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Toward Securing Federated Learning against
Poisoning Attacks in Zero Touch B5G networks

Sabra BEN SAAD*, Bouziane BRIK‡, Adlen KSENTINI* Senior, IEEE,

Abstract—The zero Touch Management (ZSM) concept in 5G
and Beyond networks (B5G) aims to automate the management
and orchestration of running network slices. This requires heavy
usage of advanced deep learning techniques in a closed-loop way
to auto-build the suitable decisions, enabling to meet network
slices’ requirements. In this context, Federated Learning (FL)
is playing a vital role in training deep learning models in a
collaborative way among thousands of network slice participants
while ensuring their privacy and hence network slice isola-
tion. Specifically, running network slices may share only their
model parameters with a central entity, e.g., Inter Domain Slice
Manager, to aggregate them and build a global model. Thus,
the central entity does not directly access the training data.
However, FL is vulnerable to poisoning attacks, where an insider
participant may upload poisoning updates to the central entity
so that it can cause a construction failure of the global model
and thus affect its global performance. Therefore, it is crucial
to design security means to detect and mitigate such threats.
In this paper, we design a novel framework to automatically
detect malicious participants in the FL process. In particular,
our framework first uses a deep reinforcement algorithm to
dynamically select a network slice as a trusted participant, based
mainly on its reputation. The selected participant will then be
in charge of identifying poisoning model updates by leveraging
unsupervised machine learning. We demonstrate the feasibility of
our framework on top of a real dataset that we generate using the
5G OpenAirInterface (OAI) platform. Evaluation results show
the efficiency of our framework in dealing with poisoning attacks
even with the presence of several malicious participants.

Index Terms—Zero Touch Management (ZSM), 5G and Be-
yond, Network slicing, Federated Learning, Poisoning attack, re-
inforcement and unsupervised learning, Dimensional Reduction.

I. INTRODUCTION

F Ifth-generation and Beyond (B5G) networks are expo-
nentially growing as key enablers of various applications

related to multiple vertical industries [1]. These emerging
applications are characterised by heterogeneous requirements,
including ultra-low latency, high bandwidth and communi-
cation reliability, support of massive device density, etc. To
support that, B5G systems are based on the network slicing
concept, which relies on network softwarization, i.e., building
flexible and virtual networks tailored to services, to allow
building various applications on top of common physical
resources (radio, computation, and network). Indeed, network
softwarization is built on top of three new technologies:
Network Function Virtualization (NFV), Software-Defined
Networking (SDN), and Cloud computing (central and edge).
In addition, a network slice is composed and described by
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a set of physical and virtual Network Functions (PNF and
VNF), interconnected with each other, and deployed on top of
a common physical infrastructure.
Besides, a network slice is described in terms of main re-
quirements and targeted performance in a Network Slice Tem-
plate (NST), which is exploited then by an orchestrator and
management framework1, to orchestrate and manage life-cycle
of network slices; from the instantiation to the destruction
steps. Recently, a new architecture, called Zero-touch network
and Service Management (ZSM), emerged to automate the
management and orchestration of running network slices [3].
This requires heavy usage of advanced Deep Learning (DL)
techniques in a closed-loop way to auto-build the suitable deci-
sions and meet network slices’ requirements. Specifically, the
traffic/data generated by network slices are first monitored and
then used to build analytic functions (using DL mechanisms).
In general, the analytic functions aim to monitor network
slice performances or Service Level Agreement (SLA) to
predict/detect any degradation or violations. Noting that the
Key Performance Indicator (KPI) of a network slice can be
computation-oriented, network-oriented, and service-oriented
[4]. While computation- and network-oriented KPIs can easily
be monitored, through the NFV Infrastructure (NFVI) manager
and SDN controller, to build analytic functions. However,
service-oriented KPIs are difficult to be shared due to their
confidentiality and privacy nature since they are directly linked
to a running vertical industry’s application and service, such
as the IP address allocation, response/processing time of a
particular VNF, statistics on handled packets by a router.
In this context, Federated Learning (FL) is playing a vital role
in training deep learning models in a collaborative way among
thousands of network slice participants while ensuring their
privacy, hence network slice isolation. Rather than uploading
their data to train their models, running network slices share
only their local model parameters, during several rounds, with
a central entity, e.g. Inter Domain Slice Manager, to aggregate
them and build a global model. The central entity thus does
not have direct access to the training data. Therefore, FL is
more than required to create analytic functions about service-
oriented KPIs of running network slices while ensuring their
confidentiality and privacy.
However, FL is vulnerable to poisoning attacks, where an
insider participant, a malicious network slice, may upload
poisoning updates to the central entity so that it can cause
a construction failure of the global model. For instance, a

1ETSI uses Management and Orchestration (MANO), while 3GPP uses the
term Communication Service Management Function (CSMF), to refer to the
framework that will orchestrate and manage life-cycle of network slices.



malicious participant may consider poisoned latency values
in building its local model in such a way that the aggregated
global model cannot then detect/predict latency-related SLA
violations. Another example is the analytic function. It im-
plements an intrusion detection system, that build poisoning
models by one/several participant(s). The function can prevent
the detection of system intrusions, even with one participant
presence. Thus, poisoning attacks may affect the global per-
formance of FL-based models for running network slices as
well as the whole system. Therefore, it is crucial to design
security means to detect and mitigate such threats.
In this paper, we design a novel framework to automatically
detect malicious participants in the FL process. First of all,
based on a real test bed, we generate a realistic dataset that
focuses on the latency as a service-oriented KPI of running
network slices. We focus here on the latency experienced by
the key element of 5G CN on-boarded in a network slice,
namely Access and Mobility Management Function (AMF).
This dataset is then exploited to build an analytic function
about the latency prediction in a federated way. In addition,
the basic idea of our framework is to select dynamically one
participant as a trusted entity by leveraging deep reinforcement
learning. The trusted participant will then be in charge of iden-
tifying poisoning model updates using unsupervised machine
learning. The main contribution of this work are summarized
as follows:

• We use OpenAirInterface (OAI)2 to generate a real
dataset about the latency KPI of the AMF run as a VNF.
This service-oriented KPI corresponds to the response
time to handle UE attach requests when considering
different configurations, such as available RAM memory
and the number of CPUs.

• Exploiting our dataset, we build a DL-based model in
a federated way between several running network slices.
Our model enables us to predict the latency of the AMF
function and hence anticipate any latency-related SLA
violation.

• We also build an online Deep Reinforcement Learning
(DRL) model that dynamically selects a network slice
as a trusted participant at each federated learning round,
i.e., when participants send their local models towards
the central node, based on several metrics such as their
reputations (participants).

• At each FL round, the trusted participant applies a
dimensionality reduction scheme and unsupervised ma-
chine/deep learning to detect the poisoned model(s) and
hence malicious participant(s).

The rest of this paper is organized as follows. In Section II,
we present a review of related works. Section III describes the
design and specification of the proposed framework that de-
tects and mitigates the malicious updates due to the model/data
poisoning attacks. In Section IV, we evaluate our framework.
Finally, section V concludes the paper.

2https://openairinterface.org/

II. RELATED WORK

A few solutions have been designed to deal with poisoning
attacks when building learning models relaying on FL. These
works can be classified into two main categories: works
dealing with poisoned local models [5] [6] and those dealing
with data poisoning of malicious participants [7] [8].

A. Local Model Poisoning

The objective of model poisoning attacks is to poison
the local model updates of the FL clients before sending
them to the FL server or inserting hidden backdoors into the
FL global model. This attack impacts thus the performance
of the global model by giving misclassifications or wrong
predictions. In [5], the authors demonstrated how the feder-
ated learning (FL) model could be poisoned. They showed
that any malicious clients could introduce hidden backdoor
functionality into the joint global model, e.g., to ensure that
an image classifier model can predict labels for some input
data, which were introduced (labels) by the malicious client.
The authors designed a new model-poisoning attack based
on model replacement and evaluated it on top of several
assumptions on the standard FL. Another scheme is proposed
in [6] to study the resilience of distributed implementations of
Stochastic Gradient Descent (SGD) against Byzantine failures,
including network asynchrony, software bugs, and attackers
aiming to compromise the whole system as well as biases in
local datasets. The authors first showed that current approaches
do not tolerate Byzantine failures. Then, they proposed a
resilience property of the aggregation rule that can ensure
model convergence despite Byzantine participants. Although
FL introduces new application scenarios in B5G networks,
such as edge computing and on-device learning, it inherits the
same critical threats, such as the poisoning and membership
inference attacks, as in the other contexts. A novel blockchain-
based FL scheme is designed in [9] to deal with model poison-
ing attacks. This scheme is based on blockchain to create smart
contracts and hence prevent malicious clients from involving
in the FL process. Therefore, the central server may easily
identify unreliable clients by executing smart contracts.

B. Data Poisoning

This type of attack is known as contamination of the training
data. It takes place during the FL training phase of the machine
learning model. Generally, a malicious node tries to poison
the training data by injecting carefully designed samples to
compromise the whole FL learning process. This attack is
also called a“dirty-label poisoning attack”. In [7], the authors
first studied the threats that may target federated learning in
terms of Sybil-based poisoning attacks. Then, they designed a
new detection and mitigation scheme that identifies poisoning
Sybil-based on clients’ updates. The basic idea of this scheme
is to use an adaptive learning rate at each client level based on
the similarity between inter-client contributions. The authors
also showed that their scheme may deal with the existing
poisoning attacks, such as backdoor poisoning attacks and
Sybil-based label-flipping. Noting that the label-flipping attack



TABLE I: Comparison of poisoning attack detection solutions.

Works Poisoning Attack type Securing side B5G Used TechniqueModel Poisoning Attack Data Poisoning Attack Client Server
Yi Liu, et al. [9] Smart Contract and Blockchain
Peva Blanchard, A resilience property of
et al. [6] the aggregation rule
Phillip Rieger, Analyzes the parameter updates
et al. [16] of the model’s output layer
Mustafa Safa Ozday, Adjusting the aggregation
et al. [17] server’s learning rate
M. Jagielski, et al. [15] Model Robustifying:

Trimmed versions of the loss function
Y. Zhao,et al. [12] Generative adversarial network (GAN)
M. Subedar, et al. [14] Probabilistic modeling of deep features

J. Steinhardt, et al. [13] Training Data Filtering Input
Manipulation Detection

Our Solution Supervised/Unsupervised Learning:
Dimensional Reduction Algorithms,
Deep Reinforcement Learning

is a special case of data poisoning, where the labels of two
input observations are flipped while data features (inputs) are
kept unchanged. Another example of a poisoning attack is
backdoor data poisoning [8], where an adversary can modify
individual features or small regions of the original training
dataset (some pixels of images) to embed backdoors into the
FL model. As an example, the attacker creates a stamp on
an input image so that the FL model behaves according to
the adversary’s objective if the input contains the backdoor
feature.
The work proposed in [16] introduced DeepSight, a novel
model filtering approach that mitigates backdoor attacks on
FL. It is based on different techniques that allow characterizing
the distribution of data used to train model updates. They
proposed a threshold metric to build a classifier that analyzes
the parameter updates of the model’s output layer in order
to measure the homogeneity of its training data. In [17], the
authors proposed a lightweight defense mechanism that re-
quires minimal changes to the FL process to prevent backdoor
attacks. The defense is based on adjusting the aggregation
server’s learning rate, per dimension and per round, based on
the sign information of agents’ updates.

C. Discussion and comparison

Even though there are some works addressing the challenge
of how to deal with poisoning attacks in the FL context,
however, most of them focus on how to adjust learning
parameters at the clients’ side, such as learning rate [7], or
designing new rules for local models aggregation at the central
node side [6], in order to be able in detecting malicious
participants. In addition, these works dealt with either local
model poisoning or data poisoning attacks, not with both. In
B5G networks context, few works have been proposed that
are mainly based on blockchain to prevent the participation of
malicious clients [9]. However, blockchain will require more
computing and storage resources in addition to those needed
by B5G networks for their management and orchestration.
Moreover, this work can only evaluate the updates every

round, using a mandatory test data set as parameters input
in the “evaluate function”, which is implemented in the smart
contract. More than that, the increased number of participants
in the proposed solution affects the communication overhead
and the delay, which in turn reduces the accuracy of the
FL model. Additionally, the proposed framework is a costly
solution.

In Table. I, we compare existing works according to several
criteria such as targeted poisoning attack, the used techniques,
secure side (client or central node), and B5G context or not.

III. OUR TRUST FEDERATED DEEP LEARNING
FRAMEWORK

In this section, we describe our framework to secure fed-
erated learning in B5G networks against data and model
poisoning attacks, named ”TQFL” for ”Trust deep Q-learning
Federated Learning”. The design of our framework comprises
four main steps, starting from generating a realistic dataset to
designing a detection scheme of poisoning attacks: (i) The
generation of a realistic dataset about the AMF function’s
latency of running network slices and its (latency) related
parameters. (ii) Building a deep learning model to predict
the AMF function’s latency of each running network slice
in a federated way in order to prevent any latency-related
SLA violation. (iii) Building an online Deep Reinforcement
Learning (DRL) model that dynamically selects a network
slice as a trusted participant (see step 1 in Fig. 1). (iv) After the
first FL rounds (see steps 2, 3 in Fig. 1), the trusted participant
applies a dimensionality reduction scheme and unsupervised
machine/deep learning to detect the malicious participant (s)
(see steps 4, 5, 6 in Fig. 1).
Before we proceed, we first give an overview of our framework
in the next subsection.

A. Overview of TQFL Framework

As depicted in Fig. 1, we consider n running network slices
that may be initiated by different vertical industries, such as
intelligent transportation, Industrial IoT, and eHealth verticals.



Fig. 1: Overview of TFQL Architecture.

The running network slices are interconnected to an Inter-
Domain Slice Manager (IDSM), which is in charge of the
management and orchestration of network slices. To enable
Zero Touch Management (ZSM), the IDSM side includes an
Analytic Engine (AE) for building learning models and a
Decision Engine (DE) to make suitable decisions based on
AE’s outputs. On the other side, each running network slice is
managed locally by a Domain Slice Manager (DSM), which
also includes a Monitoring System (MS) for monitoring data
and in-slice traffic (i.e., KPIs) from different VNFs, and an
Analytic Engine (AE) for building learning models.

B. Generation of Realistic Dataset

Machine/Deep learning algorithms require data to create
learning models. However, the more the datasets are realistic
and large, the more the deep learning models are accurate
and adaptable for various situations. Hence, the first critical
step toward developing accurate learning models is the data
set collection (data acquisition or monitoring). With the lack
of a real dataset, we conducted a real testbed using Eurecom
OpenAirInterface (OAI) platform to generate a realistic dataset
called EARCD for Eurecom AMF Resource Consumption
Dataset. OAI implements 5G radio access and core networks
as open-source software. We emulated ten instances of Ac-
cess Mobility Function (AMF), running as VNFs inside ten
isolated network slices. The network slices differ from each
other in terms of their AMFs’ configurations. For instance:
the AMF of network slice 1 has 1GB of memory, and 1

CPU, the AMF of network slice 2 has 2GB of memory
and 2 CPUs, etc. In addition, we used my5G-RANTester 3

tool to emulate user equipment (UEs) and one gNB. my5G-
RANTester enables to emulate data and control planes of UEs
and gNBs. my5G-RANTester relies mainly on the release 15
of 3GPP standard about NG-RAN (Next Generation-Radio
Access Network). We used my5G-RANTester tool to generate
attach request packets, which will be then handled by the
different network slices’ AMFs. By increasing the number
of UEs, we are able to generate up to 560 attach request
per second, covering different traffic densities. Besides, it
is clear that the latency values increase as the number of
attach request increases. However, the latency values depend
greatly on the configurations of network slices’ AMFs. Fig. 2
depicts the average latency values according to the received
number of attach requests for two different configurations
of AMFs’ VNFs. We clearly observe that AMF with 2048
MByte of memory and 2 CPUs succeeds in decreasing the
latency when compared to AMF with 1024 MByte and 1 CPU.
Therefore, we generated ten local datasets (ten network slices),
by varying the number of handled attach request/s, where each
dataset contains 2813 samples (rows). In addition, each local
dataset contains five features as input data, including RAM
capacity, CPU capacity, RAM used, CPU used, the number of
attach requests, and latency in terms of average duration of
UEs attachment as output data. The latter corresponds to the
response time (latency in second) to handle UE attach requests

3https://github.com/my5G/my5G-RANTester
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Fig. 2: Latency of multiple attach with different configurations
of CPU and RAM.

by the network slices’ AMFs.

C. Latency KPI Prediction in Federated Way

To enable zero-touch management of the latency KPI related
to the UEs attach requests, we built a deep learning model
that enables each domain slice manager (DSM) to predict the
average needed latency for UEs attach requests in a federated
way. As depicted in Fig. 1, each running network slice includes
Monitoring System (MS), Analytic Engine (AE), and Decision
Engine (DE); they allow it to monitor needed information
(used CPU, used memory, etc.), build local learning models,
and make the suitable decisions based on made predictions,
respectively. Thus, we create a deep learning model in a
federated manner that comprises four main steps:

1) Data Pre-Processing: it is important to preprocess the
collected data before feeding it to the deep learning
model since the output of this step may directly affect
the performance of the learning model. This step checks
if the data is on the same format and scale, does not
include null and redundant values, and includes all
needed features for the training step.

2) Learning Initialization: In this step, the Inter-Domain
Slice Manager (IDSM), as the central node, creates
an initial global model and defines the learning hyper-
parameters in terms of batch sizes, number of epochs,
learning rate, neural network architecture, etc. These
parameters are then sent to the network slices’ DSMs,
as clients. Noting that the network slices implement an
artificial neural network (ANN), which comprises one
input layer of 5 neurons (the five input features), seven
hidden layers of 20 neurons, and one layer of 1 neurons
(Latency value). In addition, the activation function of
neuron nodes is rectified linear function, and two dif-
ferent optimizers are used: Stochastic Gradient Descent
(SGD) and ADAM optimizers (see subsection IV-A for
more details).

3) Training of Local Models: each network slice’s DSM,
through its AE, updates the parameters of its local
model. Indeed, each DSM gathers needed data through

its MS and splits it into many batches. Then, the DSM’s
AE performs the average gradient on each batch, with
respect to the current model, during several epochs and
with a particular learning rate. Once done, the network
slices’ DSMs send their local models back to the central
IDSM.

4) Building of Global model: the central IDSM aggregates
the DSMs’ local models, using FedAvg algorithm pro-
posed in [10], which is based on distributed SGD, as
weights optimizer. The aggregated global model is then
sent back to the DSM nodes. Algorithm 1 describes the
main instructions performed by the central IDSM.

Algorithm 1 The central IDSM

Require: Iterations k, Network Slices N .
Ensure: Aggregated Model Li+1.

1:
2: Initialize L0

3: i = 1
4: while i ≤ k do
5: j = |1|
6: while j ≤ |N | do
7: Ri+1

j ← DSMUpdate(j, Ri)
8: end while
9: Li+1 ← 1

|N |
∑t=|N |

t=1 Ri+1
t

10: end while
11: return Li+1 to Network slices’ DSMs. =0

D. Poisoning Attacks Detection

In this section, we present our poisoning attack detection
scheme.

1) Trust Participant Selection using Deep Reinforcement
learning: After the first FL rounds, the central IDSM of
running network slices selects a running network slice (DSM)
as a trusted node. To do so, we design a new deep rein-
forcement learning-based model to derive an optimal policy
about trust node selection while considering several criteria
related to such nodes, such as their reputation, detection rate
of malicious nodes, and their accuracy in building learning
models. Deep Reinforcement learning is a process that enables
one or a set of agents to learn on how to make suitable
decisions through error and trial and based on their (agents)
previous experiences. Specifically, each agent interacts with
the environment to receive either penalties or rewards for ac-
tions it made. Hence, the main objective of deep reinforcement
learning is to derive an optimal policy about agents’ actions
that maximizes agents’ cumulative reward. In our study, the
central IDSM is the agent that interacts with running network
slices’ DSM (environment) in discrete time steps, as shown in
Fig.1. In what follows, we first formalize our problem using
Markov Decision Process (MDP). Then, we apply the Deep Q-
Network algorithm (DQN) to predict the best trust participant
to select at each federated learning stage. Markov Decision
Process Model The problem is often modeled using a MDP,
where, at every timestep t, the central IDSM manager, is in
a state st, takes an action at. Then, it (IDSM) will receive a



scalar reward from the network slices’ DSM (environment). In
addition, the system passes from the state st to a state st+1,
according to environment dynamics p(st+1|st, at). Therefore,
the central IDSM manager attempts to learn a policy (a|s), that
helps to map from observations to actions, and maximizing
its rewards. In our study, a state s ∈ S is a three-sized tuple
(MC;TC;GMA), where:

• MCi is the number of malicious models (participants),
that are detected by network slice’s DSMi;

• TCi is the number of trust models, that are detected by
network slice’s DSMi;

• GMAi is the accuracy of the global model, after detect-
ing and removing malicious models, by network slice’s
DSMi;

At every timestep t and when aiming to take an action a,
the central IDSM can select a network slice i, among the n
running slices, that has the highest reputation Rep. Then, the
system may transit to a new state st+1, that corresponds to
the number of detected malicious clients MCi, the number of
trust clients as well as the new accuracy of the new global
model. Furthermore, when the system moves to a new state
st+1, a reward rt+1 = R(s, a) is associated with the transition
p(st+1|st, at). For this end, we model the reward that the
central IDSM expects to get from the selected network slices’
DSM, as follows:

rt+1 =


GMAt+1 if MCi >= 1 or GMAt+1 >= GMAt

0 otherwise
(1)

It is clear that the received reward from a participant i
affects directly its reputation in the federated learning process.
Additionally, the reward increases, when the reputation of the
network slice i increases as follows:

Repi = Max (0, rt+1) (2)

Based on equation 1, the central IDSM’s reward will be
affected not only by the number of observed malicious par-
ticipants but also by the accuracy of the new global model.
Therefore, the IDSM manager aims to derive the optimal
policy in selecting a trusted participant, which optimizes the
learning model’s accuracy and its detection of poisoning at-
tacks. Deep Reinforcement Learning As we mentioned before,
our reinforcement scheme is based on DQN, which combines
Q-learning and a deep neural network to learn an optimal
policy from input data. Q-learning is a reinforcement learning
algorithm that aims to identify the optimal policy of action
selection, maximizing the total reward, called Q-value, for
any finite MDP. The Q-value of each action is calculated
and stored in a table named Q-table. In addition, at every
timestep (learning episode), the Q-values are updated using
the following formula:

Q (st, at) = Q (st, at) + Θ

(
rt+1 + λmax

a∈A
Q(st+1, a)

)
(3)

With Θ is the learning rate and λ is the discount factor,
indicating the future rewards importance. Besides, the basic
idea of DQN is to use a neural network to predict the Q-
value of all possible actions based on the current state. In
particular,DQN comprises two neural networks: target network
Q′(s′; a; θ′) and a prediction network Q(s; a; θ). The predic-
tion network is updated after each learning epoch, while the
target network is directly updated from the prediction network
after every several iterations. Hence, DQN aims to reduce the
loss function between both neural networks as follows:

L =

(
r + λmax

a′∈A
Q′(s′, a′, θ′)−Q(s, a, θ)

)2

(4)

Where θ is the learning weights of the Q-network, that is
updated using gradient back propagation optimizer. In our
study, we implement a fully connected neural network. It
comprises one input layer with three neurons that correspond
to the three states (MC, TC, GMA), two hidden layers
with 24 neurons each, and one output layer to predict the
Q-values of the running network slices. Noting that, we tried
several configurations in terms of the number of intermediate
layers and their number of neurons. We selected the best
configuration that provided better performance.

2) Dimensionality Reduction of model updates:
Once a trusted client is selected, it will be in charge of

detecting whether the received updates include a malicious
model or not. First of all, the selected trust client receives the
n model updates of network slices from the central IDSM,
and then applies dimensionality reduction techniques to be
able to present the model updates in 2D dimensions. Indeed,
dimension reduction is the transformation of a dataset/matrix
from a high-dimensional space into a low-dimensional space;
in such a way, the low-dimensional representation retains the
meaningful properties of the original data.
Fig. 3 shows a dimensionality reduction of our FL model
updates in 3D when applying the linear discriminant analysis
reduction technique. The different colors of the points, which
are defined by 3 axes (x:0, y:1, z:2), present the updates
of different nodes (10 clients). However, as we can notice,
the reduction to 3D will not provide a clear visualization
to interrupt and classify the model updates. That is why
we decided to apply dimensionality reduction to 2dimensions
(2D).

In our study, to design an efficient detection scheme, we
apply two different techniques on the FL clients updates, with
two different optimizer (ADAM, and SGD): (i) Principal
Component Analysis (PCA) as an unsupervised technique
(ignores class labels) and (ii) Linear Discriminant Analysis
(LDA) as a supervised technique.

i) Principal Component Analysis (PCA):
PCA is a statistical technique that helps explain data of high
dimensions by extracting only some principal components of
such data. The process of PCA comprises four main steps:

1) Standardization of model updates’ values: the trusted
client receives n model updates, where each one contains
five values that correspond to the five input features,
including RAM capacity, CPU capacity, RAM used,



Fig. 3: LDA visualization with 3 dimensional applied on the
node updates.

CPU used, and the number of attach requests. The first
step of standardization consists of putting the feature
values in the same range and format in order to make
sure that they will equally contribute to the final analysis,
using the following equation:

Str(value) =
(value−mean)

standarddeviation
(5)

2) Covariance Matrix: The second step is the calculation
of the “Covariance Matrix” between the input features
of our dataset. Notably, the aim is to understand how
these input features vary from the mean with respect to
each other. The covariance matrix is a m × m symmetric
matrix (where m is the number of input features, 5 in
our case). In fact, the covariance matrix describes the
correlations between all the possible pairs of our input
features as follows:

Cov(input features) =
Cov(x1, x1) Cov(x1, x2) . . . Cov(x1, xm)
Cov(x2, x1) Cov(x2, x2) . . . Cov(x2, xm)
Cov(x3, x1) Cov(x3, x2) . . . Cov(x3, xm)

. . . . . . . . . . . .

. . . . . . . . . . . .
Cov(xm, x1) Cov(xm, x2) . . . Cov(xm, xm)


The correlation between the two features depends mainly
on the covariance sign. If it is positive, both features
increase or decrease together, which means they are
strongly correlated. Nevertheless, if it is negative, one
increases whereas the other decreases, which signifies
that they are inversely correlated.

3) eigenvectors and eigenvalues of the covariance ma-
trix: eigenvectors and eigenvalues are the core of PCA,
enabling to identify the principal components. These
parameters are new variables that are constructed as
mixtures or linear combinations of the initial features.
Indeed, the eigenvectors (principal components) describe
the directions of the new feature space, while the eigen-
values show the variance of the data along the new

feature axes. Both parameters are calculated using the
following formula:

Cov(inputfeatures) ∗ v = λ ∗ v
Where :

- Cov(input features) is the covariance matrix

- v is the eigen vectors

- λ is the eigen value
(6)

FinalData = FeatureV ectorT ∗StandardizedDataT

(7)
Therefore, eigenvectors and eigenvalues enable to create
new g-dimensional data that gives g principal compo-
nents.

4) Computation of feature vector: This step aims to select
which principal components to keep and which ones
to remove (those that have lesser significance or lower
eigenvalues). The output of this step is a matrix of
vectors named “Feature vector”, which has the selected
components as columns. Finally, the initial data are
aligned with the new principal component, using equa-
tion 7. In addition, the feature vector with EigenVectors
is used to align/reorient the data from original axes to
new principal component axes.

ii) Linear Discriminant Analysis (LDA):
LDA is also a dimensionality reduction technique that aims to
find not only the component axes, maximizing data variance
(PCA), but also a feature subspace that maximizes class
separability. Thus, LDA enables to project a feature space (a
dataset with nb dimensional samples) into a smaller subspace
k while maintaining the class-discriminatory information.
The LDA process also comprises different steps. First, we con-
sider a matrix of n classes of model updates that correspond
to the n clients (network slices) as follows:

C =


C1

C2

. . .
Cn


And each class comprises five input features, as follows:

F =


F (1, c1) F (2, c1) . . . F (5, c1)
F (1, c2) F (2, c2) . . . F (5, c2)
F (1, c3) F (2, c3) . . . F (5, c3)

. . . . . . . . . . . .
F (1, cn) F (2, cn) . . . F (5, cn)


1) Computing the d-dimensional mean vectors: The first

step of LDA is to compute a d-dimensional mean vector
M(Ci) for the different classes n.

2) Compute the Scatter matrix (in between class and
within the class scatter matrix): The second step is
to compute the “Scatter Matrices” which are equivalent
to the variance. In fact, we have two matrices of E
x N dimensions to calculate: “The within-class” and
the “between-class scatter matrix”. The objective of
these matrices is to determine the variability within a
class (Intra class scatter) as well as between different



classes (inter-class Scatter). Both consist of calculating
the distance between different points( inter/intra classes).
The first matrix ( within-class scatter) Sca is calculated
as follows:

Sca =
n∑

j=1

Ssj

Where :

Ssj =

(number of samples)∑
x∈Di

(x−mi)(x−mi)
T
,

Ssj is a scatter matrix for every class,

m is the mean vector,

mi =
1

ni

(number of samples)∑
x∈Di

xk

(8)

Likewise, the class-covariance matrices are computed by
adding the scaling factor 1

N−1 to the within-class scatter
matrix so that the equation 8 becomes:

ξi =
1

N − 1

(number of samples)∑
x∈Di

(x−mi)(x−mi)
T

Scj =
n∑

i=1

(Ni − 1)ξi

(9)

The between-class scatter matrix SB is computed by the
following equation:

SB =
n∑

i=1

Ni(mi −m)(mi −m)
T (10)

where m is the overall mean, and mi and Ni are the
sample mean and sizes of the respective classes.

3) Computation of the eigenvectors and eigenvalues
for the scatter matrices: After that, the next step is
the computation of the eigenvectors and corresponding
eigenvalues for the scatter matrices, as we did for PCA.

4) Selecting linear discriminant for the new feature
subspace: Following, the sort of the eigenvectors should
be applied by decreasing eigenvalues and choosing k
eigenvectors with the largest eigenvalues to form a d ×
k dimensional matrix (where every column represents
an eigenvector).

5) Transforming the samples onto the new subspace:
Next, the selected d × k eigenvector matrix will be
used to transform the samples onto the new subspace
dimension.

E. Poisoning Attacks Mitigation

Once applying dimensionality reduction techniques and
depicting network slices’ updates in a 2D plan, the last step
consists of grouping the received updates into several clusters,
in order to determine malicious updates/models. To ensure

an effective detection of malicious updates, we chose to
apply two different clustering algorithms. The first is k-means
which is an unsupervised learning algorithm. It considers no
labeled update models’ data. The second is k-nearest neighbors
(KNN), as supervised learning algorithm. It considers labeled
data about model updates. Both algorithms aim to divide
the received update models, after the first FL rounds, into k
clusters that share similarities and are dissimilar to the model
updates belonging to another cluster. We note that we leverage
the model update of the trust participant as a reference that
helps us to make the difference between malicious and trust
models.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our TQFL
framework in order to validate it.

A. Experiment Setting

We developed the main components of our framework, in
terms of FL-based latency model, DQN-based participants
selection model, and clustering and dimensionality reduction-
based attack detection model, using TensorFlow Python library
and leveraging our EARCD dataset. We evaluate our FL-based
model to predict the latency KPI, in terms of Mean Squared
Error (MSE) on top of two different weight optimizers (SGD
and ADAM) in order to determine the suitable optimizer that
improves the prediction accuracy of our both FL-based and
attack detection models.
We note that we evaluate our FL-based model in and with-
out the presence of malicious nodes to show the impact of
poisoning attacks on the performance of our FL model. The
malicious nodes (network slices) generate poisoning attacks by
introducing new malicious/incorrect data samples and building
their local models on top of such data. For example, the
malicious nodes may consider low latency values, even when
receiving a high number of attach requests and vice versa.
In addition, we trained our DQN model for more than 5000
learning episodes. Once converged, we deployed our DQN-
based model at the inter-domain slice manager, which is in
charge of selecting a trusted participant at each FL round.
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Fig. 4: Mean Squared error of our FL model when using
ADAM Optimizer.
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Fig. 5: Mean Squared error of our FL model when using SGD
Optimizer.

TABLE II: The parameter settings.

The parameter settings Value
Federated Learning (FL)
Number of layers 4
Number of neurons 20
Optimizer 1 SGD
Learning rate 0.0001
Optimizer 2 ADAM
Activation function ReLU
Loss function MSE
Reinforcement Learning (DQN)
Number of layers 2
Number of neurons 24
Optimizer ADAM
Learning rate 1e-2
episodes 5000
Dimensional Reduction Algorithm (DRA)
Dimension of LDA/PCA 2D
Clustering Algorithm (CA)
Number of cluster (k) 1, 2

Moreover, to evaluate our attack detection scheme, after a
given number of FL training rounds, the ten network slices’
DSMs send their model updates to the inter-domain network
slice manager. The latter first selects one network slice as
a trusted party before sharing with it the model updates.
Table. II gives more details about parameter settings used in
our simulation.

B. Evaluation of Latency prediction in Federated way

Following, we present the results without malicious nodes
for two different optimizer: ADAM and SGD. Fig. 4 de-
picts the MSE metric of our FL model during several FL
rounds, with and without the presence of malicious network
slices. On top of the ADAM optimizer, we clearly observe
that MSE of our model without malicious nodes is lower
than with malicious nodes, around 0.1035681. However, it
increases as we add more malicious nodes that will inject more
malicious/incorrect data in terms of latency KPI. Therefore,
poisoning data attack affects highly not only the performance
of our FL model in terms of MSE, but also the model con-
vergence towards an accurate global model. Similarly, Fig. 5
shows the MSE metric of our FL model on top of the SGD
optimizer. We also see that the MSE increases as the number
of malicious network slices increases as well, while the FL

model without malicious nodes outperforms the other models
(with malicious nodes), with a MSE of 0.173584. Hence, these
results confirm the results of Fig. 4 and show that poisoning
attacks can have a negative impact on the performance of our
FL model, especially in terms of global model convergence,
whatever the used learning optimizer (ADAM or SGD).

C. Evaluation of Trust Participant Selection

TABLE. III shows the results of the selected DSM based
on our DQN-based scheme, for two different time instances
t1, and t2. These results are obtained based on the nodes’
reputations (Repi, i ∈ [1, 10]). As we observe, when t = t1,
the DSM4 was selected as trust node, since it maximizes the
reputation value. Similarly, when t = t2, the network slices’
DSMs have different reputation values. However, DSM8
is selected, because, it presents the highest value. In other
words, our DQN-based algorithm enables to select the network
slice that maximize the reward. Since, the reputation value is
determined based on the reward using equation 2.

D. Evaluation of Data Poisoning Attack Detection

After showing the negative effect of the data poisoning
attacks on the performance of the global FL model, in this
subsection, we evaluate the performance of our combined
dimensionality reduction and unsupervised clustering scheme
against data poisoning attacks, and on top of the two different
optimizers: ADAM and SGD. We note that for data poisoning
attacks, the malicious node tries to inject incorrect latency
values, e.g., high latency value, even when the node has high
resource capacity in terms of memory and computing.

1) Combining LDA with k-means: Fig. 6 and Fig. 8 depict
the detection results when combining LDA and K-means on
top of ADAM and SGD optimizers, respectively. We also
vary the percentage of malicious network slices’ DSM and
show the trusted nodes that are selected at each FL round
(nodes in green color). As we see, our scheme can clearly
detect the malicious nodes, even with only one malicious
node. Specifically, the trusted node applies both LDA and K-
means, and then all nodes that are in the same cluster with
it are considered correct models, while the nodes (models)
that are in the other (s) cluster (s) will be considered as
malicious. Therefore, our trust participant selection algorithm
helps us not only to select a trusted node but also to determine
malicious nodes when performing dimensionality reduction
and unsupervised clustering. Moreover, determining the trusted
cluster of nodes will also help the FL server (IDSM) to select
a trusted participant for the next FL round.

2) Combining LDA with KNN: Fig. 7 and Fig. 9 also show
the clustering of local models when applying both LDA and
KNN on top of ADAM and SGD optimizers, respectively.
Whatever the number of malicious nodes, we also observe
that there are always some isolated points that represent the
infected models sent by the malicious DSMs. However, for
the LDA technique, we see that the isolated models (infected)
are identified better with the ADAM optimizer than with the
SGD optimizer (Figs. 6 and 7). Hence, the LDA (with KNN
or k-means) technique gives better detection on top of the
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Fig. 6: LDA + K-means for different number of malicious nodes (ADAM optimizer).
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Fig. 7: LDA + KNN for different number of malicious nodes (ADAM optimizer).
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Fig. 8: LDA + K-means for different number of malicious nodes (SGD optimizer).
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Fig. 9: LDA + KNN for different number of malicious nodes (SGD optimizer).

ADAM optimizer. In fact, these last combinations show the
clearest clustering (two separate groups) compared to other
algorithms.

3) Combining PCA with K-means: As we did for LDA,
we also evaluate the performance of PCA technique when
combined with clustering unsupervised algorithms. Figs. 10
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Fig. 10: PCA + k-means for different number of malicious nodes (ADAM optimizer).
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Fig. 11: PCA + KNN for different number of malicious nodes (ADAM optimizer).
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Fig. 12: PCA + k-means for different number of malicious nodes (SGD optimizer).
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Fig. 13: PCA + kNN for different number of malicious nodes (SGD optimizer).

and 12 shows the clustering detection when combining PCA
with K-means, on top of the ADAM and SGD optimizers,
respectively. We remark that both optimizers succeed in sep-

arating and identifying infected models by incorrect data.
However, infected models are better identified on top of the
SGD optimizer as compared to the ADAM optimizer. Thus,
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Fig. 14: DA + k-means for different number of malicious nodes.

TABLE III: The results of the selected DSM based on our DQN-based scheme.

t : t1
RepDSM1 RepDSM2 RepDSM3 RepDSM4 RepDSM5 RepDSM6 RepDSM7 RepDSM8 RepDSM9 RepDSM10
0.2 0.4 0.3 0.7 0.61 0.48 0.37 0.68 0.54 0.62

Selected DSM
t : t2
RepDSM1 RepDSM2 RepDSM3 RepDSM4 RepDSM5 RepDSM6 RepDSM7 RepDSM8 RepDSM9 RepDSM10
0.1 0.22 0.15 0.74 0.58 0.52 0.31 0.8 0.60 0.71

Selected DSM

Fig. 15: Mean Squared error of the FL global model (ADAM
optimizer).

PCA with K-means gives better performance in detecting
infected models on top of the SGD optimizer. Indeed, this
last combination show the clearest clustering (two separate
groups) compared to other algorithms.

4) Combining PCA with KNN: Similarly, Figs. 11 and 13
depict the detection when combining PCA with KNN on
top of the ADAM and SGD optimizers, respectively. As in
Figs. 10 and 12, PCA with KNN on top of both optimizers
clearly separates correct local models from infected ones and
thus enables to detect/identify malicious DSMs. We also see
that infected models are better identified when leveraging the
SGD optimizer than the ADAM optimizer. Therefore, the
PCA technique with either K-means or KNN gives better
detection of malicious models on top of the SGD optimizer,
which is confirmed in Figs. 10, 11, 12, 13. In fact, these
last combinations show the clearest clustering (two separate
groups) compared to other algorithms.

5) Impact of malicious nodes detection on the FL ac-
curacy: In Fig. 4 and 5, we showed that poisoning attack

affects highly not only the performance of our FL model in
terms of MSE, but also the model convergence towards an
accurate global model. Moreover, the observation confirms
that even a single malicious node can influence the global
model accuracy, as well as open the possibility of conducting
two types of attacks. The first one is a Byzantine attack, in
which the malicious node aims to prevent the FL global model
from converging. Whereas the second is the poisoning attack
in which the attacker intends to make the FL global model
misinterpreting some of the inputs in its future use. Fig. 15
depicts the MSE metric of our global FL model when applying
our combined dimensionality reduction and clustering scheme
to detect and remove infected models. Noting that we apply
our scheme after a given number of FL rounds r = 4, i.e., after
collecting some updates from the network slices’ DSMs. We
clearly observe that our scheme improves MSE of the global
FL model, which decreases as we increase the number of FL
rounds, even when injecting some infected models from the
fourth round. Therefore, our detection scheme enables not only
to identify malicious DSMs, but also to improve the accuracy
of the global FL model.

E. Evaluation of Model Poisoning Attack Detection

In this subsection, we evaluate our scheme against model
poisoning attacks, where malicious DSMs try to send incorrect
learning models, which are generated randomly for instance.
Fig. 14 shows the results when combining LDA and K-means
on top of the ADAM optimizer. We remark that LDA with
K-means does not clearly succeed to identify the malicious
models Fig. 14-b. However, when combining PCA and K-
means on top of the SGD optimizer, the malicious models
are better detected, as depicted in Fig. 14-d. Therefore, we
can deduce that model poisoning attacks are better detected
and identified, when using PCA with K-means techniques,
as compared to LDA and K-means combination. In general,
we can deduce that our scheme succeeds in providing stable



performance in dealing with both data and model poisoning
attacks that can target federated learning-based models. In par-
ticular, combining dimensionality reduction and unsupervised
clustering learning helps us to not only detect/identify infected
learning models but also to improve the global accuracy of the
FL model.

V. CONCLUSION

In this work, we designed a novel secure federated learning
framework, which leverages reinforcement deep learning, di-
mensionality reduction, and clustering unsupervised learning
to deal with both data and model poisoning attacks that can
target federated learning-based models in 5G and beyond
networks. First of all, we generate a realistic dataset related
to network slicing KPIs in order to build a federated learning
model for latency KPI prediction. We then generate realistic
data and model poisoning attacks on top of our federated
learning-based model. To deal with them, a dynamic selection
algorithm of a trusted node is first proposed, leveraging
reinforcement deep learning. The latter is in charge of de-
tecting and identifying malicious learning models and hence
network slices. The numerical results show the efficiency of
our framework in dealing with model/data poisoning attacks,
while preventing the Byzantine attacks, and thus mitigating
such attacks and ensuring stable performances of the federated
learning model.
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