove a general result

that provides in parametric form the optimal solution of the characterization of this problem. Capitalizing

on these results, we examine the structure of the solution for one case study of general binary alphabets

under Hamming distortions and solve in closed form a special case. We also solve another general

binary alphabet case where a Hamming and an erasure distortion coexist, as a means to highlight the

importance of selecting the type of the distortion constraint in goal-oriented semantic communication. We

also develop a semantic-aware Blahut-Arimoto (BA) algorithm, which can be used for the computation

of any finite alphabet intrinsic or extrinsic message under individual distortion criteria. Finally, we

revisit the problem for multidimensional independent and identically distributed (IID) jointly Gaussian

processes with individual mean-square error (MSE) distortion constraints, providing new insights that

have previously been overlooked. This work reveals the cardinal role of context-dependent fidelity

criteria in goal-oriented semantic communication.

I. INTRODUCTION

Shannon, in his seminal work [2], has deliberately considered the semantic aspects and the

effectiveness of transmitted messages as irrelevant to the communication problem. Setting aside
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an issue which is otherwise confusing, this dichotomy between information content and its signif-

icance has been instrumental in achieving reliability and efficiency in information transmission

over noisy channels. Nevertheless, in [3], Shannon has indirectly provided a means to study

semantic information sources because the coding aspect determined by the probabilistic model

of the source is dictated by a distortion constraint imposed in the system. Various endeavors

have been made to incorporate semantics into Shannon’s communication theory. Letting aside

epistemic and doxastic logic theories, the most important efforts include probabilistic logic ap-

proaches [4]–[7], complexity theory approaches [8], [9], and semantic coding and communication

games [10], [11]. The effectiveness problem has been considered using the concepts of pragmatic

information [12] and value of information [13], [14]. Nevertheless, Shannon’s communication

model has remained virtually unchallenged. None of the proposed extensions has ever been

recognized as a general theory of semantic or pragmatic information. The aforementioned theories

have remained at a conceptual level, failing to have any tangible practical applications to or

impact on communication networks. The quest for a goal-oriented semantic communication

theory has recently gained new impetus [15]–[18], fueled by the emergence of networks of

autonomous agents with advanced sensing, learning, and decision-making capabilities.

In this work, we consider the problem of communicating a memoryless source, whose se-

mantic, remote or intrinsic information is not directly observable, based on noisy observations.

Our objective is to investigate the impact of context-dependent fidelity criteria and distortion

measures on goal-oriented information transmission and semantic source reconstruction. For that,

we revisit a lossy compression framework, recently introduced in [19], [20], considering both

finite alphabets and Gaussian i.i.d random variables (RVs), and we study the effect of multiple

individual distortion criteria in goal-oriented semantic information transmission. The objective of

this work is twofold. First, we aim at complementing and extending the work in [20], which only

considers continuous alphabet sources (i.e., i.i.d Gaussian sources) and mean-square error (MSE)

distortion criteria, providing results and new insights that have been overlooked in prior work.

Second, we aim at further emphasizing on the role of the context-dependent fidelity criteria in

goal-oriented semantic communication by showing cases with new outcomes that do not appear

through the analysis of [19], [20].
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A. Related work

The problem considered here falls within the realm of remote source coding problem [21]–[23]

and rate distortion with multiple distortion constraints [24], [25], [26, Problem 10.19]. The most

closely related setup to our work is the rate distortion framework introduced in [19], [20], which

provides characterizations and optimal closed form expressions for i.i.d scalar-valued Gaussian

processes and sub-optimal characterizations assuming linear based state-observation models with

Gaussian observations with ways to numerically compute the solution beyond scalar RVs. Some

additional results in [19], include a case study for the classification of a binary uniform semantic

source with an extrinsic observable scalar-valued Gaussian mixture model. It should be noted that

the rate distortion framework considered here and in [19], [20] can be seen as a generalization

of the robust description problem for two individual distortion criteria, which in turn is a special

case of the two description coding problem [24]. Rate distortion with two individual distortion

criteria has been studied in many papers under various contexts, see, e.g., [27]–[30]. Another

relevant yet different setup is the recently introduced rate-distortion-perception representations,

see, e.g., [31], [32] (and the references therein), in which perception quality, measured by some

divergence between distributions, is included in addition to the classical distortion criterion.

One major difference between rate-distortion-perception problems and the setup here is that in

the former the characterizations are solved for various examples using separately each distortion

constraint, whereas in the latter, one can study from an optimization standpoint the joint behavior

of the two distortion penalties.

B. Contributions

In this paper, we consider a variation of the robust lossy source coding model, similarly to [19],

[20], which captures goal-oriented semantic attributes and intrinsic representation of information

(e.g., features, structural/qualitative properties, embedding). For this setup and its corresponding

characterization (see Lemma 1, eq. (6)), we derive the following new results.

• We obtain bounds on the semantic rate distortion function (cf. (6)) and identify necessary

and sufficient conditions based on which these bounds can be tight (see Lemma 2).

• We prove a general theorem, which gives parametrically the implicit solution of (6) for

arbitrary finite alphabet sets with individual semantic and observable distortion criteria (see

Theorem 1).
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• We develop a semantic-aware Blahut-Arimoto algorithm (see Algorithm 1) that allows the

computation of (6) for any finite alphabet set of intrinsic or extrinsic messages with arbitrary

individual single-letter distortion criteria.

• We revisit the problem for multidimensional jointly Gaussian RVs with individual MSE

distortion constraints, initially studied in [20, Section IV], providing a different angle that

is also aligned to the proposed semantic information transmission setup and our findings.

For this class of input data we also derive an example that demonstrates the non-triviality

of our lower bound in Lemma 2 (see Example 2).

The aforementioned results are not the sole contributions of this paper. Lemma 2 and Theorem

1 are applied into two examples (see Problems 1, 2) using specific setups with general binary

alphabets and two types of distortion measures, namely Hamming and erasure distortions. For

Problem 1, we derive structural properties on the optimal minimizer (test channel) consistent

with Lemma 2 and characterize its solution (see Theorem 2). We enhance this result by solving

in closed form a special case to illustrate the rate distortion surface of the problem (see Example

1). For Problem 2, we characterize and solve in closed form the solution (see Theorem 3). An

interesting observation that stems from Theorem 3 is that depending on the distortion constraint,

we can make the system choose which source (i.e, semantic or observation) to transmit. Simply

put, in goal-oriented semantic communication, selecting the type of individual distortion mea-

sures or context-dependent fidelity criteria according to the application/task requirements can

significantly affect the remote reconstruction of the semantic source.

II. PROBLEM STATEMENT AND NEW BOUNDS

We consider a memoryless source described by the tuple (x, z) with probability distribution

p(x, z) in the product alphabet space X ×Z . The semantic or intrinsic information of the source

is in x, which is not directly observable, whereas z is the noisy observation of the source at

the encoder side. The goal is to study how the distortion penalties can affect goal-oriented

information transmission and source reconstruction using lossy compression.

Formally, the system model (without the distortion penalties) is illustrated in Fig. 1 and can

be interpreted as follows. An information source is a sequence of n-length i.i.d RVs (xn, zn).

In this setup, we assume we know p(x) and the transition probability distribution p(z|x). The
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encoder (E) and the decoder (D), are modeled by the mappings

fE : Zn →W

gDo :W → Ẑn, gDs :W → X̂ n
, (1)

where the index set W ∈ {1, 2, . . . ,M} and (gDo , g
D
s ) denote the observations and semantic

information decoder, respectively.

Encoder Decoderp z xn n( | )
nznx ( )Ef nz W

ˆ ˆ )n n(x ,z

Fig. 1: System model.

We consider two per-letter distortion measures responsible to penalize the semantic and obser-

vations information source in Fig. 1, given by ds : X ×X̂ 7→ [0,∞) and do : Z ×Ẑ 7→ [0,∞),

respectively, and their corresponding average per-symbol distortions by

dns (x
n, x̂n) =

1

n

n∑
t=1

ds(xi, x̂i) (2)

dno (z
n, ẑn) =

1

n

n∑
t=1

do(zi, ẑi). (3)

The encoding and decoding is done in blocks of length n and the fidelity criterion for the

semantic and observable information is the pair of average distortions defined as

∆s ≜ E {dns (xn, x̂n)} , ∆o ≜ E {dno (zn, ẑn)} . (4)

Next, we give the definitions of the achievable rates and the infimum of all achievable rates.

Definition 1. For two distortion levels Do ≥ 0, Ds ≥ 0, a number R is said to be (Do, Ds)−achievable

if for an arbitrary ϵ > 0, there exists, for n large enough, a semantic-aware lossy source code

(n,M,∆o,∆s) with M ≤ 2n(R+ϵ) such that ∆o ≤ Do + ϵ and ∆s ≤ Ds + ϵ. Moreover, suppose

that sequences of distortion functions {(dno , dns ) : n = 1, 2, . . .} are given. Then,

R(Do, Ds) = inf {R : (R,Do, Ds) is achievable} . (5)

The goal of the setup in Fig. 1 and of our results in the following sections is to further

demonstrate the impact of the fidelity criterion in a remote source coding problem with individual

distortion measures.
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A. Characterization of the operational rates

The information theoretic characterization of (5) is given by the following lemma.

Lemma 1. For a given p(x) and p(z|x), the semantic rate distortion function (SRDF) of the

setup in Fig. 1 is characterized as follows

R(Ds, Do) = inf
q(ẑ,x̂|z)

E[d̂s(z,x̂)]≤Ds

E[do(z,ẑ)]≤Do

I(z; ẑ, x̂), (6)

where d̂s(z, x̂) =
∑

x∈X p(x|z)ds(x, x̂), Ds ∈ [0,∞], Do ∈ [0,∞],

I(z; ẑ, x̂) ≜ E

[
log

(
q(ẑ, x̂|z)
ν(ẑ, x̂)

)]
≡ I(p,q), (7)

with I(p,q) demonstrating the functional dependence of the mutual information on {p(z), q(ẑ, x̂|z)}.

A detailed proof of Lemma 1 is omitted because the achievability part follows from a special

case of the achievability proof of the multiple description source coding problem called robust

description [24, Theorem 2] in view of the fact that one can modify the indirect to a direct rate

distortion function (RDF) formulation using an amended version for the semantic distortion con-

straint, i.e., E [ds(x
n, x̂n)] = E

[
d̂s(z

n, x̂n)
]

(see e.g., [19, Theorem 1] and references therein).

Although the converse part is not provided due to space limitations, it can be easily obtained

following standard arguments, see, e.g., [26, p. 316].

We conclude this subsection with certain functional and topological properties of (6).

Remark 1. The following functional properties of SRDF can be obtained using standard argu-

ments that stem from classical rate distortion theory, see, e.g., [25].

(i) R(Do, Ds) is a non-increasing function of Ds ∈ [0,∞) and Do ∈ [0,∞) and (jointly)

convex with respect to (Ds, Do).

(ii) In (6), I(p,q) is a convex functional of q(ẑ, x̂|z) for a fixed p(z).

(iii) If R(Do, Ds) <∞, then R(·) is continuous for Do ∈ [0,∞) and Ds ∈ [0,∞).

We conclude this remark by pointing out that the constrained set in (6) is compact (for both finite

or abstract alphabets) and the objective function in (6) is lower semi-continuous with respect

to q(ẑ, x̂|z). As a result, from Weierstrass extreme value theorem, we know that the infimum is

attained by a q∗(ẑ, x̂|z) and we can formally replace it with minimum in the sequel.
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B. Bounds and conditions for the tightness of these bounds

In what follows, we derive new bounds on (6), as well as information structures (i.e., condi-

tional independence constraints) that allow for these bounds to be tight.

Lemma 2. (1) The optimization problem in (6) admits the following bounds:

max {R(Ds), R(Do)} = RL(Do, Ds) ≤ (6) ≤ RU(Do, Ds) = R(Do) +R(Ds), (8)

where (R(Ds), R(Do)) represent the standard direct and indirect RDFs obtained via their

individual distortion criteria, i.e,,

R(Do) = min
q(ẑ|z)

E{do(z,ẑ)}≤Do

I(z; ẑ), and R(Ds) = min
q(x̂|z)

E{d̂s(z,x̂)}≤Ds

I(z; x̂). (9)

(2) RL(Do, Ds) is tight if and only if

z− ẑ− x̂ and z− x̂− ẑ, (10)

are concurrently satisfied. On the other hand, RU(Do, Ds) is tight if and only if

ẑ− z− x̂, (11)

is satisfied.

Proof: (1) Clearly, RL(Do, Ds) in (8) corresponds to the best possibly achievable rates

because (6) cannot be lower than the best rate achieved in either less constrained problem

(individual rate distortion problems in (9)). On the other hand, RU(Do, Ds) in (8) is always

allowed because we can always minimize assuming ẑ independent of x̂ (denoted herein after by

ẑ ⊥ x̂), i.e., ν(ẑ, x̂) = ν(ẑ)ν(x̂). (2) Next, we derive conditional independent constraints (i.e.,

information structures) which allow the bounds on (6) to be tight. Recall that by the chain rule

of mutual information (7) (see, e.g., [26]), we have

I(z; ẑ, x̂) = I(z; x̂) + I(z; ẑ|x̂) = I(z; ẑ) + I(z; x̂|ẑ). (12)

From (12), we obtain

I(z; ẑ, x̂)
(a)

≥ I(z; x̂), I(z; ẑ, x̂)
(b)

≥ I(z; ẑ), (13)

where (a) follows from the fact that I(z; ẑ|x̂) ≥ 0 and (b) follows from the fact that I(z; x̂|ẑ) ≥ 0.

Clearly the bounds in (13) are tight if and only if for inequality (a) I∗(z; ẑ|x̂) = 0, i.e., the Markov

chain z − x̂ − ẑ holds and for inequality (b) I∗(z; x̂|ẑ) = 0, i.e., the Markov chain z − ẑ − x̂

holds. In view of the previous simple observation we arrive to the following bounds on (6).
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Case 1: R(Do, Ds)
(c)

≥ R(Ds) where (c) holds with equality if and only if the condition of

inequality (13), (a) holds.

Case 2: R(Do, Ds)
(d)

≥ R(Do) where (d) holds with equality if and only if the condition of

inequality (13), (b) holds.

If both Case 1 and Case 2 are concurrently true, i.e., (10) holds, then, from Lagrange

duality theorem [33], we can write the individual unconstrained dual problems for R(Ds) and

R(Do) associated with their corresponding Lagrangian multipliers, say (s1, s2), and choose the

Lagrangian multiplier that corresponds to the maximal rates between R(Ds) and R(Do) which

means precisely RL(Ds, Do) in (8).

Now for RU(Ds, Do) to be tight, we need to make sure that provided that if x̂ ⊥ ẑ, the set of

minimizers in (6) coincides with the smaller set of the individual minimizers in both problems

in (9), i.e., q(x̂, ẑ|z) = q(x̂|z)q(ẑ|z), which is guaranteed if and only if (11) is satisfied. In other

words, from (7) we obtain

(7)
(e)
= E

[
log

(
q(ẑ|z)q(x̂|z)
ν(ẑ)ν(x̂)

)]
= I(z; ẑ) + I(z; x̂) (14)

where (e) follows if and only if (11) is true. The equality in (14) implies that the upper bound

in (8) is tight. This completes the proof.

III. MAIN RESULTS

In this section, we provide the majority of our new results. Before giving our first result, we

note that the constrained problem in Lemma 1 can be written as an unconstrained problem via

the Lagrange duality theorem [33] as follows

R(Do, Ds) = max
s1≤0
s2≤0

min
q(ẑ,x̂|z)≥0∑
ẑ,ẑ q(ẑ,x̂|z)=1

{
I(z; ẑ, x̂)− s1

(
E
[
d̂s(z, x̂)

]
−Ds

)
− s2 (E [do(z, ẑ)]−Do)

}
(15)

where s1 ≤ 0 and s2 ≤ 0 are the Lagrange multipliers.

In view of (15) we can prove the following general result.

Theorem 1. Suppose that p(x) and p(z|x) are given. Then, the following parametric solutions

for (6) may appear.
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(i) If s1 < 0 and s2 < 0, the implicit optimal form of the minimizer that achieves the minimum

in (6) is

q∗(ẑ, x̂|z) = es1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)∑
ẑ,x̂ e

s1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)
(16)

where (s1, s2) are the Lagrange multipliers associated with the individual distortion penal-

ties and ν∗(ẑ, x̂) =
∑

z q
∗(ẑ, x̂|z)p(z) is the Ẑ ×X̂ -marginal of the output process (ẑn, x̂n).

Moreover, the optimal parametric solution of (6) when R(D∗
s , D

∗
0) > 0 is given by

R(D∗
o, D

∗
s) = s1D

∗
s + s2D

∗
o −

∑
z

p(z) log

∑
ẑ,x̂

es1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)

 , (17)

where

D∗
s =

∑
z,x̂

d̂s(z, x̂)q
∗(x̂|z)p(z), (18)

D∗
o =

∑
z,ẑ

do(z, ẑ)q
∗(ẑ|z)p(z), (19)

and q∗(x̂|z) =
∑

ẑ q
∗(ẑ, x̂|z), q∗(ẑ|z) =

∑
x̂ q

∗(ẑ, x̂|z).

(ii) If s1 < 0, s2 = 0, and R(D∗
s , D

∗
0) > 0, we obtain

R(D∗
o, D

∗
s) ≡ R(D∗

s) = s1D
∗
s −

∑
z

p(z) log

(∑
x̂

es1d̂s(z,x̂)ν∗(x̂)

)
, (20)

where D∗
s is given by (18) and q∗(x̂|z) = es1d̂s(z,x̂)ν∗(x̂)∑

x̂ es1d̂s(z,x̂)ν∗(x̂)
.

(iii) If s1 = 0, s2 < 0, and R(D∗
s , D

∗
0) > 0, we obtain

R(D∗
o, D

∗
s) ≡ R(D∗

o) = s2D
∗
o −

∑
z

p(z) log

(∑
ẑ

es2do(z,ẑ)ν∗(ẑ)

)
, (21)

where D∗
s is given by (19) and q∗(ẑ|z) = es1do(z,ẑ)ν∗(ẑ)∑

ẑ e
s1do(z,ẑ)ν∗(ẑ)

.

(iv) If s1 = 0 and s2 = 0, then, R(D∗
o, D

∗
s) = 0.

Proof: See Appendix A.

Theorem 1 is pivotal as it can be used in various ways including the derivation of analytical

expressions of (6) or for the construction of generalizations of the BA algorithm [34], which

can optimally find parametrically the solution of (6) for arbitrary finite alphabet sets and general

bounded distortion functions. In the sequel we also study these directions.
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A. Binary alphabets with individual Hamming distortions

In what follows, we utilize both Theorem 1 and Lemma 2 to study the case of binary alphabets,

i.e., X = Z = X̂ = Ẑ = {0, 1} with individual probability of error distortion penalties.

Problem 1. Suppose in the setup of Fig. 1, the remote source x and the noisy channel of z given

x are modeled as follows

p(x) =

p(x = 0)

p(x = 1)

 =

 α

1− α

 ,

p(z|x) =

p(z = 0|x = 0) p(z = 0|x = 1)

p(z = 1|x = 0) p(z = 1|x = 1)

 =

 β γ

1− β 1− γ

 (22)

where (α, β, γ) ∈ [0, 1]× [0, 1]× [0, 1], β ̸= γ1 and

ds(x, x̂) =

0 if x = x̂

1 if x ̸= x̂
, do(z, ẑ) =

0 if z = ẑ

1 if z ̸= ẑ
.

Remark 2. (Special case) If we assume that the model of the noisy channel in (22) becomes

“deterministic”, i.e., β = 1 and γ = 0, then, it can be easily shown that z = x and the problem

recovers the well-known robust description setup for binary alphabets studied in [24, Section

VII].

We provide now a major result of this paper.

Theorem 2. Consider the setup in Fig. 1 restricted to the given data of Problem 1. Then, the

following hold:

(i) the necessary and sufficient conditions in (10) hold;

(ii) R(D∗
o, D

∗
s) = RL(D∗

o, D
∗
s).

Proof: See Appendix B.

The general result of Theorem 2 shows that the rate-splitting bound in (8) is achievable for

the specific class of input data under the probability of error distortions assumed in Problem 1.

In what follows, we study the structural solution derived in Theorem 2. Recall that since

R(D∗
o, D

∗
s) = RL(D∗

o, D
∗
s) holds, then, we need to compute the rate distortion functions in (9).

1If β = γ then we end up having p(x, z) = p(x)p(z), which is not consistent with the setup we assume in Section II hence

this scenario is not allowed.
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For the direct rate distortion problem with binary source, it is relatively easy to see that the

closed form solution will be a straightforward generalization of the analytical solution derived

for instance in [26, Theorem 10.3.1], [25, Example 2.7.1], yielding

R(D∗
o) =

Hb(p̄)−Hb(Do), if 0 ≤ Do ≤ min{p̄, 1− p̄}

0, if Do > min{p̄, 1− p̄}
(23)

where p̄ = p(z = 0) is computed in (52) and Hb(·) denotes the binary entropy function. We

stress that an optimal closed form solution of the binary indirect RDF (9) is not known, in

general, and only bounds exist in the literature, see, e.g., [35]. Nevertheless, one can always use

straightforward generalizations of the classical BA iterative schemes to numerically compute the

optimal solution. The semantic-aware BA algorithm that we develop in the sequel, includes as

a special case this particular case.

Example 1. In the particular case where the semantic remote source is i.i.d Bernoulli(1
2
), i.e.,

p(x = 0) = 1
2
, and the binary channel in (22) is symmetric with p(z = 1|x = 1) = β = 1 − c

and crossover probability p(z = 0|x = 1) = γ = c, c ∈ [0, 1
2
)2, one can easily infer via (23) that

Hb(p̄) = 1 bit source/sample and

R(D∗
o) =

1−Hb(Do), if 0 ≤ Do ≤ 1
2

0, if Do >
1
2

. (24)

Moreover, for the same input data, it can be shown, see e.g., [25, Exercise 3.8], that

R(D∗
s) =

1−Hb

(
Ds−c
1−2c

)
, if β < Ds ≤ 1

2

0, if Ds >
1
2

. (25)

Substituting (24), (25) in Theorem 2 we obtain

R(D∗
o, D

∗
s) = max

{
[1−Hb(Do)]

+ ,

[
1−Hb

(
Ds − c

1− 2c

)]+}
(26)

where [·]+ = max{0, ·}. The rate distortion surface for c = 0.15 is displayed in Fig. 2.

Based on (26), we observe an interesting interplay between (c,Ds, Do) regarding the choice

of the maximum achievable rates. In particular, it appears that if Do > Ds−c
1−2c

, then the system

benefits more by encoding subject to a Hamming distortion only the semantic information,

2The result for c ∈ [ 1
2
, 1] can be treated similarly.
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Fig. 2: R(D∗
o, D

∗
s) for binary alphabets with an equiprobable semantic source and binary

symmetric channel with c = 0.15.

therefore the rate is R(D∗
s); whereas if Do < Ds−c

1−2c
the system benefits more by encoding

subject to its distortion the observable message of the source with rates R(D∗
o). Clearly, if

Do =
Ds−c
1−2c

, then, by encoding either the semantic information or the observations does not offer

any advantage for any value of the active distortion region.

Next, we study an extreme scenario to highlight the importance of the distortion measure in

the transmission or not of the semantic message. To do it, we consider two different individual

distortion constraints (i.e., a standard erasure distortion [26, Exercise 10.7] and a Hamming

distortion) to distinguish from Problem 1 where we have identical types of distortion constraints.

Problem 2. Suppose that in Problem 1, the semantic distortion ds(x, x̂) is replaced by the

standard erasure distortion as follows

ds(x, x̂) =


0 if x = x̂

1 if x = e

∞, x ̸= x̂

, (27)

where X̂ = {0, e, 1}.

Based on the given data of Problem 2, we derive the following solution for the SRDF

characterization.
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Theorem 3. Consider the setup in Fig. 1 restricted to Problem 2. Then, for the choice of the

semantic distortion penalty in (27), the characterization in (6) satisfies the Markov chain z−ẑ−x̂

and R(D∗
o, D

∗
s) = R(D∗

o) which can be explicitly computed via (23).

Proof: See Appendix C.

Interestingly, the choice of the erasure distortion measure in Theorem 3 demonstrates that the

amended distortion of the semantic (remote) source allows only the erasures to be sent, which

in turn results into the zero rate of the indirect rate distortion problem. This result comes as a

rather extreme case of the general result of Theorem 2 and demonstrates the cardinal role of the

distortion penalties into the solution.

B. Semantic-aware Blahut-Arimoto Algorithm

Next, we propose a generalization of the celebrated BA algorithm to treat the case of arbitrary

finite alphabet sets with individual distortions.

First we re-state an equivalent way to arrive to the parametric solution of Theorem 1 using

instead the alternating minimization approach [34] (see also [36]). This result and the subsequent

corollaries form the basis of the semantic-aware BA algorithm that we aim to develop.

Lemma 3. Let s1 ≤ 0, s2 ≤ 0 be given. Then the following statements hold.

(1) The optimal parametric solution of (6) can be expressed as follows:

R(D∗
o, D

∗
s) = s1D

∗
s + s2D

∗
o + min

ν(ẑ,x̂)
min

q(ẑ,x̂|z)

[∑
z

∑
ẑ,x̂

log

(
q(ẑ, x̂|z)
ν(ẑ, x̂)

)
q(ẑ, x̂|z)p(z)

− s1
∑
z

∑
ẑ,x̂

d̂s(z, x̂)q(ẑ, x̂|z)p(z)− s2
∑
z

∑
ẑ,x̂

do(z, ẑ)q(ẑ, x̂|z)p(z)

] (28)

where D∗
s and D∗

o are given by (18) and (19), respectively.

(2) For fixed q(ẑ, x̂|z), the right hand side (RHS) in (28) is minimized by

ν∗(ẑ, x̂) =
∑
z

q(ẑ, x̂|z)p(z).

(3) For fixed ν(ẑ, x̂) the RHS in (28) is minimized by q∗(ẑ, x̂|z) given by (16), i.e.,

q∗(ẑ, x̂|z) = es1d̂s(z,x̂)+s2do(z,ẑ)ν(ẑ, x̂)∑
ẑ,x̂ e

s1d̂s(z,x̂)+s2do(z,ẑ)ν(ẑ, x̂)
.
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Proof: (1) Due to the convexity and monotonicity of the optimization problem in (6) (see

Remark 1), we can reformulate it as an unconstrained problem as follows

R(Ds, Do) = min
q(ẑ,x̂|z)

[
I(z; ẑ, x̂)− s1

(
E
[
d̂s(z, x̂)

]
−Ds

)
− s2 (E [do(z, ẑ)]−Do)

]
(29)

where the expectation operator E[·] is taken with respect to the joint distribution p(z, ẑ, x̂). Using

(29), the double minimization in (28) follows by applying [37, Theorem 5.2.6], namely, we can

reformulate mutual information I(z; ẑ, x̂) as follows

I(z; ẑ, x̂) = min
ν̄(ẑ,x̂)

∑
z

∑
ẑ,x̂

log

(
q(ẑ, x̂|z)
p̄(ẑ, x̂)

)
, (30)

where the minimization is over an arbitrary chosen output marginal distribution ν̄(ẑ, x̂) defined

on Ẑ × X̂ and the minimization over ν(ẑ, x̂) follows from the condition for equality in that

theorem. (2), (3) To optimize, we use Karush-Kuhn-Tucker (KKT) conditions similar to the

ones utilized for the derivation of Theorem 1 hence we omit it.

In Lemma 3 we consider the Lagrange multipliers (s1, s2) to be non-positive. One can easily

obtain all the special cases discussed in Theorem 1 by choosing to have only one or none

of the distortion constraints active. Clearly, if we consider optimizing jointly with respect to

{q(ẑ, x̂|z), ν(ẑ, x̂)} in (28), then, the result of Lemma 3, will coincide to the general result of

Theorem 1.

Next, we give two corollaries that are instrumental in the development of our algorithm because

they give the implicit solution of {q(ẑ, x̂|z), ν(ẑ, x̂)} parametrized by (s1, s2).

Corollary 1. If q(ẑ, x̂|z) achieves a point on R(Do, Ds) parametrized by (s1, s2), then q(ẑ, x̂|z)

is given by (16) and

ν(ẑ, x̂) = ν(ẑ, x̂)
∑
z

p(z)
es1d̂s(z,x̂)+s2do(z,ẑ)∑

ẑ,x̂ e
s1d̂s(z,x̂)+s2do(z,ẑ)ν(ẑ, x̂)

. (31)

Proof: The proof follows using the simultaneous satisfaction of Lemma 3, (2), (3).

Corollary 2. In terms of (s1, s2), R(Do, Ds) can be written as follows:

R(Ds1
o , Ds2

s ) = s1D
s1
s + s2D

s2
o + min

ν(ẑ,x̂)

−∑
z

p(z) log

∑
ẑ,x̂

es1d̂s(z,x̂)+s2do(z,ẑ)ν(ẑ, x̂)

 , (32)
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with

Ds1
s =

∑
z,ẑ,x̂

d̂s(z, x̂)
es1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)∑
ẑ,x̂ e

s1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)
p(z),

Ds2
o =

∑
z,ẑ,x̂

do(z, ẑ)
es1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)∑
ẑ,x̂ e

s1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)
p(z)

where ν∗(ẑ, x̂) achieves R(Ds1
o , Ds2

s ).

Proof: The proof follows by substituting q∗(ẑ, x̂|z) of Lemma 3, (3) in Lemma 3, (1).

We continue our analysis with a general theorem reminiscent of the one derived for the classical

BA algorithm. This theorem demonstrated the convergence of the algorithm to the optimal limit

point. In the theorem we denote p = p(z), ν ≜ ν(ẑ, x̂), and q = q(ẑ, x̂|z) the probability vector

of those distributions, e.g., for Z = {0, 1, . . . ,M1}, M1 ∈ Z+, p = (p(z = 0), . . . , p(z = M1)).

Theorem 4. Let the parameters s1 ≤ 0 and s2 ≤ 0 be given and denote A(z, ẑ, x̂) = es1d̂s(z,x̂)+s2do(z,ẑ)

and k ≥ 1 the number of iterations. Let any ν(0) be any initial marginal probability distribution

on X̂ × Ẑ (given as a probability vector) with all the components to be nonzero. Let ν(k+1) be

given in terms of ν(k) as follows

ν(k+1)(ẑ, x̂) = ν(k)(ẑ, x̂)
∑
z

p(z)A(z, ẑ, x̂)∑
ẑ,x̂ A(z, ẑ, x̂)ν

(k)(ẑ, x̂)
(33)

Then,

Ds(q(ν
(k))) −→ Ds1

s , Do(q(ν
(k))) −→ Ds2

o , I(p;q(ν(k))) −→ R(Ds1
s , Ds2

o ) as k →∞,

(34)

where

q(ν(k)) =
A(z, ẑ, x̂)ν(k)(ẑ, x̂)∑
ẑ,x̂A(z, ẑ, x̂)ν

(k)(ẑ, x̂)

and (Ds1
s , Ds2

o , R(Ds1
s , Ds2

o )) is a point on R(Do, Ds) parametrized by (s1, s2).

Proof: See Appendix D.

In order to develop an algorithm to compute (6) for arbitrary finite alphabets sets, we also

need a termination criterion, for which we need a generalization of [37, Theorem 6.3.9] to our

setup. This is stated next as a lemma.



16

Lemma 4. An alternative definition of the RDF in (6) is the following

R(Do, Ds) = max
s1≤0,s2≤0,λ∈Λs1,s2

s1Ds + s2Do +
∑

z∈Z{0,1,...,M1}

p(z) log λ(z)

 , (35)

where Λs1,s2 is the set of all vectors λ = (λ(z = 0), . . . , λ(z = M1)) with non-negative elements

that satisfy inequality constraints
∑

z∈Z p(z)λ(z)es1d̂s(z,x̂)+s2do(z,ẑ) ≤ 1.

Proof: We sketch the proof because it can be easily understood. Let s1 ≤ 0, s2 ≤ 0, λ ∈

Λs1,s2 and q ∈ {q(ẑ, x̂|z) : E[d̂s(z, x̂)] ≤ Ds,E[do(z, ẑ)] ≤ Ds}. Then, from these conditions,

it can be proved that I(p,q) − s1Ds − s2Do −
∑

z∈Z p(z) log λ(z) ≥ 0, which implies that

R(Do, Ds) ≥ s1Ds + s2Do +
∑

z∈Z p(z) log λ(z). However, we know that for some (s1, s2, λ)

this inequality holds with equality, i.e., λ(z) =
(∑

ẑ,x̂ e
s1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)

)−1

with (s1, s2)

and ν∗(·) achieving R(Do, Ds).

The next theorem gives bounds on the RDF, which allow to estimate in the algorithm the

residual error at each iteration. This theorem serves as a stopping criterion for our algorithm.

Theorem 5. Let the parameters s1 ≤ 0, s2 ≤ 0 be given and let A(z, ẑ, x̂) = es1d̂s(z,x̂)+s2do(z,ẑ).

Suppose that ν is any output probability vector and let

c(ẑ, x̂) =
∑
z

p(z)
A(z, ẑ, x̂)∑

ẑ,x̂ A(z, ẑ, x̂)ν(ẑ, x̂)
. (36)

Then at the points

Ds =
∑
z,ẑ,x̂

d̂s(z, x̂)
A(z, ẑ, x̂)ν(ẑ, x̂)∑
ẑ,x̂A(z, ẑ, x̂)ν(ẑ, x̂)

p(z), Do =
∑
z,ẑ,x̂

do(z, ẑ)
A(z, ẑ, x̂)ν(ẑ, x̂)∑
ẑ,x̂ A(z, ẑ, x̂), ν(ẑ, x̂)

p(z),

(37)

and by setting Γ ≜ s1Ds + s2Do−
∑

z p(z) log
(∑

ẑ,x̂ A(z, ẑ, x̂)ν(ẑ, x̂)
)

, we have the following

bounds

R(Do, Ds) ≤ Γ−
∑
ẑ,x̂

ν(ẑ, x̂)c(ẑ, x̂) log c(ẑ, x̂), (38)

R(Do, Ds) ≥ Γ−max
ẑ,x̂

log c(ẑ, x̂). (39)

Proof: See Appendix E.

We are now ready to give the semantic-aware BA algorithm for the setup in Fig. 1. This is

illustrated in Algorithm 1.
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Algorithm 1 Semantic-aware Blahut-Arimoto algorithm

Initialize: Choose p = (p(z = j), j = 0, 1, . . . , N1), and p′ ≜ (p(z = j|x = i), i =

0, 1, . . . ,M1, j = 0, 1, . . . , N1), M1 ∈ Z+, N1 ∈ Z+; s1 ≤ 0; s2 ≤ 0; error tolerance ϵ;

choose the alphabet of Ẑ, X̂ ; choose the distortion functions ds(x, x̂) and do(z, ẑ); initial

output probability vector ν(0) (all the elements to be non-zero).

Compute d̂s(z, x̂) =
∑

x∈X p(x|z)ds(x, x̂), X = {0, 1, . . . , R1}, R1 ∈ Z+.

Compute A(z, ẑ, x̂) = es1d̂s(z,x̂)+s2do(z,ẑ), for all ẑ ∈ Ẑ, x̂ ∈ X̂ .

while flag = 0 do

Step 1: Set k = 1.

Step 2: For all ẑ ∈ Ẑ, x̂ ∈ X̂ ,

Compute c(k)(ẑ, x̂) =
∑

z∈Z p(z) A(z,ẑ,x̂)∑
ẑ,x̂ A(z,ẑ,x̂)ν(k−1)(ẑ,x̂)

.

Compute ν(k)(ẑ, x̂) = ν(k−1)(ẑ, x̂)c(k)(ẑ, x̂).

Compute diff=maxẑ,x̂ log c
(k)(ẑ, x̂)−

∑
ẑ,x̂ ν

(k)(ẑ, x̂) log c(k)(ẑ, x̂).

if diff> ϵ then

Set k = k + 1 and return to Step 2.

else

flag← 1

end if

end while

Output: q(ẑ, x̂|z) = A(z,ẑ,x̂)ν(k)(ẑ,x̂)∑
ẑ,x̂ A(z,ẑ,x̂)ν(k)(ẑ,x̂)

; Ds =
∑

z,ẑ,x̂ d̂s(z, x̂)q(ẑ, x̂|z)p(z); Do =∑
z,ẑ,x̂ do(z, ẑ)q(ẑ, x̂|z)p(z); R(Ds, Do) = s1Ds + s2Do −∑
z p(z) log

(∑
ẑ,x̂A(z, ẑ, x̂)ν

(k)(ẑ, x̂)
)
−
∑

ẑ,x̂ ν
(k)(ẑ, x̂) log c(k)(ẑ, x̂).

Clearly Algorithm 1 is a generalization of the well-known BA algorithm [34]. By choosing

appropriately the value of the Lagrangians (s1, s2) one can recover the classical BA algorithm

or its extension to the indirect rate distortion problem.

IV. REVISITING THE PROBLEM FOR JOINTLY GAUSSIAN i.i.d PROCESSES

In this section, we revisit the problem for jointly Gaussian i.i.d processes, which have recently

been studied in [20]. Therein, the authors consider (x, z) to be zero mean jointly Gaussian random
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vectors such that x ∈ Rl, z ∈ Rm, m ̸= l, with covariance matrix

Σ(x,z) ≜

Σx Σxz

ΣT
xz Σz

 , (40)

with given p(z) ∼ N (0; Σz),Σz ⪰ 0 and given p(x|z) represented by a linear state-observations

model, i.e., x = Hz + n, such that p(x|z) ∼ N (Hz; Σn), where H = ΣxzΣ
−1
z and Σn =

Σx − ΣxzΣ
−1
z ΣT

xz ⪰ 0. Then, assuming in (2), (3), that do(zi, ẑi) = ||zi − ẑi||22 and ds(xi, x̂i) =

||xi − x̂i||22 (or the quadratic Euclidean norm), respectively, SRDF (6) is as follows

R(Do, Ds) = min
Σz|x̂,ẑ⪰0

trace(HΣz|x̂,ẑH
T)≤Ds−trace(Σn)

trace(Σz|x̂,ẑ)≤Do

1

2

[
log

(
det(Σz)

det(Σz|x̂,ẑ)

)]+
, (41)

where det(·) is the determinant of a matrix, the conditional covariance defined by Σz|x̂,ẑ ≜

E [(z− E [z|x̂, ẑ])(z− E [z|x̂, ẑ])T] is a design variable in the optimization in (41) and [·]+ =

max{0, ·}. Log-determinant convex problems of the form (41), can be solved optimally using

standard convex programming solvers that exist in the CVX platform [38].

Next,we state some important technical remarks about the result of [20].

Remark 3. (1) For scalar jointly Gaussian RVs with individual MSE distortion constraints, [19,

Corollary 1] “indirectly” showed that RL(D∗
o, D

∗
s) in Lemma 2 is tight and also the information

structures that are necessary and sufficient for this bound are satisfied. (2) If in (41) we assume

that H is an orthogonal matrix, i.e., HTH = Im×m (m-dimensional identity matrix), then, as

[20] recognized, both distortion constraints simplify to trace(Σz|x̂,ẑ) ≤ min{Ds−trace(Σn), Do}

(consequence of Lagrange duality theorem) which is nothing more than RL(Do, Ds) of Lemma 2.

(3) The problem setup described in [20, Section IV] is not the same with the problem statement

of Section II because according to the latter, we are given p(x) and p(z|x) and we want to design

p(x|z) and p(z), respectively. In other words, following Section II, the linear state-observations

model described in [20, eq. (19)] should be designed, i.e., matrix H ∈ Rl×m and the covariance

matrix Σn need to be designed instead of been freely chosen.

Under the technical observation of Remark 3, (3), in what follows, we re-formulate the problem

to be consistent with Section II. Suppose that (x, z) are zero mean jointly Gaussian random

vectors such that x ∈ Rl, z ∈ Rm, m ≤ l, with covariance matrix given by (40). Moreover,

assume that x ∼ N (0,Σx), Σ ≻ 0 and p(z|x) is modeled by the linear realization of the form

z = Ax+ s, (42)
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where A ∈ Rm×l assumed to be full row rank matrix, and s ∼ N (0; Σs), Σs ⪰ 0. Then,

the conditional Gaussian distribution p(x|z) ∼ N (E[x|z]; Σx|z), where the conditional mean

E[x|z] = ΣxzΣ
−1
z z and the conditional covariance Σx|z = Σx−ΣxzΣ

−1
z ΣT

xz ⪰ 0. However, since

Σxz = E[x(Ax + s)T] = ΣxA
T and Σz = AΣxA

T + Σs, we can further infer that E[x|z] =

ΣxA
T(AΣxA

T + Σs)
−1z and similarly, one can apply the same values in Σx|z.

Remark 4. If one wants to draw connections with the problem studied in [20, Section IV], it is

clear that in our approach we obtain, by design, the matrices (H,Σn), i.e.,

H = ΣxA
T(AΣxA

T + Σs)
−1 and Σn = Σx|z = ΣxA

T(AΣxA
T + Σs)

−1AΣx, (43)

instead of freely choosing them. Hence we are consistent with the problem setup introduced in

Section II.

The rest of the analysis follows using similar arguments to [20] resulting into the optimization

problem of (41) with (H,Σn) designed as in (43).

We provide next an example where we first compute and illustrate the solution of (41) and

then we compare with the solution of the bounds in (8).

Example 2. Suppose that p(x) ∼ N (0; Σx) and p(z|x) ∼ N (Ax; Σs) are randomly chosen such

that

Σx =


1.1504 1.2689 0.5826 1.0533

1.2689 1.6594 0.5395 1.0366

0.5826 0.5395 0.4066 0.4463

1.0533 1.0366 0.4463 1.3054

 , A =

0.0240 0.2593 0.2835 0.4405

0.5589 0.4151 0.6931 0.1569

 ,

with Σs =

0.9055 0.3401

0.3401 0.1431

 .Moreover, using (42), we can compute Σz =

1.7771 1.8141

1.8141 2.7830

 ,

and, via (43), we can compute the design variables (H,Σn) as follows

H =


−0.2483 0.7866

−0.3209 0.9043

−0.2049 0.4574

−0.0064 0.5550

 , Σn =


0.0275 0.0130 −0.0108 0.0946

0.0130 0.2535 −0.1261 −0.0302

−0.0108 −0.1261 0.0897 −0.0510

0.0946 −0.0302 −0.0510 0.4608

 . (44)

Solving (41) for Σz|ẑ,x̂ ≻ 0 using the designed values obtained in (44), results into Fig. 3. For

this simulation, we note that the optimization problem (41) is well-defined if Σz|ẑ,x̂ ≻ 0 and

Ds > Dmin
s = trace(Σn) = 0.8315 (for this example).
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Fig. 3: R(D∗
o, D

∗
s) for jointly Gaussian RVs with individual MSE distortion constraints.

On the other hand, using the bounds of 8, we should first solve independently the direct and

the indirect rate distortion problem as these are defined in (9) and, then, for the lower bound

on SRDF to choose the maximum between the two and for the upper bound to simply add the

two rates. Since these two problems independently are already well studied in the literature, see,

e.g., [21], [22], [25], [26], [39], we do not get into the details of their derivations but instead

we only state the corresponding optimization problems for jointly Gaussian RVs and individual

MSE distortion constraints. In particular,

RL(Do, Ds) = max{R(Ds), R(Do)}, and RU(Do, Ds) = R(Ds) +R(Do), (45)

with

R(Ds) = min
Σz|x̂≻0

trace(HΣz|x̂H
T)≤Ds−trace(Σn)

1

2
log

(
det(Σz)

det(Σz|x̂)

)
, (46)

R(Do) = min
Σz|ẑ≻0

trace(Σz|ẑ)≤Do

1

2
log

(
det(Σz)

det(Σz|ẑ)

)
, (47)

whereas the design variables for (46) and (47) correspond to the conditional covariance matrices

Σz|x̂ ≜ E [(z− E [z|x̂])(z− E [z|x̂])T] and Σz|ẑ ≜ E [(z− E [z|ẑ])(z− E [z|ẑ])T], respectively. In

Table I, we compare for random values of the pair (Do, Ds), the solution of (41) with the values

of the bounds obtained in (45). From our numerical results we observe that for certain distortion

pairs (Do, Ds), sometimes RL(R∗
o, R

∗
s) < R(D∗

o, Ds) and sometimes RL(R∗
o, R

∗
s) = R(D∗

o, D
∗
s)

whereas for this example R(D∗
o, Ds) < RU(D∗

o, D
∗
s). These results verify numerically the bounds

in Lemma 2.
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Type of Solution Distortion Values
(Do, Ds) = (0.6, 0.9) (Do, Ds) = (1.1, 0.85) (Do, Ds) = (0.2, 1.9) (Do, Ds) = (1.5, 1.9)

R(D∗
o , D

∗
s ) via (41) 3.4518 5.1417 3.6853 1.0109

RL(D∗
o , D

∗
s ) via (45) 3.2677 5.1417 3.6853 0.9584

RU (D∗
o , D

∗
s ) via (45) 5.3680 6.4252 4.5936 1.8666

TABLE I: Comparison of the optimal values obtained via (41), (45). The simulation studies are

performed on CVX platform.

V. CONCLUSIONS AND ONGOING RESEARCH

A variant of a robust description source coding problem with two individual criteria, which

is a relevant model for goal-oriented semantic communication, was studied here. We derived

bounds on the semantic rate distortion function, as well as necessary and sufficient conditions

for their tightness. We then proved a general theorem that provides the optimal solution of the

characterization for this problem. Capitalizing on these results, we examined the structure of the

solution for the case of general binary alphabets under Hamming and erasure distortion criteria.

We also constructed a semantic-aware BA algorithm for the computation of any finite alphabet

sets under individual distortion criteria. Finally, we provided new insights overlooked so far

for multidimensional jointly Gaussian RVs with individual MSE distortion constraints. A key

takeaway from our results is that the class of the fidelity criteria may significantly affect the

system behavior irrespective of its task, hence it should be chosen appropriately.

Our ongoing research activity builds on two directions. First, constructing analytical examples

where the presence of the additional distortion fidelity affects semantic communication. Second,

we seek to generalize our goal-oriented communication setup beyond separable distortion criteria,

since in real world applications one is more interested in relations between the input and output

symbols that are highly non-linear.
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APPENDIX A

PROOF OF THEOREM 1

The fully unconstrained problem of (6) using (15) is as follows

L({si}2i=1, λ(z), µ(z, ẑ, x̂)) =
∑
x,ẑ,ẑ

log

(
q(ẑ, x̂|z)
ν(ẑ, x̂)

)
q(ẑ, x̂|z)p(z)− s1

(
E
[
d̂s(z, x̂)

]
−Ds

)

− s2 (E [do(z, ẑ)]−Do) +
∑
z

λ(z)

∑
ẑ,x̂

q(ẑ, x̂|z)− 1

−∑
z,ẑ,x̂

µ(z, ẑ, x̂)q(ẑ, x̂|z), (48)

where s1 ≤ 0, s2 ≤ 0 are the Lagrangian multipliers associated with the individual distortion

constraints E
[
d̂s(z, x̂)

]
≤ Ds and E [do(z, ẑ)] ≤ Do, respectively, whereas λ(z) ≥ 0 is associ-

ated with the equality constraint
∑

ẑ,x̂ q(ẑ, x̂|z) = 1, and µ(z, ẑ, x̂) ≥ 0 is responsible for the

inequality constraint q(ẑ, x̂|z) ≥ 0.

Due to the convexity of L(·) with respect to q(·, ·|x), a necessary and sufficient condition for

q∗(·, ·|z) to be the optimal minimizer is when ∂L({si}2i=1,λ(x),µ(x,ẑ,x̂))

∂q(ẑ,x̂|z)) = 0 when q∗(·, ·|z) > 0 and
∂L({si}2i=1,λ(x),µ(x,ẑ,x̂))

∂q(ẑ,x̂|z)) ≤ 0 when q∗(·, ·|z) = 0, ∀(ẑ, x̂) ∈ Ẑ × X̂ . Since there is nothing to prove

for the latter case, we focus on the former case, in which the derivative of the fully unconstrained

problem (48) is∑
z

p(z)

[
log

(
q∗(ẑ, x̂|z)
ν∗(ẑ, x̂)

)
− s1d̂s(z, x̂)− s2do(z, ẑ) + λ∗(z)

]
= 0, (49)

where we took µ(z, ẑ, x̂) = µ∗(z, ẑ, x̂) = 0 ∀(z, ẑ, x̂) ∈ Z × Ẑ × X̂ . Moreover, in (49) we have

that λ(z) = λ∗(z) > 0, ∀z ∈ Z because we require
∑

ẑ,x̂ q
∗(ẑ, x̂|z) = 1. Applying this result in

(49) and solving with respect to q∗(·, ·|z) we obtain

q∗(ẑ, x̂|z) = es1d̂s(z,x̂)+s2do(z,ẑ)−λ(z)ν∗(ẑ, x̂). (50)

Since
∑

ẑ,x̂ q
∗(ẑ, x̂|z) = 1, we average both sides with respect to (ẑ, x̂) ∈ Ẑ × X̂ and solve to

obtain λ∗(z) > 0, which is given by

λ∗(z) = log

∑
ẑ,x̂

es1d̂s(z,x̂)+s2do(z,ẑ)ν∗(ẑ, x̂)

 . (51)

Substituting (51) in (50), we obtain the implicit expression of (16) for s1 ≤ 0, s2 ≤ 0. Moreover,

substituting (16) in (48) we obtain (17), provided that R(D∗
o, D

∗
s) > 0, hence we obtain (i).

Clearly, the cases in (ii)-(iv) follow as special cases of case (i). This completes the proof.
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APPENDIX B

PROOF OF THEOREM 2

Recall that the input data and the distortion functions are introduced in Problem 1. We first

start with some preliminary calculations. In particular, using (22), we can obtain p(z) as follows:

p(z) =
∑

x∈{0,1}

p(z|x)p(x),

which gives

p(z) =

p(z = 0)

p(z = 1)

 =

 αβ + (1− α)γ

α(1− β) + (1− α)(1− γ)

 . (52)

Using the fact that p(z, x) = p(z|x)p(x) we obtain

p(z, x) =


p(z = 0, x = 0)

p(z = 0, x = 1)

p(z = 1, x = 0)

p(z = 1, x = 1)

 =


αβ

γ(1− α)

α(1− β)

(1− α)(1− γ)

 . (53)

Moreover, from (52), (53) and the fact that d̂s(z, x̂) =
∑

x∈X p(x|z)ds(x, x̂) (from the charac-

terization in Lemma 1), we can obtain d̂s(z, x̂) as follows

d̂s(z, x̂) =

p(z=0,x=1)
p(z=0)

p(z=0,x=0)
p(z=0)

p(z=1,x=1)
p(z=1)

p(z=1,x=0)
p(z=1)

 . (54)

We can now proceed to prove (i).

(i) We will prove this by finding the analytical solutions of {ν∗(ẑ, x̂), (ẑ, x̂) ∈ {0, 1} × {0, 1}}

and {q∗(ẑ, x̂|z), (z, ẑ, x̂) ∈ {0, 1} × {0, 1} × {0, 1}}. We first recall, from Theorem 1, that

ν∗(ẑ, x̂) =
∑

z∈{0,1}

q∗(ẑ, x̂|z)p(z), (55)

where {q∗(ẑ, x̂|z), (z, ẑ, x̂) ∈ {0, 1} × {0, 1} × {0, 1}} can be computed via (16).

Writing down (55) results into four third degree polynomial equations with four unknowns

and one extra equation that ensures {ν∗(ẑ, x̂), (ẑ, x̂) ∈ {0, 1} × {0, 1}} is a column vector that

sums up to one. It can be shown that the system of non-linear equations has the following trivial

solutions

ν∗(ẑ, x̂) =


p∗(ẑ = 0, x̂ = 0)

p∗(ẑ = 0, x̂ = 1)

p∗(ẑ = 1, x̂ = 0)

p∗(ẑ = 1, x̂ = 1)

 =




1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

0

 ,


0

0

0

1




, (56)
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which can be excluded from the general solution because they lead to zero rates, whereas the

non-trivial solutions are as follows

ν∗(ẑ, x̂) =




d1(h1−e1)−p(z=0)(a1h1−d1e1)

(a1−d1)(e1−h1)

0

0

p(z=0)(a1h1−d1e1)−a1(h1−e1)
(a1−d1)(e1−h1)

 ,


b1(f1−e1)−p(z=0)(a1f1−b1e1)

(a1−b1)(e1−f1)

p(z=0)(a1f1−b1e1)−a1(f1−e1)
(a1−b1)(e1−f1)

0

0

 , (57)


c1(g1−e1)−p(z=0)(a1g1−c1e1)

(a1−c1)(e1−g1)

0

p(z=0)(a1g1−c1e1)−a1(g1−e1)
(a1−b1)(e1−f1)

0

 ,


0

c1(g1−f1)−p(z=0)(b1g1−c1f1)
(b1−c1)(f1−g1)

p(z=0)(b1g1−c1f1)−b1(g1−f1)
(b1−c1)(f1−g1)

0

 , (58)


0

0

d1(h1−g1)−p(z=0)(c1h1−d1g1)
(c1−d1)(g1−h1)

p(z=0)(c1h1−d1g1)−c1(h1−g1)
(c1−d1)(g1−h1)

 ,


0

d1(h1−f1)−p(z=0)(b1h1−d1f1)
(b1−d1)(f1−h1)

0

p(z=0)(b1h1−d1f1)−b1(h1−g1)
(b1−d1)(f1−h1)




, (59)

where a1 = es1d̂s(0,0), b1 = es1d̂s(0,1), c1 = es1d̂S(0,0)+s2 , d1 = es1d̂s(0,1)+s2 , e1 = es1d̂s(1,0)+s2 ,

f1 = es1d̂s(1,1)+s2 , g1 = es1d̂s(1,0), h1 = es1d̂s(1,1). Since we found analytically the marginal on

the i.i.d output process in (57)-(59), we subsequently proceed to find the corresponding explicit

expressions of the optimal minimizer for each of the explicit expressions in (57)-(59). Herein,

we only give the explicit solution of the optimal minimizer q∗(ẑ, x̂|z) that corresponds to the left

hand side (LHS) solution of (57); the other cases, e.g., RHS matrix of (57), (58), (59), follow

by simply substituting in (16). Substituting the LHS matrix of (57) in (16) we obtain

q∗(ẑ, x̂|z) =


q(ẑ = 0, x̂ = 0|z = 0) q(ẑ = 0, x̂ = 0|z = 1)

q(ẑ = 0, x̂ = 1|z = 0) q(ẑ = 0, x̂ = 1|z = 1)

q(ẑ = 1, x̂ = 0|z = 0) q(ẑ = 1, x̂ = 0|z = 1)

q(ẑ = 1, x̂ = 1|z = 0) q(ẑ = 1, x̂ = 1|z = 1)

 , (60)



25

where

q∗(ẑ = 0, x̂ = 0|z = 0) =
a1d1(h1 − e1) + a1p(z = 0)(a1h1 − d1e1)

p(z = 0)(a1h1 − d1e1)(d1 − a1)

q∗(ẑ = 0, x̂ = 1|z = 0) = p(ẑ = 1, x̂ = 0|x = 0) = 0

q∗(ẑ = 1, x̂ = 1|z = 0) =
a1p(z = 0)(a1h1 − d1e1)− a1d1(h1 − e1)

p(z = 0)(a1h1 − d1e1)(d1 − a1)

q∗(ẑ = 1, x̂ = 0|z = 0) = p(ẑ = 1, x̂ = 0|x = 1) = 0

q∗(ẑ = 0, x̂ = 0|z = 1) =
d1e1(h1 − e1) + e1p(z = 0)(a1h1 − d1e1)

p(z = 1)(a1h1 − d1e1)(e1 − h1)

q∗(ẑ = 0, x̂ = 1|z = 1) = p(ẑ = 1, x̂ = 0|x = 1) = 0

q∗(ẑ = 1, x̂ = 1|z = 1) =
h1p(z = 0)(a1h1 − d1e1)− a1h1(h1 − e1)

p(z = 1)(a1h1 − d1e1)(e1 − h1)

q∗(ẑ = 1, x̂ = 0|z = 1) = p(ẑ = 1, x̂ = 1|x = 1) = 0.

The general explicit solution of the optimal minimizer allows to find the information structure

of {q∗(ẑ|x̂, z), (z, ẑ, x̂) ∈ {0, 1} × {0, 1} × {0, 1}} and {q∗(x̂|ẑ, z), (z, ẑ, x̂) ∈ {0, 1} × {0, 1} ×

{0, 1}}, respectively, via the following expressions

q∗(ẑ|x̂, z) = q∗(ẑ, x̂|z)p(z)∑
ẑ∈{0,1} q

∗(ẑ, x̂|z)p(z)
, q∗(x̂|ẑ, z) = q∗(ẑ, x̂|z)p(z)∑

x̂∈{0,1} q
∗(ẑ, x̂|z)p(z)

. (61)

Surprisingly, the closed form expressions in (61), admit the following simple structure

q∗(ẑ|x̂, z) =

1 1 0 0

0 0 1 1

 , q∗(x̂|ẑ, z) =

1 1 0 0

0 0 1 1

 , (62)

where for the left hand side (LHS) expression of (62) we have

q∗(ẑ = 0|x̂ = 0, z = 0) = q∗(ẑ = 0|x̂ = 0, z = 1) = 1

q∗(ẑ = 0|x̂ = 1, z = 0) = q∗(ẑ = 0|x̂ = 1, z = 1) = 0

q∗(ẑ = 1|x̂ = 0, z = 0) = q∗(ẑ = 1|x̂ = 0, z = 1) = 0

q∗(ẑ = 1|x̂ = 1, z = 0) = q∗(ẑ = 1|x̂ = 1, z = 1) = 1,

(63)

and similarly, for the RHS expression in (62) each component represents the corresponding

optimal minimizer given in (63) with ẑ and x̂, interchanged. The identical information struc-

ture in both expressions of (62), reveals the conditional independence q∗(ẑ|x̂, z) = q∗(ẑ|x̂)

and q∗(x̂|ẑ, z) = q∗(x̂|ẑ) or, equivalently, the fact that ẑ − x̂ − z and x̂ − ẑ − z. We note

that the previous information structure of {q∗(ẑ|x̂, z), (z, ẑ, x̂) ∈ {0, 1} × {0, 1} × {0, 1}} and
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{q∗(x̂|ẑ, z), (z, ẑ, x̂) ∈ {0, 1}×{0, 1}×{0, 1}} can be observed if we pick any {ν∗(ẑ, x̂), (ẑ, x̂) ∈

{0, 1} × {0, 1}} from (57)-(59) hence we omit the re-derivation. This proves (i).

(ii) Since we proved (i), then, from Lemma 2, (2), the use of the Lagrange duality theorem [33]

guarantees that the solution is the one for which the Lagrangian, i.e., s1 or s2 in our case, yields

the greater rates hence R(D∗
o, D

∗
s) = max{R(D∗

o), R(D∗
s))}. This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

We start the proof by noting that {p(z), p(z|x) : (x, z) ∈ {0, 1} × {0, 1}} are given by (52)

and (53), respectively. Moreover, from (27), we obtain

d̂s(z, x̂) =

d̂s(z = 0, x̂ = 0) d̂s(z = 0, x̂ = e) d̂s(z = 0, x̂ = 1)

d̂s(z = 1, x̂ = 0) d̂s(z = 1, x̂ = e) d̂s(z = 1, x̂ = 1)

 =

∞ 1 ∞

∞ 1 ∞

 . (64)

Using (64) and the input data, we obtain that the optimal minimizer has the following structure

q∗(ẑ, x̂|z) =



q∗(ẑ = 0, x̂ = 0|z = 0) q∗(ẑ = 0, x̂ = 0|z = 1)

q∗(ẑ = 0, x̂ = e|z = 0) q∗(ẑ = 0, x̂ = e|z = 1)

q∗(ẑ = 0, x̂ = 1|z = 0) q∗(ẑ = 0, x̂ = 1|z = 1)

q∗(ẑ = 1, x̂ = 0|z = 0) q∗(ẑ = 1, x̂ = 0|z = 1)

q∗(ẑ = 1, x̂ = e|z = 0) q∗(ẑ = 1, x̂ = e|z = 1)

q∗(ẑ = 1, x̂ = 1|z = 0) q∗(ẑ = 1, x̂ = 1|z = 1)



=



0 0

ν∗(ẑ=0,x̂=e)
ν∗(ẑ=0,x̂=e)+es2ν∗(ẑ=1,x̂=e)

es2ν∗(ẑ=0,x̂=e)
es2ν∗(ẑ=0,x̂=e)+ν∗(ẑ=1,x̂=e)

0 0

0 0

es2ν∗(ẑ=1,x̂=e)
ν∗(ẑ=0,x̂=e)+es2ν∗(ẑ=1,x̂=e)

ν∗(ẑ=1,x̂=e)
es2ν∗(ẑ=0,x̂=e)+ν∗(ẑ=1,x̂=e)

0 0


, (65)

where each of ν∗(ẑ = 0, x̂ = e) and ν∗(ẑ = 1, x̂ = e) can take the trivial solutions 0 or 1 and a

non-trivial solution of the form

ν∗(ẑ = 0, x̂ = e) =
p(z = 0)(1 + es2)− es2

1− es2
, ν∗(ẑ = 1, x̂ = e) =

1− p(z = 0)(1 + es2)

1− es2
. (66)

The explicit structure of (65) reveals that the optimal solution to this problem is parametrized

only by the Lagrangian multiplier s2 < 0, which further means that this solution should be
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R(D∗
o, D

∗
s) = R(D∗

o) (from Theorem 1). The latter implies that the Markov chain z − ẑ − x̂

holds. A way to compute analytically R(D∗
o, D

∗
s) is the following. Find s∗2 < 0 from (18) using

the explicit expressions (65) and (66). This will give s∗2 = log
(

D∗
o

1−D∗
o

)
. Then, by substituting all

the pieces together in R(D∗
o, D

∗
s) = E

{
q∗(ẑ,x̂|z)
p∗(ẑ,x̂)

}
we obtain (23). This completes the proof.

APPENDIX D

PROOF OF THEOREM 4

Let V (ν) ≜ I(p;q(ν(k))) − s1Ds(ν) − s2Do(ν) with Ds(ν) =
∑

z,ẑ,x̂ d̂s(z, x̂)q(ν)p(z) and

Do(ν) =
∑

z,ẑ,x̂ do(z, ẑ)q(ν)p(z). To show that V (ν) is nonincreasing, we can use Lemma 3,

(2), (3). Minimizing over q gives a value F (ν(k)) between V (ν(k+1)) and V (ν(k)), namely,

F (ν(k)) = −
∑
z

p(z)

log
∑
ẑ,x̂

ν(k−1)(ẑ, x̂)A(z, ẑ, x̂)

 , (67)

and due to the successive minimizations, we have the nonincreasing sequence . . . ≥ V (ν(k)) ≥

F (ν(k)) ≥ V (ν(k+1)) ≥ F (ν(k+1)) ≥ . . .. Combining the above two operations, we obtain a

recursive definition of ν(k) of the theorem which by construction has positive elements and

V (νk) is nonincreasing. Since V (ν(k)) is bounded, it must converge to some constant number

V ∞. It remains to show that V ∞ = R(Do, Ds)− s1Ds − s2Do.

Let q(k+1) = q(ν(k)). Let ν∗ be such that V (ν∗) = R(Do, Ds) − s1Ds − s2Do, and let

q∗ = q(ν∗). Now let∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log
(

q(k)(ẑ, x̂|z)
q(k+1)(ẑ, x̂|z)

)
(a)
=
∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log
(
q(k)(ẑ, x̂|z)
ν(k)(ẑ, x̂)

)

−
∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) logA(z, ẑ, x̂) +
∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log

∑
ẑ,x̂

ν(k)(ẑ, x̂)A(z, ẑ, x̂)

, (68)

where (a) follows by the fact that we let q(k+1) = q(ν(k)). Next, we show that the first RHS in

(68) is increased if we replace q(k) and ν(k) are replaced by q∗ and ν∗, respectively.∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log
(
q(k)(ẑ, x̂|z)
ν(k)(ẑ, x̂)

)
−
∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log
(
q∗(ẑ, x̂|z)
ν∗(ẑ, x̂)

)

=
∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log
(
q(k)(ẑ, x̂|z)q∗(ẑ, x̂|z)
ν(k)(ẑ, x̂)ν∗(ẑ, x̂)

)
(b)

≤
∑
z,ẑ,x̂

p(z)q(k)(ẑ, x̂|z)
(

ν∗(ẑ, x̂)

ν(k)(ẑ, x̂)

)
−
∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) (c)
= 0,

(69)
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where (b) follows from the inequality log(x) ≤ x − 1 for x > 0; (c) because both terms after

the inequality average to 1. As a result, we can bound from above the LHS of (68) as follows∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log
(

q(k)(ẑ, x̂|z)
q(k+1)(ẑ, x̂|z)

)
(c)

≤
∑
z,ẑ,x̂

p(z)q∗(ẑ, x̂|z) log
(

q∗(ẑ, x̂|z)∑
z q

∗(ẑ, x̂|z)p(z)

)
− s1

∑
z,ẑ,x̂

d̂s(z, x̂)q
∗(ẑ, x̂|z)p(z)− s2

∑
z,ẑ,x̂

do(z, ẑ)q
∗(ẑ, x̂|z)p(z)

+
∑
z

p(z)

log
∑
ẑ,x̂

ν(k)(ẑ, x̂)A(z, ẑ, x̂)

 (d)
= V (ν∗)− F (ν(k)),

(70)

where (c) follows from (69) and the identify q∗(ẑ, x̂) =
∑

z q
∗(ẑ, x̂|z)p(z); (d) follows by

definition of V (ν∗) and (67).

Now by summing on k until some finite K, we obtain
K∑
k=1

[
V (ν∗)− F (ν(k))

] (e)

≥
∑
z,ẑ,x̂

q∗(ẑ, x̂|z)p(z)
K∑
k=1

log

(
q(k)(ẑ, x̂|z)
q(k+1)(ẑ, x̂|z)

)
(f)
=
∑
z,ẑ,x̂

q∗(ẑ, x̂|z)p(z) log
(

q(1)(ẑ, x̂|z)
q(K+1)(ẑ, x̂|z)

)
(g)

≥
∑
z,ẑ,x̂

q∗(ẑ, x̂|z)p(z) log
(
q(1)(ẑ, x̂|z)
q∗(ẑ, x̂|z)

), (71)

where (e) follows from (70); (f) follows from the telescopic sum of the logarithmic ratio; (g)

follows from Kullback’s discrimination inequality [40, Theorem 1], i.e., the information is a

measurement that cannot be increased by subsequent processing.

Finally, with a change of sign in the LHS of (71) we obtain the inequality
K∑
k=1

[
F (ν(k))− V (ν∗)

]
≤ T (ν∗,ν(1)). (72)

The RHS in (72) is a constant independent of K and the LHS is smaller than this constant for

any K. Since F (ν(k)) is a larger value than V (ν∗) and is nonincreasing, then, the term in the

brackets is positive and must vanish as K →∞. This further means that F (ν(k))
K→∞−→ V (ν∗),

which completes the proof.

APPENDIX E

PROOF OF THEOREM 5

We first prove (38). Recall that

q(ẑ, x̂|z) = A(z, ẑ, x̂)ν(ẑ, x̂)∑
ẑ,x̂A(z, ẑ, x̂)ν(ẑ, x̂)

, (73)
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is a transition matrix that gives Ds and Do. Then, the following inequality holds

R(Do, Ds)
(a)

≤ I(p,q) =
∑
z,ẑ,x̂

log

(
q(ẑ, x̂|z)∑

z q(ẑ, x̂|z)p(z)

)
q(ẑ, x̂|z)p(z)

(b)
=
∑
z,ẑ,x̂

log

 A(z, ẑ, x̂)ν(ẑ, x̂)(∑
ẑ,x̂ A(z, ẑ, x̂)ν(ẑ, x̂)

)
(
∑

z q(ẑ, x̂|z)p(z))

 q(ẑ, x̂|z)p(z)

(c)
= RHS of (38), (74)

where (a) follows by definition of (6); (b) follows from (73); (c) follows after some algebra and

substituting (36), (37) and (73).

Next, we prove (39). Using Lemma 4, we have the bound R(Do, Ds) ≥ s1Ds + s2Do +∑
z∈Z p(z) log λ(z) where λ is any vector such that

∑
z p(z)λ(z)A(z, ẑ, x̂) ≤ 1. To prove the

lower bound, we let

cmax(ẑ, x̂) = max
ẑ,x̂

c(ẑ, x̂), and λ(z) =

cmax(ẑ, x̂)
∑
ẑ,x̂

A(z, ẑ, x̂)ν(ẑ, x̂)

−1

. (75)

Applying the quantities of (75) in
∑

z p(z)λ(z)A(z, ẑ, x̂) we can observe that it is always less

than one, therefore the lower bound obtain from Lemma 4 holds. Substituting the values of (75)

in that bound we obtain the RHS of (39). This completes the proof.
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