
HAL Id: hal-04134249
https://hal.science/hal-04134249

Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A numerical investigation of Brockett’s ensemble
optimal control problems

Jan Bartsch, Alfio Borzi, Francesco Fanelli, Souvik Roy

To cite this version:
Jan Bartsch, Alfio Borzi, Francesco Fanelli, Souvik Roy. A numerical investigation of Brockett’s
ensemble optimal control problems. Numerische Mathematik, 2021, 149 (1), pp.1-42. �10.1007/s00211-
021-01223-6�. �hal-04134249�

https://hal.science/hal-04134249
https://hal.archives-ouvertes.fr


Numerische Mathematik
https://doi.org/10.1007/s00211-021-01223-6

Numerische
Mathematik

A numerical investigation of Brockett’s ensemble optimal
control problems

Jan Bartsch1 · Alfio Borzì1 · Francesco Fanelli2 · Souvik Roy3

Received: 13 February 2020 / Revised: 24 May 2021 / Accepted: 26 July 2021
© The Author(s) 2021

Abstract
This paper is devoted to the numerical analysis of non-smooth ensemble optimal
control problems governed by the Liouville (continuity) equation that have been orig-
inally proposed by R.W. Brockett with the purpose of determining an efficient and
robust control strategy for dynamical systems. A numerical methodology for solving
these problems is presented that is based on a non-smooth Lagrange optimization
framework where the optimal controls are characterized as solutions to the related
optimality systems. For this purpose, approximation and solution schemes are devel-
oped and analysed. Specifically, for the approximation of the Liouville model and its
optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta
scheme, and a Strang splitting method are discussed. The resulting optimality system
is solved by a projected semi-smooth Krylov–Newton method. Results of numerical
experiments are presented that successfully validate the proposed framework.
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1 Introduction

The ensemble control problems considered in this paper were proposed by Brock-
ett [7–9] to design efficient and robust control strategies for steering ensembles of
trajectories of dynamical systems in a desired way. For this purpose, the adequate
model governing the evolution of the ensembles expressed in terms of a density is
the hyperbolic Liouville (continuity) equation. In application, this ensemble may rep-
resent the probability density of trajectories of multiple trials of a dynamical system
with the initial conditions specified by a distribution function, or the physical den-
sity of multiple non-interacting systems (e.g., particles). In both cases, the function
that determines the dynamics of these systems appears as the drift coefficient of the
Liouville equation. Therefore, the Liouville framework allows to lift the problem of
controlling a single trajectory of a finite-dimensional dynamical system to the optimal
control problem governed by a partial differential equation (PDE) for a continuum
(ensemble) of dynamical systems subject to the same control strategy. We remark that
the Liouville equation represents also the fundamental building block for continu-
ity models as the Fokker–Planck equation for stochastic systems and the Boltzmann
equation for atomistic models. In particular, it can be used to model particle streaming
while neglecting collisions but allowing to consider source terms [19]. Thus, one of
the purposes of this work is to present a numerical optimization framework devoted to
ensemble optimal control problems that can be applied to similar problems involving
continuity equations; see, e.g., [2,13,18,21,31] for different classes of these equations.

The formulation and theoretical investigation of the ensemble control problems
considered in this paper are presented in [3], where existence and regularity of solu-
tions for a class of Liouville optimal control problems is discussed in the case where
the drift function corresponds to a composition of linear and bilinear (input-affine)
control mechanisms for the underlying dynamical system. In this class of problems,
the purpose of the controls is to steer the ensemble of trajectories along a given path
and to come close to a desired target configuration at a given final time. As in [7,8],
these objectives are formulated in terms of minimizing different expectation function-
als that include appropriately chosen costs of the controls. In particular, we consider
L2-, L1- and H1-costs of the controls, where the L2 term is a classical regularization
term, the L1-cost has the purpose to promote minimum action of the control during
the time evolution by promoting sparsity [15,37], and the H1-cost corresponds to the
minimum attention control proposed by Brockett in [9].

The challenges of the numerical investigation presented in this paper are manifold.
One of these challenges is that we are a considering a nonlinear control mechanism in
the Liouville model where the controls multiply the density function, and this product
is subject to spatial differentiation. A further challenge posed is that the numerical
approximation of the Liouville equation must guarantee non-negativity of the com-
puted density in addition to the required properties of accuracy and stability.Moreover,
turning to the functional structure of the controls’ objectives, we notice that ensemble
cost functionals are a much less investigated topic, especially in combination with
non-smooth costs of the controls. Furthermore, the presence of L1 costs and box con-
straints on the values of the controls require further numerical analysis effort due to
the resulting lack of Fréchet differentiability of the resulting optimization problem.

123



A numerical investigation of Brockett’s ensemble optimal…

On the other hand, our formulation covers and extends Brockett’s ensemble optimal
control strategy so as to address many possible requirements in applications of this
framework. For this purpose, in this work we consider all numerical analysis issues
concerning the solution of our general Liouville-based ensemble optimal control prob-
lems.

As thoroughly discussed in [3] and illustrated below, the first step in solving our
ensemble optimal control problems is the derivation of the corresponding first-order
optimality conditions that consist of the controlled Liouville equation, its optimization
adjoint (having the structure of a transport equation), and a variational inequality that
we may also call (with some abuse of wording) the optimality condition equation. The
numerical solution of this optimality system proceeds along twomain steps that are the
numerical approximation of the equations involved and their solution by a numerical
optimization scheme.

For the approximation step, we present a novel formulation and analysis of dis-
cretization of the Liouville equation and its optimization adjoint model; the latter is
called the adjoint Liouville equation. For the former, we consider the well-known
second-order finite-volume Kurganov–Tadmor (KT) discretization scheme for the
spatial flux derivatives that results in a generalized monotonic upwind scheme for
conservation laws (MUSCL). For the temporal discretization, we use the second-
order strong stability preserving Runge–Kutta (SSPRK2) discretization scheme. Such
schemes possess several important properties (such as conservation of probability)
that are inherent to the exact solutions of the Liouville equation. In addition, because
the solution of the Liouville equation represents a density function, it is crucial that
the numerical solution remains non-negative over all times.

We prove that our SSPRK2-KT scheme preserves positivity subject to a restriction
on the time-step size. Further, we prove that our scheme is second-order convergent in
the L1 norm. This result is less-known in the context of generic finite-volume schemes
for linear conservation laws. For the adjoint Liouville equation, which is a transport
equation with a source term, we use a second-order Strang time-splitting scheme com-
bined with the KT spatial discretization scheme, and for the resulting approximation
we prove second-order accuracy. Further, we notice that the optimality condition equa-
tion is a variational inequality involving an integral for which we use second-order
accurate quadratures, and we implement a projection step in the optimization proce-
dure. Notice that, while second-order accuracy for the above three components of the
optimality system is separately guaranteed by suitable approximation, we are not able
to prove this order of accuracy of the coupled system; this is an issue that remains
widely open in the scientific literature, apart of the case of much simpler problems
with linear control mechanisms; see, e.g., [6].

The second fundamental step in solving our ensemble optimal control problems is
the design of a numerical optimization procedure. For this purpose, one recognizes that
the optimality condition equation provides the semi-smooth gradient of the ensemble-
cost functional along the constraint given by the Liouville model. However, because
of the presence of control constraints and the combination of L2-, L1- and H1-costs,
the assembling of our gradient is challenging. In particular, by imposing constraints on
the value of the control, we are required to implement a H1 projection of the control
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update. At this point, we remark that the combination of L1- and H1-costs and the H1

projection are less investigated in the literature.
However, this effort is verywell justified by our purpose of implementing a state-of-

the-art semi-smooth Krylov–Newton methodology for our new class of PDE optimal
control problems. In doing this, we also rely on past experience in [14,15], and the
resulting Newton scheme is used to validate our optimal control framework.

In the next Section, we illustrate the formulation of Liouville ensemble optimal
control problems, and discuss the chosen control mechanism and the constitutive
terms of an ensemble cost functional. Further, in correspondence to our optimization
setting, we present the optimality system and discuss the construction of the gradient.

In Sect. 3, we investigate the approximation of the Liouville equation and of adjoint
Liouville equation in the optimality system. For the former, we consider a combination
of a second order accurate strong stability preserving Runge–Kutta discretization in
time and the Kurganov–Tadmor finite volume discretization in space. For the latter, we
discuss a scheme that combines the Kurganov–Tadmor discretization and a Strang’s
splitting technique. For both methods, we present a detailed analysis of stability and
accuracy, and in the case of the Liouville equation we prove that our scheme is positive
preserving.

Section 4 is devoted to the implementation of our semi-smooth Krylov–Newton
method that requires the numerical solution of the Liouville equation and its adjoint
and the implementation of the gradient together with a H1-projection procedure for
the controls.

In Sect. 5, we present results of numerical experiments with our solution method-
ology that validate our optimal control framework in terms of the ability of the
controls to perform the given tasks. For this purpose, we consider the tracking of
non-differentiable trajectories and also the case of bimodal distributions. A section of
conclusion completes this work.

Notation

In this section, we present our notation that we use throughout the paper.
Given a bounded domain � ⊂ R

d , the symbol C∞
c (�) denotes the space of

infinitely often differentiable functions with compact support in �. Given k ∈ N,
we denote by Ck(�) the space of all k-times continuously differentiable functions
defined on �, and by Ck

b (�) the subspace of Ck(�) formed by functions which are
uniformly bounded together with all their derivatives up to the order k. We equip
Ck
b (�) with the Wk,∞-norm as follows

‖v‖Ck
b

:=
∑

|α|≤k

∥∥Dαv
∥∥
L∞ .

For α ∈ ]0, 1], we denote with C0,α(�) the classical Hölder space (Lipschitz space if
α = 1), endowed with the norm
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‖�‖C0,α := sup
x∈�

|�(x)| + sup
x,y∈�

0<|x−y|≤1

|�(x) − �(y)|
|x − y|α .

In particular, C0,1(�) ≡ W 1,∞(�).
For k ∈ N and 1 ≤ p ≤ +∞, we denote with Wk,p(�) the usual Sobolev space of

L p functions with all the derivatives up to the order k in L p; we also set Hk(�) :=
Wk,2(�). For 1 ≤ p < +∞, let W−k,p(�) denote the dual space of Wk,p(�). For
any p ∈ [1,+∞], the space L p

loc(�) is the set formed by all functions which belong
to L p(�0), for any compact subset �0 of �.

Furthermore, we make use of the so-called Bochner spaces. Given a Banach space
(X , ‖·‖X ) and a fixed time T > 0, we define for 1 ≤ p < ∞, and a generic represen-
tative function φ = φ(x, t), the spaces

L p
T (X) := L p([0, T ]; X)

with norm ‖φ‖L p
T (X) :=

(∫ T

0
‖φ(·, t)‖p

X dt

) 1
p

,

and

L∞
T (X):=L∞([0, T ]; X) with norm ‖φ‖L∞

T (X) := ess sup
t∈[0,T ]

‖φ(·, t)‖X .

Given a Banach space X and a sequence
(
�n

)
n , we use the notation

(
�n

)
n ⊂ X

meaning that �n ∈ X for all n ∈ N and that this sequence is uniformly bounded in X :
there exists some constant M > 0 such that ‖�n‖X ≤ M ∀n ∈ N.

Given two Banach spaces (X , ‖·‖X ) and (Y , ‖·‖Y ), the space X ∩Y , endowed with
the norm ‖ · ‖X∩Y := ‖ · ‖X + ‖ · ‖Y , is still a Banach space.

For every p ∈ [1,+∞], we use the notation L
p
T (Rd) := L p

T (Rd) × L p
T (Rd).

Analogously, H1
T (Rd) := H1

T (Rd) × H1
T (Rd). In addition, given two vectors u and

v in Rd , we write u ≤ v if the inequality is satisfied component by component by the
two vectors: namely, ui ≤ vi for all 1 ≤ i ≤ d.

2 Formulation of ensemble optimal control problems

Consider a particle whose position at time t is denoted with ξ(t) ∈ R
d . Suppose that

this particle is subject to a velocity field a(x, t) over Rd , where (x, t) ∈ R
d × [0, T ],

for some final time T > 0; then the particle’s trajectory is obtained by integrating
ξ̇ (t) = a

(
ξ(t), t

)
assuming an initial condition ξ(0) = ξ0.

Now, suppose we have an infinite number of non-interacting particles subject to the
same vector field and being distributed with a smooth initial density ρ|t=0 = ρ0; then
the evolution of this material density is modelled by the following Liouville equation

∂tρ(x, t) + div
(
a(x, t) ρ(x, t)

) = 0, (2.1)
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with the initial condition at t = 0 given by ρ(x, 0) = ρ0(x). Notice that, in this model,
the state variable x of the dynamical system defined by a, becomes the space variable
in the Liouville equation. We call a the drift function.

We have the same model (2.1) if we consider a unique particle subject to the flow a
and having the initial condition ξ0 chosen based on the probability density ρ0. In this
case, the Liouville equation governs the evolution of the probability density function
ρ of the position of the particle in the interval [0, T ]. However, the significance of
the Liouville equation above is not limited to the case where x denotes the space
coordinate and a a velocity field. In fact, it applies equally well in the case where
x represents the velocity of the particle and a plays the role of acceleration/force.
Another possibility is to identify x with the position and velocity of a particle in the
phase space, and in this case the Liouville operator corresponds to the streaming part
in the transport and Boltzmann equations [10,19].

Clearly, the interpretation of ρ as a probability or material density leads to
the requirement that the initial condition for the Liouville model is non negative,
ρ0 ≥ 0. Moreover, we can normalize the total probability or mass requiring that∫
Rd ρ0(x) dx = 1. With this conditions, one can show that the evolution of ρ modeled
by the Liouville equation (2.1) has the following properties

ρ(x, t) ≥ 0 and
∫

Rd
ρ(x, t) dx =

∫

Rd
ρ0(x) dx = 1, t ≥ 0. (2.2)

The first property can be proved by the vanishing viscosity method and the maxi-
mum principle or solving along characteristics; see, e.g., [20,22]; the second property
follows from a simple application of the divergence theorem.

We remark that the Liouville equation allows to model the transport of the (material
or probability) density also in the case when the drift function is non smooth [2,18,31],
and also in the case when it includes a control mechanism.

Therefore, the representation of the ensemble of trajectories in terms of an evolving
density and the fact that we can manipulate the drift with a control function to achieve
some purposes of the motion of the particles leads to the formulation of the following
ensemble optimal control problem

min
u∈Uad

J (ρ, u) :=
∫ T

0

∫

Rd
θ(x, t) ρ(x, t) dx dt +

∫

Rd
ϕ(x) ρ(x, T ) dx

+
∫ T

0
κ(u(t)) dt (2.3)

s.t. ∂tρ(x, t)+ div
(
a(x, t; u) ρ(x, t)

) = 0, ρ(x, 0) = ρ0(x). (2.4)

In this problem, the drift a(x, t; u) ∈ R
d includes a time-dependent vector-valued

control function u, and the purpose of this control is to drive ρ such that the cost
functional J is minimized.
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As inmany application, we consider dynamical systems that are controlled by linear
and bilinear control mechanisms as follows

a(x, t; u) = a0(x, t) + b u1(t) + c x ◦ u2(t), (2.5)

where a0 is a given smooth vector field, which is Lipschitz in x , and b, c ∈ R are
constants. Moreover, the function u1 corresponds to a linear control mechanism, and
u2 represents a bilinear (input-affine) control term. We assume that both functions are
defined on the time interval [0, T ] with values in R

d . With ◦ : Rd × R
d → R

d , we
denote the Hadamard product of two vectors; we also use the notation u = (u1, u2).

Notice that, in the simple case where a0 = 0, b = c = 1, and ρ0 is a normal-
ized Gaussian unimodal distribution, then, the Liouville dynamics can be completely
described by the first- and second-moment equations that include the controls u1 and
u2. To illustrate this fact, consider the following average operator applied to an inte-
grable function g

E[g](t) =
∫

Rd
g(x) ρ(x, t) dx .

In particular, we have the mean m(t) = E[x](t) and the variance v(t) = E
[(
x −

m(·))2](t). Then, by taking the average of our controlled dynamical system (that is,
using the Liouville equation), we obtain

ṁ(t) = u1(t) + m(t) u2(t), m(0) = m0,

v̇(t) = 2 v(t) u2(t), v(0) = v0.
(2.6)

where the control u1 appears as the main driving force of the mean value of the
density, and u2 determines the evolution of the variance of the density. See [7] for
more details on this construction. However, the validity of this setting is very limited
by the assumptions above whereas the Liouville framework allows to accommodate a
more general drift and to consider multi-modal distributions of the density function.

Next, we discuss the meaning of the different terms in our cost functional. The first
term in (2.3) has the purpose to model the tracking of a desired trajectory ξD(t), in the
sense that minimizing this term corresponds to having all trajectories of the ensemble
of particles being close to ξD . For this purpose, we choose a function θ(x, t) that, for a
fixed t , is required to monotonically increase as a function of the distance |x − ξD(t)|.
Therefore, by minimization of the first term we have that ρ is mainly concentrated on
the minimum of θ corresponding to ξD . We refer to θ as an attracting potential, and
focus on the following choice

θ(x, t) = −α exp

(
−|x − ξD(t)|2

2σ 2
θ

)
, α > 0, σθ > 0.
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Similarly, the purpose of the second term in J is to model the requirement that the
densityρ at final time concentrates on afinal positiondenotedwith ξT ∈ R

d . Therefore,
we may choose

ϕ(x) = −β exp

(
−|x − ξT |2

2σ 2
ϕ

)
, β > 0, σϕ > 0.

Notice that, because of (2.2), we can augment this functions by adding a constant such
that J is bounded from below by zero. However, this shift would not influence the
result of the optimization problem.

The last term in (2.3) represents the cost of the controls’ action. Moreover, it deter-
mines the functional space where the control is sought. In our case, the cost function κ

is chosen based on the requirement of implementing a slowly varying control function
with sparsity along the time horizon. A control that slowly changes in time can be
obtained considering the following cost of the control

ν

2

∫ T

0

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

dt,

where ν > 0 is a positive weight, and | · | denotes the Euclidean norm. In fact, as ν is
taken larger, the emerging optimal control will result in controls with small values of
its time derivative, which corresponds to the “minimum attention control” in [9]. In
addition, we add a L2-cost of the control that should measure the total effort made by
u as follows

γ

2

∫ T

0
|u(t)|2 dt,

where γ > 0 is a positive weight. Clearly, if ν = γ > 0, then these two terms together
correspond to a H1(0, T )-cost of the control.

As for inducing sparsity of the control function u, we consider the following L1-cost
of the control

δ

∫ T

0
|u(t)| dt,

where δ ≥ 0. This cost promotes sparsity of the control function, in the sense that, as
δ is increased, the u resulting from the minimisation procedure will be zero on larger
open intervals in (0, T ); see Figure 2 of [15]. In our framework, the purpose of this
control is to promote “minimum action”.

Summarizing, we specify the term κ
(
u(t)

)
in (2.3) as follows

κ
(
u(t)

) := γ

2
|u(t)|2 + δ |u(t)| + ν

2

∣∣∣∣
du

dt
(t)

∣∣∣∣
2

, (2.7)

123



A numerical investigation of Brockett’s ensemble optimal…

where γ, ν > 0 and δ ≥ 0. It is clear that, with this setting, the control space U
corresponds to aweightedH1 space given by H̃1

T := H̃1
T ×H̃1

T , where H̃
1
T corresponds

to the H1
T space, endowed with the following weighted H1-product

(u, v)H̃1
T

:= γ

∫ T

0
u(t) · v(t) dt + ν

∫ T

0
u′(t) · v′(t) dt .

The notation ′ = d/dt stands for the weak time derivative.
In order to complete the modelling of the control space, we also require that each

component of the control function u may only take values in a compact convex set of
R. Thus, we define the following set of admissible controls

Uad :=
{
u ∈ H̃

1
T (Rd)

∣∣ ua ≤ u(t) ≤ ub for a.e. t ∈ [0, T ]
}

, (2.8)

where the inequalities are meant componentwise, and we choose ua = (
ua1, u

a
2

)
and

ub = (
ub1, u

b
2

)
in R

2d , with ua < ub. We remark that, with ν > 0, the resulting u is
continuous because of the compact embedding H1(0, T ) ⊂⊂ C([0, T ]).

As discussed in detail in [3], the optimal control problem (2.3)–(2.4), with (2.5)
and (2.7) and the admissible set of controls Uad , admits a solution. Furthermore, this
solution can be characterized as the solution to the so-called first-order optimality
condition. This condition can be formulated by first introducing the Liouville control-
to-state map G defined by

G : Uad −→ L∞([0, T ]; L2(Rd)
)
, u �→ ρ := G(u),

where ρ is the unique solution to the Liouville equation with the chosen control
u ∈ Uad and the given initial data ρ0 ∈ L2(Rd). Notice that, in our setting,
with ρ0 ∈ Hm(Rd), the Liouville problem admits a unique weak solution ρ ∈
C([0, T ]; Hm(Rd)); see [3] for all details.

With this map, our optimal control problem can be equivalently formulated as

min
u∈Uad

Ĵ (u), (2.9)

where Ĵ (u) := J
(
G(u), u

)
represents the so-called reduced cost functional.

Now, if δ = 0, then Ĵ (u) is Fréchet differentiable in suitable topologies [3], and a
solution u to our optimal control problem necessarily satisfies the first-order optimality
condition given by (∇ Ĵ (u), v − u)U ≥ 0 for all v ∈ Uad , where ∇ represents the
gradient in the control space; see [27,40]. However, since we have δ > 0, our reduced
cost functional is only sub-differentiable [17,41], and the formulation of the optimality
condition becomesmore involved, especially in our casewhere a H̃1

T (Rd) control space
is involved.

In the following, we give a detailed discussion of the formulation of the optimality
condition in terms of an optimality system, where the calculation of∇ Ĵ (u) is achieved
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by introducing an auxiliary adjoint variable with its own constitutive equation. Further,
we use the notion of Clarke’s subdifferential that we illustrate in detail in Sect. 4.

The derivation of the optimality system can be conveniently done in the Lagrange
framework starting from following Lagrange functional

L(ρ, u, q) := J (ρ, u) +
∫ T

0

∫

Rd

(
∂tρ(x, t) + div

(
a(x, t; u) ρ(x, t)

))
q(x, t) dx dt

+
∫

Rd

(
ρ(x, 0) − ρ0(x)

)
q0(x) dx, (2.10)

where q and q0 represents Lagrange multipliers (the adjoint variables). In this frame-
work, the optimality system is obtained by requiring that the Fréchet derivatives of
L(ρ, u, q) with respect to each of its arguments are zero. As shown in [3], Fréchet
differentiability of L with respect to ρ and q involves a loss of derivatives, which is
natural owing to the hyperbolic nature of the underlying PDEs and which requires
more regular initial data.

Clearly, the derivatives of L with respect to q and q0 give the Liouville equation
and its initial conditions. On the other hand, the Fréchet derivative of L with respect
to ρ leads to the following adjoint Liouville equation

− ∂t q − a(x, t; u) · ∇q = − θ, with q|t=T = −ϕ. (2.11)

Notice that this is a transport problemwith a given terminal condition and thus evolving
backwards in time. However, with our choice of θ and ϕ as Gaussian functions, the
adjoint equation admits a solution in the same functional space of the solution of the
Liouville equation [3]. We remark that the density ρ does not explicitly appear in
this equation, which means that the Liouville equation and its adjoint are decoupled;
however, both are driven by the same drift.

Next, we discuss the derivative of L with respect to u. For this purpose, we remark
that the case δ, γ > 0 and ν = 0 is well-known in the literature [37], whereas the case
that includes the minimum attention control term (ν > 0) is novel. For this reason, to
ease our discussion and make it more accessible, we first discuss the case ν = 0, for
which H̃1

T (Rd) is replaced with L∞
T (Rd) inUad given by (2.8), and thereafter we also

include the term with ν > 0.
In the case ν = 0, as proved in [3], there exists a λ̂ ∈ ∂g(u) := δ ∂

( ‖u‖L1
)
,

the Clarke’s subdifferential [16] of the L1-cost, such that the following inequality
condition must be satisfied at optimality

(
γ urm + λ̂rm +

∫

Rd
div

(
∂a

∂urm
ρ

)
q dx , vrm − urm

)

L2(0,T )

≥ 0

∀ v ∈ Uad , m = 1, 2, r = 1 . . . d. (2.12)

Notice that in this inequality condition, the argument on the left-hand side in the scalar
product represents the reduced gradient in L2

T .
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Moreover, because of the presence of constraints for the controls, there exist λ+
and λ−, belonging to L∞

T (Rd), such that (2.12) is equivalent to the equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ urm +
∫

Rd
div

(
∂a

∂urm
ρ

)
q dx + (λ+)rm − (λ−)rm + λ̂rm = 0

(λ+)rm ≥ 0, ubm − urm ≥ 0, (λ+)rm (ubm − urm) = 0

(λ−)rm ≥ 0, urm − uam ≥ 0, (λ−)rm (urm − uam) = 0

λ̂rm = δ a.e. in
{
t ∈ [0, T ] ∣∣ urm(t) > 0

}
∣∣̂λrm

∣∣ ≤ δ a.e. in
{
t ∈ [0, T ] ∣∣ urm(t) = 0

}

λ̂rm = −δ a.e. in
{
t ∈ [0, T ] ∣∣ urm(t) < 0

}
,

(2.13)

for all m = 1, 2 and all 1 ≤ r ≤ d.
In (2.13), one usually refers to thefirst equation as the optimality condition equation;

the conditions given in the second and third line are the complementarity conditions
for the inequality constraints in Uad . Moreover, the last three lines give an equivalent
expression for λ̂ ∈ ∂g(u); see [37]. In our case, λ̂rm can be understood to be δ sgn(urm),
where sgn(x) is the sign function.

Now, in the case ν > 0, the control is sought inUad given by (2.8), which requires
to construct the reduced gradient in the space U = H̃

1
T (Rd). For this purpose, let

μ = (μ1, μ2) be the H̃1-Riesz representative of the continuous linear functional

v �→
(

λ̂ +
∫

Rd
div

(
∂a

∂u
ρ

)
q dx , v

)

L
2
T

.

Then, assuming that u ∈ Uad ∩ H1
0

([0, T ];R2d
)
, we compute μ by solving the

following boundary-value problem

(
− ν

d2

dt2
+ γ

)
μ = λ̂ +

∫

Rd
div

(
∂a

∂u
ρ

)
q dx, μ(0) = 0, μ(T ) = 0,

(2.14)

which has to be understood in a weak sense. Notice that, in this construction, we have
made the modelling choice that the control function u is zero at the beginning and at
the end of the time interval. This setting corresponds to having the control switched
on at t = 0 and off at t = T .

Based on (2.12) and the definition of μ in the H̃1 space, we identify the reduced
gradient in this space as follows

∇̃urm Ĵ (u) = urm + μr
m, (2.15)

where m = 1, 2 and r = 1 . . . d. Thus, the optimality condition (2.12) becomes

(
urm + μr

m , vrm − urm
)
H̃1
T

≥ 0 (2.16)
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for all v ∈ Uad , where Uad is given in (2.8), m = 1, 2 and r = 1 . . . d.
The result of this section is that a solution to our ensemble optimal control problems

can be characterized as the solution to the following optimality system.

∂tρ + div
(
a(x, t; u) ρ

) = 0, ρ|t=0 = ρ0

(2.17)

− ∂t q − a(x, t; u) · ∇q = − θ, q|t=T = − ϕ

(2.18)
(
urm + μr

m , vrm − urm
)
H̃1
T

≥ 0, ∀v ∈ Uad , m = 1, 2, r = 1 . . . d

(2.19)
(

− ν
d2

dt2
+ γ

)
μ = λ̂ +

∫

Rd
div

(
∂a

∂u
ρ

)
q dx, μ(0) = μ(T ) = 0.

(2.20)

Notice that, for the sake of better readability, in the following we choose ν = γ > 0
and δ > 0.

3 Approximation of the Liouville optimality system

In this section, we discuss the spatial and temporal discretization of the Liouville equa-
tion and its adjoint in the optimality system. Our aim is to develop an approximation
framework that is second-order accurate and preserves the two essential properties of
the continuous Liouville model given in (2.2), namely positivity and conservativeness
of its solution.

For simplicity of notation, in the followingwe focus on a two-dimensional problem,
i.e. d = 2. Then a = (a1, a2) ∈ R

2. In view of applications to the numerical study of
our optimal control problem,we consider a large but bounded convex domain� ⊂ R

2:
we choose � = (−B, B) × (−B, B), for some large B > 0.

We also fix a smooth initial density ρ0 that is (by machine precision) compactly
supported in �. For θ and ϕ we take Gaussian functions having sufficiently small
variance and centred sufficiently far from the boundary of �, so that (by machine
precision)we can assume that also those functions are compactly supported in�. Then,
we solve problems (2.17) and (2.18) in � × [0, T ], supplemented with homogeneous
Dirichlet boundary conditions on ∂�. Notice that, in this setting, it is possible to use
the results of [3] to prove existence and uniqueness of smooth enough solutions to
(2.17) and (2.18). For this purpose, one extends the functions ρ0, θ and ϕ to be zero
outside the domain �, and the drift function a to a smooth function, which is bounded
on R

d together with all its space derivatives. We remark that this is always possible,
for instance by multiplying a with a smooth compactly supported function χ of the
space variable only, such that χ ≡ 1 on a neighbourhood of �.

We consider our solutions on a time interval [0, T ], where T > 0 is chosen such that
the corresponding solutions ρ to (2.17) and q to (2.18) are still compactly supported
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in �, far away from its boundary ∂�. Observe that this property is true by finite
propagation speed, since the (extended) drift is bounded on Rd .

For � = (−B, B) × (−B, B) fixed above, we set a numerical grid that provides a
partitioning of� in Nx ×Nx , Nx > 1, equally-spaced non-overlapping square cells of
side length h = 2B/Nx . On this partitioning, we consider a cell-centred finite-volume
setting, where the nodal points at which the density and adjoint variables are defined
are placed at the centres of the square volumes. These nodal points are given by

xi1:=
(
i − 1

2

)
h − B, x j

2 :=
(
j − 1

2

)
h − B.

Therefore, the elementary cell is defined as

ω
i j
h :=

{
(x1, x2) ∈ �

∣∣∣ x1 ∈
[
xi1 − h

2
, xi1 + h

2

]
, x2 ∈

[
x j
2 − h

2
, x j

2 + h

2

]}
.

Thus, the computational domain is given by

�h =
Nx⋃

i, j=1

ω
i j
h .

Analogously, the time interval [0, T ] is divided in Nt > 1 subintervals of length �t
and the points tk are given by

tk := k�t, k = 0, . . . , Nt , �t := T

Nt
.

This defines the time mesh ��t := {tk ∈ [0, T ], k = 0, . . . , Nt }. Therefore, corre-
sponding to the space-time cylinder Q := �×[0, T ] we have its discrete counterpart
Qh,�t := �h × ��t .

In this setting, the cell average of the density ρ (and so of any integrable function),
on the cell with centre (xi1, x

j
2 ) at time tk , is given by

ρ̄k
i, j = 1

h2

∫ xi+1/2
1

xi−1/2
1

∫ x j+1/2
2

x j−1/2
2

ρ(x1, x2, t
k) dx2 dx1. (3.1)

In particular,

ρ̄0
i, j = ρ0

i, j = 1

h2

∫ xi+1/2
1

xi−1/2
1

∫ x j+1/2
2

x j−1/2
2

ρ0(x1, x2) dx2 dx1.

Notice that, in our numerical setting, function values are identified with their cell-
based average located at the cell centres. For this reason, our numerical framework
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aims at determining approximation of theses averages. Specifically, we discuss a dis-
cretization scheme that results in values ρk

i, j that approximate ρ̄k
i, j . Similarly, we

denote with qki, j the numerical approximation of q̄ki, j that is computed as in (3.1).
We also consider a piecewise constant approximation to the time-dependent control

functions, where we denote with uk+1/2 the value of the control in the time interval
[tk, tk+1). Further, for the projection of a continuous u to the corresponding approx-
imation space, we set uk+1/2 = u(tk). For a function f defined on Qh,�t , we define
the discrete norms ‖ · ‖1,h and ‖ · ‖∞,h as follows:

‖ f (·, ·, tk)‖1,h = h2
Nx∑

i, j

∣∣∣ f ki, j
∣∣∣ , ‖ f (·, ·, tk)‖∞,h = max

i, j=1,...,Nx

∣∣∣ f ki, j
∣∣∣ ,

where f ki, j = f (xi1, x
j
2 , tk), and (xi1, x

j
2 , tk) denotes a grid point in � × [0, T ].

3.1 A Runge–Kutta Kurganov–Tadmor scheme for the Liouville equation

In this section,wediscuss a suitable approximationof our controlledLiouville equation
in�×[0, T ]. Supposing thatρ0 has compact support, and because of finite propagation
speed, we can choose � such that the solution ρ at the boundary ∂� is zero for all
times t ∈ [0, T ].

For our purpose, we focus on the finite-volume scheme proposed by Kurganov–
Tadmor (KT) in [26] that involves a generalizedMUSCLflux. To describe this scheme,
we denote the flux in the Liouville equation as a function of ρ with f (ρ) = aρ =
a(x, t) ρ(x, t). With this definition, the KT scheme for the Liouville equation in semi-
discretized form is given by

d

dt
ρi, j (t) = −Hx1

i+1/2, j (ρ
+, ρ−; t) − Hx1

i−1/2, j (ρ
+, ρ−; t)

h

− Hx2
i, j+1/2(ρ

+, ρ−; t) − Hx2
i, j−1/2(ρ

+, ρ−; t)
h

, i, j = 1, . . . , Nx − 1,

(3.2)

where the Hxr·,· (ρ+, ρ−; t) are the fluxes in r -direction, r = 1, 2. Specifically, for
Hx1·,· (ρ+, ρ−; t) we have

H
x1
i+1/2, j (ρ

+, ρ−; t) :=
f 1(ρ+

i+1/2, j (t)) + f 1(ρ−
i+1/2, j (t))

2
−

Vx1
i+1/2, j (t)

2

[
ρ+
i+1/2, j (t) − ρ−

i+1/2, j (t))
]
,

(3.3)

where f = ( f 1, f 2) = (a1ρ, a2ρ), and similarly for Hx2
i, j±1/2(ρ

+, ρ−; t). In this
formula, the so-called local speeds V xr (t) are given by

V xr
i+1/2, j (t) =

∣∣∣ ar (xi+1/2
1 , x j

2 , t; u(t))
∣∣∣ , r = 1, 2, (3.4)
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since f (ρ) = a ρ is linear in ρ.
Further in (3.3), the approximation of ρ at the cell edges is given by intermediate

values that approximate the function value from above respectively from below as
follows

ρ+
i+1/2, j (t) := ρi+1, j (t) − h

2
(ρx1 )i+1, j (t), ρ−

i+1/2, j (t) := ρi, j (t) + h

2
(ρx1 )i, j (t). (3.5)

We approximate the partial derivatives of ρ using the minmod function as follows: In
direction x1, this approximation is given by

(ρx1 )i, j (t) = minmod
(ρi, j (t) − ρi−1, j (t)

h
,
ρi+1, j (t) − ρi−1, j (t)

2h
,
ρi+1, j (t) − ρi, j (t)

h

)
. (3.6)

An analogous expression holds in the direction x2. The multivariable minmod
function for vectors x ∈ R

d is given by

minmod(x1, x2, . . . , xd) :=

⎧
⎪⎨

⎪⎩

min j {x j } if x j > 0, ∀ j ∈ [1, d]
max j {x j } if x j < 0, ∀ j ∈ [1, d]
0 otherwise.

Next, we discuss the local truncation error of the semi-discrete KT scheme (3.2)–
(3.4).

Lemma 3.1 The KT scheme given in (3.2)–(3.5) is at least second-order accurate for
smooth ρ, except possibly at the points of extrema of ρ.

Proof The flux H , given in (3.3), is a first-order Rusanov flux [34] that is C2 with
Lipschitz continuous partial derivatives with respect to ρ+, ρ−, in a neighbourhood of
ρi, j . Further, by using a Taylor series expansion, we have the following approximation

h
(ρx1)i+1, j

ρi+1, j − ρi, j
= 1 + O(h), h

(ρx1)i, j

ρi+1, j − ρi, j
= 1 + O(h),

and a similar result holds in the x2 direction, except at the points of extrema, which are
characterized by (ρx1)i, j = 0 (see [30, Th. 3.2]). Using the result in [29, Lemma 2.1],
we have that the semi-discrete scheme (3.2)-(3.5) is second-order accurate in space
except possibly at points of extrema. ��

For the time discretization of the Liouville equation (2.4), we use a second-order
strong stability preserving Runge–Kutta (SSPRK2) method [35] (also known as the
Huen’s method). The combination of this scheme with the KT discretization of the
flux f , given in (3.2), results in a new approximationmethod that we call the SSPRK2-
KT-scheme. This scheme is implemented by the Algorithm 3.1 given below using the
following definition

F(ρk
i, j ) = −Hx1,k

i+1/2, j − Hx1,k
i−1/2, j

h
− Hx2,k

i, j+1/2 − Hx2,k
i, j−1/2

h
. (3.7)
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where H
x j ,k·,· denotes H

x j·,· , j = 1, 2, given in (3.3) corresponding to the time step tk .

Algorithm 3.1 SSPRK2-KT scheme
Require: ρ0i, j , F
Ensure: Solve the Liouville equation in ρ as follows
1: Set k = 0
2: while 0 ≤ k < Nt do
3: for 1 < i, j < Nx − 1 do
4: In (tk , tk+1), compute ρ

(1)
i, j = ρki, j + �t F(ρki, j ) with initial condition ρki, j , where F(ρki, j ) is

computed using (3.7).

5: In (tk , tk+1), compute ρ
(2)
i, j = ρ

(1)
i, j + �t F(ρ

(1)
i, j ) with initial condition ρ

(1)
i, j , where F(ρ

(1)
i, j ) is

computed using (3.7).

6: Time step update: ρk+1
i, j = 1

2ρki, j + 1
2ρ

(2)
i, j .

7: end for
8: k = k + 1
9: end while
10: return ρk

Now, we study the properties of the SSPRK2-KT scheme given in Algorithm 3.1.
This method has the following strong stability property [23, Lemma 2.1]

‖ρk+1‖∞,h ≤ ‖ρk‖∞,h, k = 0, . . . , Nt − 1.

Further,wehave conservativeness of the total probability (ormass) as a consequence
of the finite-volume formulation:

Lemma 3.2 (Conservativeness) The SSPRK2-KT scheme is conservative, in the sense
that

Nx∑

i, j=1

ρk
i, j =

Nx∑

i, j=1

ρ0
i, j , k = 1, . . . , Nt .

Proof Fix k ∈ {0, . . . , Nt }. From the first step of the SSPRK2-KT scheme, given in
Algorithm 3.1, summing up over all indices i, j ∈ {1, . . . , Nx } and using the fact that
the solution has zero flux on the boundary (since it has compact support in �), we get

Nx∑

i, j=1

ρ
(1)
i, j =

Nx∑

i, j=1

ρk
i, j .

In a similar way, we have

Nx∑

i, j=1

ρ
(2)
i, j =

Nx∑

i, j=1

ρ
(1)
i, j =

Nx∑

i, j=1

ρk
i, j .
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Thus,

Nx∑

i, j=1

ρk+1
i, j = 1

2

Nx∑

i, j=1

ρk
i, j + 1

2

Nx∑

i, j=1

ρ
(2)
i, j =

Nx∑

i, j=1

ρk
i, j .

Iterating over k, we have

Nx∑

i, j=1

ρk
i, j =

Nx∑

i, j=1

ρ0
i, j , k = 1, . . . , Nt .

��
Next,we show that, starting fromanon-negative initial density, the solutionobtained

with the SSPRK2-KT scheme remains non-negative. For this purpose, we define the
CFL-number

λ := �t

h
, (3.8)

and require the conditions on the components of the drift a given in (2.5) given by

λ

∥∥∥a1
∥∥∥
L∞
T (L∞(�))

≤ 1

4
, λ

∥∥∥a2
∥∥∥
L∞
T (L∞(�))

≤ 1

4
.

Notice that the control u belongs to the setUad defined in (2.8). Then, for j = 1, 2,
we see that

∥∥∥a j
∥∥∥
L∞
T (L∞(�))

≤
∥∥∥a j

0

∥∥∥
L∞
T (L∞(�))

+ (
b + c B

)
max

{
|ua |, |ub|

}
,

so that the aforementioned conditions on the components of the drift a are satisfied
under the following CFL condition.

λ
( ∥∥∥a j

0

∥∥∥
L∞
T (L∞(�))

+ (
b + c B

)
max

{
|ua |, |ub|

} )
≤ 1

4
, j = 1, 2. (3.9)

This CFL condition only depends on the components of the vector a0, and it does not
rest on the unknowns of the problem.

With the conditions (3.9), we can prove the following lemma on the positivity of
the SSPRK2-KT scheme.

Lemma 3.3 (Positivity) Under the CFL-condition (3.9), with u ∈ Uad and ρ0
i, j ≥ 0,

i, j = 1, . . . , Nx , the solution to the Liouville problem computed with the SSPRK2-KT
scheme given in Algorithm 3.1 is non-negative, that is,

ρk
i, j ≥ 0, i, j = 1, . . . , Nx , k = 1, . . . , Nt . (3.10)
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Proof TheSSPRK2-KT scheme, given inAlgorithm3.1, comprises of a two-stepEuler
scheme that results in the computation of ρ(1) and ρ(2) and a final averaging step. To
prove positivity of the SSPRK2-KT scheme, it is enough to show that the solutions
obtained in each of the two Euler steps are positive. Without loss of generality, we
prove that the solution obtained in the first step of the SSPRK2-KT scheme is positive.
A similar analysis holds true for the second step.

Let ρk
i, j ≥ 0 for fixed 0 ≤ k < Nt . We will show that ρk+1

i, j ≥ 0 for all i, j =
1, . . . , Nx . For this purpose, notice that the SSPRK2-KT scheme can be written as
follows

ρk+1
i, j = λ

2

(|a1i+1/2, j | − a1i+1/2, j

)
ρ+
i+1/2, j + λ

2

(|a1i−1/2, j | + a1i−1/2, j

)
ρ−
i−1/2, j

+ λ

2

(|a2i, j+1/2| − a2i, j+1/2

)
ρ+
i, j+1/2 + λ

2

(|a2i, j−1/2| + a2i, j−1/2

)
ρ−
i, j−1/2

+
[1
4

− λ

2

(|a1i+1/2, j | + a1i+1/2, j

)]
ρ−
i+1/2, j +

[1
4

− λ

2

(|a1i−1/2, j | − a1i−1/2, j

)]
ρ+
i−1/2, j

+
[1
4

− λ

2

(|a2i, j+1/2| + a2i, j+1/2

)]
ρ−
i, j+1/2 +

[1
4

− λ

2

(|a2i, j−1/2| − a2i, j−1/2

)]
ρ+
i, j−1/2

,

(3.11)

where all discrete quantities on the right are considered at the timestep tk . We see
that the first four terms on the right hand side in (3.11) are always non-negative,
provided that ρ±

i±1/2, j , ρ±
i, j±1/2 ≥ 0. The remaining terms are non-negative under the

CFL-condition (3.9).
Thus, it remains to show that ρ±

i+1/2, j , ρ
±
i, j+1/2 ≥ 0 for all i, j = 1, . . . , Nx , where

ρ±
i, j is given as in (3.5).

We consider each of the expressions for (ρx1)
k
i, j in the direction of x1 given as in

(3.6). First, assume that
(
ρx1

)k
i, j = ρk

i, j−ρk
i−1, j

h , which is one of the possible values of
the minmod limiter in (3.6).

Then it follows that

ρ+
i+1/2, j =

(
1 − 1

2

)
ρk
i+1, j + 1

2
ρk
i, j .

This is non-negative, since ρk
i, j ≥ 0 for all i, j = 1, . . . , Nx by the inductive assump-

tion. Further, ρ−
i+1/2, j = ρk

i, j + h
2

[
ρk
i, j−ρk

i−1, j
h

]
. If

ρk
i, j−ρk

i−1, j
h > 0, then it implies

ρ−
i+1/2, j > 0. If

ρk
i, j−ρk

i−1, j
h < 0, then by the definition of the minmod limiter, we have

ρk
i, j−ρk

i−1, j
h ≥ ρk

i+1, j−ρk
i, j

h and therefore

ρ−
i+1/2, j ≥ ρk

i, j + h

2

[
ρk
i+1, j − ρk

i, j

h

]
= ρk

i+1, j + ρk
i, j

2
≥ 0.
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The other cases for the value of (ρx )
k
i, j �= 0 follow analogously. If (ρx )

k
i, j = 0, then

ρ±
i+1/2, j = ρi+1, j ≥ 0 and ρ±

i, j+1/2 = ρi, j+1 ≥ 0. This proves the lemma. ��
Remark 3.1 The proof of the above lemma follows similar arguments as in [25, Theo-
rem 2.1]. However, a primary difference is that in [25], the positivity result is proved
using one-sided local speeds, exploiting the structure of the hyperbolic equation,
whereas in our case, the proof relies on conversion of the intermediate values ρ±
to the cell-average values ρk

i, j and then showing that ρk
i, j ≥ 0 implies ρk+1

i, j ≥ 0,
which seems a much simpler approach.

Remark 3.2 Under the same CFL-like condition (3.9), the proof of Lemma 3.3 can
be extended to the case of a SSPRK-KT scheme with a Runge–Kutta method of pth
order, p ∈ N, that is given as an average of p Euler steps.

Remark 3.3 For the case where (ρx1)
k
i, j = 0, the approximations of ρ at the cell-edges,

given by (3.5), are piecewise constant in the cell ω
i j
h . Thus, the KT scheme given by

(3.2)–(3.5), reduces to a linear upwind scheme that is locally first-order accurate, TVD
and positive. This is consistent with the Godunov’s barrier theorem.

Next, we prove discrete L1 stability of the SSPRK2-KT scheme without a right-
hand side.

Lemma 3.4 (Stability) The solution ρk
i, j obtained with the SSPRK2-KT-scheme in

Algorithm 3.1 is discrete L1 stable in the sense that

∥∥∥ρk·,·
∥∥∥
1,h

=
∥∥∥ρ0·,·

∥∥∥
1,h

, k = 1, . . . , Nt ,

under the CFL condition (3.9).

Proof Using Lemma 3.2, we have

Nx∑

i, j=0

ρk
i, j =

Nx∑

i, j=0

ρ0
i, j , k = 1, . . . , Nt .

Again, from Lemma 3.3, we have that the solution obtained with the SSPRK2-KT
scheme is positive under the CFL condition (3.9). This gives us the following relation

Nx∑

i, j=0

|ρk
i, j | =

Nx∑

i, j=0

|ρ0
i, j |, k = 1, . . . , Nt ,

which proves the result. ��
Next, we aim at proving the L1 convergence of the SSPRK2-KT scheme. For this

purpose, we prove the following stability estimate for the discrete solution of the
Liouville equation (2.4) with a right-hand side function g(x, t). We remark that in the
case g �≡ 0 the solution may not be positive.
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Lemma 3.5 Let ρk
i, j be the SSPRK2-KT solution to the Liouville equation (2.4) with

a Lipschitz continuous right-hand side g(x, t) and let the CFL condition (3.9) be
fulfilled. Then this solution satisfies the following stability estimate

∥∥∥ρk+1·,·
∥∥∥
1,h

≤
∥∥∥ρ0·,·

∥∥∥
1,h

+ �t
k∑

m=0

∥∥gm·,·
∥∥
1,h ,

where gmi, j = g(xi1, x
j
2 , tm).

Proof The SSPRK2-KT scheme, given in Algorithm 3.1, for the Liouville equation
(2.4) with a right-hand side g(x, t) can be written as

ρ
(1)
i, j − ρk

i, j

�t
= − 1

2h
(Lk

i + Lk
j )(ρ) + gki, j ,

ρk+1
i, j − ρk

i, j

�t
= − 1

4h
(Lk

i + Lk
j + L(1)

i + L(1)
j )(ρ) + gki, j ,

(3.12)

where

Ln
i (ρ) = (|a1i+1/2, j | − a1i+1/2, j

)
ρn+
i+1/2, j − (|a1i+1/2, j | + a1i+1/2, j

)
ρn−
i+1/2, j

+ (|a1i−1/2, j | + a1i−1/2, j

)
ρn−
i−1/2, j − (|a1i−1/2, j | − a1i−1/2, j

)
ρn+
i−1/2, j ,

Ln
j (ρ) = (|a2i, j+1/2| − a2i, j+1/2

)
ρn+
i, j+1/2 − (|a2i, j+1/2| + a2i, j+1/2

)
ρn−
i, j+1/2

+ (|a2i, j−1/2| + a2i, j−1/2

)
ρn−
i, j−1/2 − (|a2i, j−1/2| − a2i, j−1/2

)
ρn+
i, j−1/2

with n = (1) and n = k correspond to the solution ρ(1) and ρk , respectively, at the
time step tk and analogously for ρn±. Moreover, also the drift is always considered
at the time-step tk . The equations in (3.12) can be rewritten in a compact form with a
suitable function H as follows

ρk+1
i, j = H(ρk, ρ(1)) + �t gki, j . (3.13)

Now, the KT flux H , given in (3.3), is a combination of the monotonicity preserving
Rusanov flux and the monotonicity preserving MUSCL reconstruction. This leads to
the SSPRK2-KT scheme to be monotone preserving under the CFL condition [24].
Thus,H is a monotone non-decreasing function of its arguments. Then the following
discrete entropy inequality holds for the specific Kruzkov entropy pair (|ρ|, sgn(ρ))

(see [39, Lemma 2.4])

|ρk+1
i, j | ≤ |ρk

i, j | − λ
(
�

1,k
i+1/2, j − �

1,k
i−1/2, j + �

2,k
i, j+1/2 − �

2,k
i, j−1/2

)
+ sgn(ρk+1)�t gki, j ,

(3.14)
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where �1,k·,· , �2,k·,· are the conservative entropy fluxes defined as follows for i, j =
1, . . . , Nx

�
1,k
i+1/2, j =

H
x1,k
i+1/2, j (max(ρ+, 0),max(ρ−, 0)) − H

x1,k
i+1/2, j (min(ρ+, 0),min(ρ−, 0))

2

+
H

x1,k
i+1/2, j (max(ρ(1)+, 0),max(ρ(1)−, 0)) − H

x1,k
i+1/2, j (min(ρ(1)+, 0),min(ρ(1)−, 0))

2
,

�
2,k
i, j+1/2 =

H
x2,k
i, j+1/2(max(ρ+, 0),max(ρ−, 0)) − H

x2,k
i, j+1/2(min(ρ+, 0),min(ρ−, 0))

2

+
H

x2,k
i, j+1/2(max(ρ(1)+, 0),max(ρ(1)−, 0)) − H

x2,k
i, j+1/2(min(ρ(1)+, 0),min(ρ(1)−, 0))

2
.

Therefore, we have for k = 0, . . . , Nt − 1

|ρk+1
i, j | ≤ |ρk

i, j | − λ
(
�

1,k
i+1/2, j − �

1,k
i−1/2, j + �

2,k
i, j+1/2 − �

2,k
i, j−1/2

)
+ �t |gki, j |.

Summing up over all i, j and because of our assumption on ρ being zero on the
boundary, we have

∥∥∥ρk+1·,·
∥∥∥
1,h

≤
∥∥∥ρk·,·

∥∥∥
1,h

+ �t
∥∥∥gk·,·

∥∥∥
1,h

,

which iteratively gives us

∥∥∥ρk+1·,·
∥∥∥
1,h

≤
∥∥∥ρ0·,·

∥∥∥
1,h

+ �t
k∑

m=0

∥∥gm·,·
∥∥
1,h .

��
Next, we consider the local consistency error of our SSPRK2-KT at the point

(xi1, x
j
2 , tk) defined as

T k
i, j = ρ(xi1, x

j
2 , tk+1) − ρ(xi1, x

j
2 , tk )

�t
+ 1

4h
(Lki + Lkj + L(1)

i + L(1)
j )(ρ(xi1, x

j
2 , tk )) − gki, j .

The accuracy result for the KT scheme, given by Lemma 3.1, the MUSCL reconstruc-
tion error given in Equation (60) in [28, Section 4.4] for the case when κ = 0 (in
this reference), and the accuracy result for the SSPRK2 scheme from [23, Proposition
3.1], for which we need the CFL condition, give us the following result

Lemma 3.6 Let ρ ∈ C3 be the exact solution of the Liouville equation (2.1). Under the
CFL condition (3.9), the consistency error T k

i, j satisfies the following error estimate

|T k
i, j | = O(h2)

except possibly at the points of extrema of ρ where the consistency error can be first-
order in h.
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Define the error at the point (xi1, x
j
2 , tk) as

eki, j = ρk
i, j − ρ(xi1, x

j
2 , tk).

Notice that ρk
i, j satisfies (3.12) with g ≡ 0 by construction. Further, the exact solution

ρ satisfies (3.12) with the consistency error T k
i, j as source term. Hence, by taking

the difference, the error satisfies (3.12) with the source term given by −T k
i, j . From

Lemma 3.5, we obtain

∥∥∥ek+1·,·
∥∥∥
1,h

≤
∥∥∥e0·,·

∥∥∥
1,h

+ �t
k∑

m=0

∥∥Tm·,·
∥∥
1,h .

This leads to the following result on the L1 convergence of the solution obtained using
the SSPRK2-KT scheme.

Theorem 3.1 Let ρ ∈ C3 be the exact solution of the Liouville equation (2.1), with
finite many extrema, and let

∥∥ρ0·,· − ρ0(·, ·)
∥∥
1,h = O(h2). Under the CFL condition

(3.9), the solution ρk
i, j obtained with the SSPRK2-KT scheme, given by Algorithm 3.1,

is second-order accurate in the discrete L1-norm as follows

∥∥∥ρk·,· − ρ(·, ·, tk)
∥∥∥
1,h

≤ D(T ,�, λ) h2.

3.2 Numerical analysis of the Strang splitting scheme

In this section, we deal with the numerical solution of the adjoint equation (2.11). In
this case, we have a terminal condition, and the adjoint problem requires evolution
backward in time. For this reason, it is convenient to perform a change of the time
variable as follows:

τ(t) = T − t,
∂τ

∂t
= −1.

With this transformation, we can rewrite (2.11) in the following way

∂τq(x, τ ) − a(x, τ ; u(τ )) · ∇q(x, τ ) = −θ(x, τ ), with q(x, 0) = −ϕ(x).
(3.15)

To solve this problem, we apply the Strang splitting method [38] by first rewriting
(3.15) as follows

∂τq(x, τ ) − div
(
a(x, τ ; u(τ )) q(x, τ )

) + (
div a(x, τ ; u(τ ))

)
q(x, τ ) = −θ(x, τ ),

with q(x, 0) = −ϕ(x),
(3.16)
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which is defined in�×[0, T ]. Furthermore, we assume that ϕ and θ have (bymachine
precision) compact support for all times inside the interval [0, T ]. See the numerical
experiments section for the specific choices for θ and ϕ. Then, we solve problem
(3.16), supplemented with homogeneous Dirichlet boundary conditions.

We can conveniently illustrate the Strang splitting method applied to (3.16) remain-
ing at the continuous level within one time interval. Let us consider the solution of the
adjoint equation (3.16) at time τ k given by qk(x), x ∈ �. Then, the first step of our
solution scheme is to solve the following equation

∂τq(x, τ ) − div
(
a(x, τ ; u(τ )) q(x, τ )

) = 0, q(x, τ k) = qk(x), τ ∈ [τ k, τ k+1/2].
(3.17)

For this purpose, we use the SSPRK2-KT scheme given in Algorithm 3.1. We denote
the solution to this problem with q1.

In the second step, for each x fixed, we analytically solve the following linear
ordinary differential equation

∂τq(x, τ ) = −(
div (a(x, τ ; u(τ ))

)
q(x, τ ) − θ(x, τ ),

q(x, τ k) = q1(x, τ
k+1/2), τ ∈ [τ k, τ k+1]. (3.18)

Let the solution obtained in this step be denoted with q2. The analytical solution of
(3.18) at the discrete level is given in (3.22) below.

Notice that q1(x, t) andq2(x, t) denote functions of continuous variables.Wedefine
qk1,i, j and qk2,i, j as their discrete counterparts using the finite-volume approximation
strategy.

The last step is to solve (3.17) with the SSPRK2-KT scheme with the initial con-
dition q2(·, τ k+1/2) in the time interval [τ k+1/2, τ k+1]. This problem is formulated as
follows

∂τq(x, τ ) − div
(
a(x, τ ; u(τ )) q(x, τ )

) = 0,

q(x, τ k+1/2) = q2(x, τ
k+1), τ ∈ [τ k+1/2, τ k+1]. (3.19)

In a numerical setting, the solution obtained in this step is the desired solution of the
adjoint equation (3.16), and qk+1 denotes the adjoint variable at time τ k+1. Notice
that, by our numerical approximation strategy for u, the value of u in [τ k, τ k+1) is
constant.

The steps of the Strang splitting scheme are outlined in Algorithm 3.2 below.
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Algorithm 3.2 Kurganov–Tadmor–Strang (KTS) scheme

Require: q0 = −ϕ, F
Ensure: Solve adjoint equation in q
1: k = 0
2: while 0 ≤ k < Nt do
3: for 1 < i, j < Nx − 1 do
4: Apply one temporal step of Algorithm 3.1 in (τ k , τ k+1/2), with inputs qki, j , −F , within the

time-interval (τ k , τ k+1/2). Denote the solution qk+1/2
1,i, j .

5: In (τ k , τ k+1), solve (3.18) using exact integration as given in (3.22)
6: Apply one temporal step of Algorithm 3.1 in (τ k+1/2, τ k+1), with inputs qk+1

2,i, j , −F , within the

time-interval (τ k+1/2, τ k+1). Denote the solution with qk+1
i, j .

7: end for
8: k = k + 1
9: end while
10: return qk

Now, we discuss some properties of the Strang-splitting scheme described in Algo-
rithm 3.2. For this purpose, we denote with qki, j the numerical solution of (3.16) with

the generic right-hand side G, at the grid point (x1i , x2j , τ k).
We have the following discrete L1 stability estimate.

Lemma 3.7 (Stability of adjoint equation) Let q be the numerical solution of (3.16),
obtained using the KTS scheme, in the interval [τ k, τ k+1]. Then the following estimate
holds

∥∥∥qk+1·,·
∥∥∥
1,h

≤ exp(3LT )

(∥∥∥q0·,·
∥∥∥
1,h

+ T M

)
, (3.20)

where L = ‖div a‖L∞(�×[0,T ]), M = ‖G‖L∞
T (L1(�)).

Proof Let qk+1/2
1,·,· be the numerical solution obtained from (3.17). Since (3.17) is

solved using the SSPRK2-KT scheme, using the entropy inequality computations as
in Lemma 3.5, we have

∥∥∥qk+1/2
1,·,·

∥∥∥
1,h

≤
∥∥∥qk·,·

∥∥∥
1,h

. (3.21)

Next, denoting the numerical solution as qk+1
2,i, j obtained as the analytical solution from

(3.18), using an integrating factor approach in [τ k, τ k+1], we have

qk+1
2,i, j = exp

(
R(τ k ) − R(τ k+1)

)
qk+1/2
1,i, j − exp

(
−R(τ k+1)

) ∫ τ k+1

τ k
exp (R(τ ))G dτ

= �(q1,G),

(3.22)

where R = ∫
div a dτ .

Notice that, because the drift and G are given explicitly, and the control u is constant
in the sub-interval of integration, this equation can be solved exactly. We exemplify
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this calculation considering G being constant in [τ k, τ k+1) and equal to its value at
τ k . In this case, it holds that R(τ k) = (

(u12)
k+1/2 + (u22)

k+1/2
)
τ k .

In general, without any assumptions on the approximation strategy for u and G, but
considering the bilinear structure of our drift function (c.f. (2.5)) and the assumption
on a0, we can state that there exists an L > 0 such that

|div (a(x, τ, u))| ≤ L, ∀(x, τ ) ∈ � × [0, T ].

Thus, we have

|R(τ )| ≤ L T , R(τ k) − R(τ k+1) ≤ L �t .

Hence, by integration we obtain

qk+1
2,i, j ≤ exp(L�t)qk+1/2

1,i, j + exp(2LT )

∫ τ k+1

τ k
|G| dτ,

Further, by using (3.21), we have

∥∥∥qk+1
2,·,·

∥∥∥
1,h

≤ exp(L�t)
∥∥∥qk+1/2

1,·,·
∥∥∥
1,h

+ exp(2LT )�tM

≤ exp(L�t)
∥∥∥qk·,·

∥∥∥
1,h

+ exp(2LT )�tM,
(3.23)

where M = maxτ∈[0,T ] h2
∑

i, j |G(x1i , x
2
j , τ )|. Again, since (3.19) is solved using the

SSPRK2-KT scheme, we have

∥∥∥qk+1·,·
∥∥∥
1,h

≤
∥∥∥qk+1

2,·,·
∥∥∥
1,h

≤ exp(L�t)
∥∥∥qk·,·

∥∥∥
1,h

+ exp(2LT )�tM (using (3.23))

≤ exp(L�t(k + 1))
∥∥∥q0·,·

∥∥∥
1,h

+ �tM
k∑

m=0

exp(L�tm + 2LT )

≤ exp(L�t Nt )

∥∥∥q0·,·
∥∥∥
1,h

+ Nt�tM exp(L�t Nt + 2LT )

≤ exp(3LT )

(∥∥∥q0·,·
∥∥∥
1,h

+ T M

)
,

which gives the desired result. ��
Next, we consider the local truncation error of our KTS scheme at the point

(xi1, x
j
2 , τ k) defined as [42]

Zk
i, j = q(x1i , x

2
j , τ

k+1) −
[
H(q2, q

(1)
2 ) ◦ �(q1,G) ◦ H(qk, q(1))

]
(q(x1i , x

2
j , τ

k)),
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where H is the SSPRK2-KT operator given in (3.13) and � is the exact integration
operator for (3.18) at time τ k , defined in (3.22). We have the following temporal error
estimate for the continuous Strang splitting scheme (for its proof see [38, Page 510],
[36, Eq. (1.7)],[11, Eq. (2.13)]).

Lemma 3.8 (Time error Strang-splitting)Let S = S(�t) be the exact solution operator
of (3.16) in [τ k, τ k+1], i.e., S qk = qk+1. Denote with qSP the solution of (3.16) with
the Strang splitting scheme, given by (3.17)–(3.19), applied at the continuous level (no
discretization of the spatial and the temporal operators) in the time interval [τ k, τ k+1]
and with a smooth initial condition q̄(·, τ k). This solution can be written as follows

qSP (·, τ k+1) = (
S2 ◦ � ◦ S1

)
q̄(·, τ k),

where S1 = S1(�t) denotes the exact integration of ∂τq − div (aq) = 0 in time
interval [τ k, τ k+1/2], and S2 = S2(�t) the same operator for [τ k+1/2, τ k]. Then the
following error estimate holds

max
x∈�

∣∣∣qSP (x, τ k+1) − S q̄(x, τ k+1)

∣∣∣ = O(�t3). (3.24)

With this result and the truncation error estimate of the SSPRK2-KT scheme given
in 3.6, we have the following result

Lemma 3.9 Let q ∈ C3 be the exact solution of the adjoint equation (3.16) Under the
CFL condition (3.9), the truncation error Zk

i, j satisfies the following error estimate

|Zk
i, j | = O(h3)

except possibly at the points of extrema of the exact solution q(x, t).

Define the error at the point (xi1, x
j
2 , τ k) as

eki, j = qki, j − q(xi1, x
j
2 , τ k).

Then eki, j satisfies (3.16), with the right-hand side being
Zk
i, j

�t
; see the explanation

after Lemma 3.6. Thus, from Lemma 3.7 we obtain

∥∥∥ek+1·,·
∥∥∥
1,h

≤ exp(LT )

(∥∥∥e0·,·
∥∥∥
1,h

+ MT

�t

)
,

where M = maxk∈{0,...,Nt } h2
∑

i, j |Zk
i, j |. This leads to the following result on the L1

convergence of the solution obtained using the KTS scheme

Theorem 3.2 Let q ∈ C3 be the exact solution of the adjoint equation (3.16), with
countably many extrema, and let

∥∥q0·,· + ϕ(·, ·)∥∥1,h = O(h2). Under the CFL condi-

tion (3.9), the solution qki, j obtained with the KTS scheme, given by Algorithm 3.2, is
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second-order accurate in the discrete L1-norm as follows

∥∥∥qk·,· − q(·, ·, tk)
∥∥∥
1,h

≤ E(T ,�, λ) h2.

Remark 3.4 We remark that results similar to Theorem 3.2 have been obtained in
[11,12]. However, in these papers the equation that has been considered is the convec-
tion diffusion equation, which is parabolic, whereas we have a hyperbolic transport
(adjoint) equation with a source term. Furthermore, we employ a different analysis
using an entropy inequality technique for proving the discrete stability estimate that
is subsequently used for proving the convergence error estimate.

4 A projected semi-smooth Krylov–Newtonmethod

In this section, we illustrate a semi-smooth Krylov–Newton (SSKN) method for solv-
ing the ensemble optimal control problem (2.3)–(2.4) with the drift given by (2.5)
and the cost functional setting specified in Sect. 2. We remark that our SSKN scheme
belongs to the class of projected semi-smooth Newton schemes discussed in [41].

In general, a Newton method is an iterative procedure aiming at finding roots of
a given function. Its peculiarity is that it may generate a sequence that can converge
superlinearly or even quadratically to the solution sought.

In order to explain the Newton method in simple terms, consider the problem to
find a root ζ � ∈ R

N of a map M : RN → R
N , as follows

M(ζ �) = 0, (4.1)

where, for the moment, we assume that ζ �→ M(ζ ) is continuously differentiable.
Now, denote with J (ζ ) the Jacobian of M at ζ . The Newton method generates a

sequence (ζ �)�∈N by means of the following two steps

s1 : �ζ� = −(J (ζ �))−1M(ζ �)

s2 : ζ �+1 = ζ � + �ζ�.
(4.2)

The steps s1–s2 are performed for � = 0, 1, 2, . . ., starting with a given initial guess
ζ 0.

Clearly, the Newton sequence is well defined if the Jacobian is invertible at each
iterate, and we assume that this is the case in a neighbourhood N of the solution ζ �,
where also the inverse is uniformly bounded. With these assumptions and requiring
that the initial guess ζ 0 ∈ N is sufficiently close to ζ �, one can prove that the sequence
(ζ �) converges quadratically to the root ζ �, that is, ‖ζ �+1 − ζ �‖2 ≤ c ‖ζ � − ζ �‖22,
for some constant c > 0, and ‖ · ‖2 denotes the Euclidean norm of a vector in R

N .
However, in the case where M is only differentiable and provided that the following
holds

‖M(ζ + δζ ) − M(ζ ) − J (ζ )(δζ )‖2 = o(‖δζ‖2) as δζ → 0, (4.3)
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then the Newton sequence converges at least superlinearly, i.e. faster than linearly.
The same Newton procedure (4.2) can be applied to find an extremal of the mini-

mization problem minζ∈RN f (ζ ), by consideringM(ζ ) := ∇ f (ζ ), where ∇ denotes
the gradient in R

N , and assuming that f : RN → R is twice differentiable. In this
case, we have that J (ζ ) = ∇2 f (ζ ).

Now, in the case of a constrained optimization problem minζ∈K f (ζ ), where K ⊂
R

N is closed and convex, an extremal ζ � of this problem is characterized by the
inequality∇ f (ζ �) ·(ζ −ζ �) ≥ 0. However, this inequality can be equivalently written
as follows

F(ζ �) := ζ � − PK (ζ � − s ∇ f (ζ �)) = 0, (4.4)

where PK is the projection of RN onto K , and s > 0 is arbitrary but fixed. Therefore
the solution of the optimality condition in the formof an inequality can be reformulated
as a root problem. However, even if f is continuously differentiable, the function F
is not. On the other hand, if ∇ f is locally Lipschitz, then also F is locally Lipschitz
continuous.

We see that a lack of differentiability of ∇ f (ζ ) or the presence of constraints as
above hinder the application of the Newton scheme to solve optimization problems.
This situation has motivated a great effort towards the generalization of the notion
of differentiability that makes possible to pursue the Newton approach also in non-
differentiable cases; see [16,17,41] for details and further references.

The main assumption for this generalization is the Lipschitz continuity of the map
ζ �→ F(ζ ), in which case Rademacher’s theorem [41] states that this map is almost
everywhere differentiable. Based on this result, the notion of differentiability has been
extended as follows; see [41] for a detailed discussion.

Definition 4.1 Assuming F : RN → R
N be locally Lipschitz continuous, we have

the following generalized Jacobians of F at ζ :

(a) the Bouligand subdifferential given by

∂BF(ζ ) := {
S ∈ R

N×N : ∃{ζ �}� ⊂ R
N \Und : ζ � → ζ , J (ζ �) → S

}
,

whereUnd is the set of points where F fails to be Fréchet differentiable and J (ζ )

denotes the Jacobian of F at ζ ;
(b) the Clarke’s subdifferential is the convex hull of ∂BF(ζ ), denoted with ∂F(ζ ) :=

co ∂BF(ζ ).

With this construction, we can apply (4.2) by choosing a generalized Jacobian
J̃ � ∈ ∂F(ζ �). However, in order to guarantee superlinear convergence of the resulting
Newton sequence, the following property of semi-smoothness is required; see [32,41].

Definition 4.2 A locally Lipschitz continuous function F : RN → R
N is said to be

semi-smooth at ζ ∈ R
N if and only if F is directionally differentiable at ζ , and it

satisfies the condition

max
J̃ ∈∂F(ζ+δζ )

‖F(ζ + δζ ) − F(ζ ) − J̃ (δζ )‖2 = o(‖δζ‖2) as δζ → 0. (4.5)

123



A numerical investigation of Brockett’s ensemble optimal…

Notice that the discussion above has focused on finite dimensional spaces, which is
also the case of our numerical optimization problem. However, the subdifferential
framework given above has been extended also to maps acting between infinite-
dimensional Banach spaces [16,17,41]. In particular, we can apply it to our ensemble
optimal control problem (2.9), that is, minu∈Uad Ĵ (u) := J

(
G(u), u

)
. One can recog-

nize that Ĵ (u) is not Fréchet differentiable (see also details in [3]) due to the presence
of the L1-cost, which however is Lipschitz in u. In fact, in Sect. 2, we have used
sub-differential calculus [41] to determine the gradient ∇̃ Ĵ (u), and formulated the
first-order optimality condition (∇̃ Ĵ (u), v − u)U ≥ 0 for all v ∈ Uad . Therefore we
can proceed as in (4.4) and consider to apply the Newton scheme with generalized
Jacobian to the equation

u − PUad (u − s ∇̃ Ĵ (u)) = 0.

However, although this procedure is standard with control problems with L2–L1 costs
[14,15,41], it becomes very cumbersome in our case with H1 costs. For this reason, we
consider a projected semi-smooth Newton (pSSN) scheme with the following steps

s1 : �u� = −(J̃ (u�))−1 ∇̃ Ĵ (u�)

s2 : u�+1 = PUad

(
u� + s � u�

)
.

(4.6)

with � = 0, 1, 2, . . ., and starting with a given initial guess u0 ∈ Uad . In the following,
we discuss the step s1 and thereafter s2.

Concerning the step s1, we see that the main computational effort in the procedure
(4.6)would be the assembly and inversionof the Jacobian J̃ (u�), but this is not possible
because of the size of the problem. In fact, in PDE optimization, one implements the
action of the Jacobian (reduced Hessian) on a vector and uses a Krylov approach.
Thus, we replace the step s1 in this procedure with the step: Solve

J̃ (u�)�u� = −∇̃ Ĵ (u�)

by a Krylov method (e.g. minres) to a given tolerance. In this way, we have a projected
SSKN scheme.

Next, we illustrate how the action of the Jacobian on the increment �u� is con-
structed. For this purpose, we determine the second-order directional derivative of
our Lagrange functional (2.10) with respect to u, and this requires to consider the
linearizations of the forward and adjoint equations with respect to u. We have the
following

J̃ (u)�u = (∇uuL
)
(�u) + (∇uρL

)
(ρ̂) + (∇u L

)∗
(q̂), (4.7)

where L(ρ, u) := ∂tρ + div (a(u) ρ) represents the Liouville operator, and ∗ means
adjoint. In (4.7), the function ρ̂ is the solution of the following linearized Liouville
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problem

∂t ρ̂ + div (a ρ̂) = −div (â ρ), with ρ̂|t=0 = 0, (4.8)

where â = ∂a
∂u �u.

Equation (4.8) is obtained in the following way. First, define a small variation ρ̂

of ρ such that (ρ + ρ̂) ∈ CT (L2(Rd)) and (ρ̂)|t=0 = 0. Then, insert ρ + ρ̂ for ρ in
equation (2.4), use the linearity of (2.1) with respect to ρ and take into account that ρ
itself solves (2.1).

To complete the discussion of (4.7), we explain how to compute q̂ . It is obtained
solving the following linearized adjoint problem, resulting from a linearization pro-
cedure similar to that for ρ̂. We have

−∂t q̂ − a · ∇q̂ = â · ∇q, with q̂|t=T = 0. (4.9)

We solve (4.8) and (4.9) with our KTS scheme. For further details on the implemen-
tation of the action of the Jacobian on a vector, we refer to, e.g., [5], Chapter 6.3.5.

Specifically, for our case one can verify that (4.7) is explicitly given component-
wise by

(
J̃ (u)(�u)

)

m,r
:= (�u)rm + �m,r , m = 1, 2, r = 1, 2,

where the components of � are solutions to the following boundary-value problem

(
− ν

d2

dt2
+ γ

)
�m,r = −

∫

R2

∂a

∂urm
ρ̂ · ∇q dx +

∫

R2
div

( ∂a

∂urm
ρ
)
q̂ dx

�m,r (0) = 0, �m,r (T ) = 0.

(4.10)

We approximate this problembyfinite differences for the time derivative, which results
in a tridiagonal linear system, and solve it with the Thomas algorithm. Compare this
boundary-value problem with (2.14).

Notice that, in general in optimal control problems, the reduced Hessian has a
favourable spectral structure, in the sense that it is spectrally equivalent to a second-
kind Fredholm integral operator, and in this case Krylov solvers can converge in a
mesh-independent number of iterations [1]. We remark that our numerical experience
is consistent with this statement. Moreover, it is supported by our estimate of the
condition number of the Jacobian. For this purpose, we use the power method to
estimate the largest eigenvalue of J̃ (u), and the inverse power method to estimate its
smallest eigenvalue, and obtain an approximation to the spectral condition number of
the Jacobian. (Notice that thesemethods also do not require the assembly of J̃ (u).)We
compute this condition number in correspondence to different mesh sizes and report
these values in Table 1. A plot of these values for different mesh sizes is shown in
Fig. 1, where we see that the condition number has similar values for different mesh
sizes.
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Table 1 Approx. condition

number c(J̃ )
Nt c(J̃ )

20 116.70

40 52.27

80 50.51

160 42.47

320 57.94

640 74.18

Fig. 1 Approx. condition
number of J̃

Next, we discuss step s2 of (4.6). This step is required to ensure that any control
update results in a control function inUad . To implement the H1 projection, PUad , we
solve the following optimization problem

min
ũ∈Uad

1

2
‖ũ − u‖2

H̃
1
T

. (4.11)

Since H̃
1
T is a Hilbert space and Uad is non-empty, closed and convex, we know

that there exists a unique projection (see [33], Theorem 4.11). This problem can
equivalently be written as follows

{
minũ∈H1

T
fP (u):= 1

2 ‖ũ − u‖2
L2
T

+ 1
2

∥∥ d
dt (ũ − u)

∥∥2
L2
T

s.t. max(ua − ũ) = 0, max(ũ − ub) = 0
. (4.12)

Notice that, corresponding to this optimization problem, we have the following
Lagrange functional with Lagrange multipliers qa, qb,

l(u, qa, qb):= fP (u) +
∫ T

0
max(u − ub, 0) qb dt +

∫ T

0
max(ua − u, 0) qa dt

To solve this optimization problem to implement the projection PUad , we use a gradient
descent scheme; see, e.g., [4], Section 2.8.
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Next, we summarize the Newton procedure to solve our Liouville ensemble optimal
control problem in the following algorithm that determines the reduced gradient at a
given u.

Algorithm 4.1 Computation of the gradient ∇̃ Ĵ (u)

Require: u
1: Solve the Liouville equation (2.17) with Algorithm 3.1
2: Solve the adjoint Liouville equation (2.18) with Algorithm 3.2
3: Assemble the L2 gradient in (2.12)
4: Assemble the H1 gradient given by ∇̃ Ĵ (u) in (2.15)
5: return ∇̃ Ĵ (u)

Notice that δ enters in step 3 of Algorithm 4.1 through λ̂. With Algorithm 4.1, we
can define our projected semi-smooth Krylov–Newton algorithm as follows.

Algorithm 4.2 Projected semi-smooth Krylov–Newton method

Require: u0

1: Set � = 0, E > tol
2: while E > tol and � < �max do
3: Compute ∇̃ Ĵ (u�) with Algorithm 4.1
4: Solve J̃ (u�) �u = −∇̃ Ĵ (u�) (we use minres; here we need to solve (4.8), (4.9), (4.10))

5: Set u�+1 = PUad

(
u� + s �u

)
, where s is determined by the Armijo linesearch-backtracking

scheme. We solve (4.12) within the backtracking scheme.

6: Set E =
∥∥∥u�+1 − u�

∥∥∥
1,h

7: � = � + 1
8: end while
9: Solve the Liouville equation (2.17) with Algorithm 3.1
10: return (ρ(u�), u�)

In this algorithm,we use the difference between consecutive iterations of the control
as termination criterion, specifically to stop the algorithm, if the difference is less then
a threshold tol > 0. Moreover, we define a maximum number of iterations �max ∈ N.

5 Numerical experiments

In this section, we present results of numerical experiments to validate the accuracy
of our numerical framework and to demonstrate the ability of the ensemble optimal
control in driving the density in order to perform a achieve given objectives.

Wehave proved second-order accuracy of our SSPRK2-KTscheme for theLiouville
equation in Theorem 3.1. In order to validate this estimate, we define a setting that
admits an exact solution. Thus, we choose the following control function

u(t) =
(
0.05 t 0.002
0.5 −0.001

)
,
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Table 2 L1-norm of solution
error for the SSPRK2-KT
scheme

Nx Nt eKT (ρh)

5 20 0.9399

2 · 5 2 · 20 0.4897

22 · 5 22 · 20 0.1417

23 · 5 23 · 20 0.0433

24 · 5 24 · 20 0.0117

25 · 5 25 · 20 0.0031

26 · 5 26 · 20 0.00085

which results in the following drift

a(x, t) =
(
0.05 t

0.5

)
+

(
0.002 x1

−0.001 x2

)
. (5.1)

Further, we take the initial condition

ρ0(x) = 1

2πv0
exp

(
−1

2

[
x21
v0

+ x22
v0

])
, (5.2)

where v0 = 1
4 .

With this setting, the Liouville problem

∂tρ + div (aρ) = 0, with ρ|t=0 = ρ0,

admits the solution

ρ̄(x, t) = 1

2π
√

v1(t)v2(t)
exp

(
−1

2

[
(x1 − m1(t))2

v1(t)
+ (x2 − m2(t))2

v2(t)

])
, (5.3)

where the mean m(t) = (m1(t),m2(t)) and the variance v = (v1(t), v2(t)) are the
solutions to (2.6) with the initial conditions m(0) = (0, 0) and v(0) = (1, 1). Now,
we use this setting to determine the solution error of our algorithm. For this purpose,
we solve the corresponding Liouville problem and report the values of the discrete L1

norm of the solution error given by

eKT (ρh):= ‖ρh(·, T ) − ρ̄(·, T )‖1,h .

In Table 2, the values of eKT corresponding to different grids are presented, and in
Fig. 2,we compare the rate of change of these valueswith that of first- and second-order
accuracies. We see that the obtained numerical accuracy lies between these reference
rates, becoming closer to second-order by refining the mesh size.

Next, we validate our estimate for the KTS scheme in solving a transport problem
with source term (the adjoint problem) as given in Theorem 3.2. We proceed in a
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Fig. 2 Logarithmic plot of accuracy test for the SSPRK2-KT scheme

similar way as for the Liouville problem. In fact, since (5.3) solves the Liouville
problem with the drift (5.1) and the initial condition (5.2), it is easy to verify that this
solution satisfies the problem

∂t q − ã(x, t) · ∇q = −θ, q(0) = −ϕ,

where ã(x, t) = −a(x, t), θ = ρ̄∇a and−ϕ = ρ0. Thus, we have the solution q̄ = ρ̄.
However, notice that theKTS scheme uses the Strang splitting in order to accommo-

date the source term−θ . Therefore, the solution q̄ = ρ̄ is appropriate to independently
test the KTS scheme. Thus, we define

eKT S(qh) = ‖qh(·, T ) − q̄(T )‖1,h .

Hence, we perform a second series of experiments where we compute the values of
this norm in correspondence to solutions obtained on different grids. These values are
reported in Table 3, and in Fig. 3, we compare the rate of change of eKT S with that of
first- and second-order accuracies. Also in this case, we see that the resulting rate of
convergence is approximately of second-order.

Next, we validate the ability of our optimization framework to construct controls
that steer the ensemble density in order to follow a desired path. For this purpose, we
start considering the tracking of a piecewise smooth trajectory with an initial density
given by an unimodal distribution. Thereafter we demonstrate that our approach allows
to construct control functions that are able to drive the evolution of the density with a
bimodal structure.
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Table 3 L1-norm of solution
error for the KTS scheme

Nx Nt eKT S(qh)

5 20 0.9414

2 · 5 2 · 20 0.4884

22 · 5 22 · 20 0.1385

23 · 5 23 · 20 0.0425

24 · 5 24 · 20 0.0116

25 · 5 25 · 20 0.0035

26 · 6 26 · 20 0.0010

Fig. 3 Logarithmic plot of accuracy test for the KTS scheme

In our first experiment on tracking, we choose � = [−1, 1] × [−1, 1], and the
initial density on this domain is given by

ρ0(x) := C0

2πσ 2 exp

(
−|x − ξ0|2

2σ 2

)
.

This ρ0 ∈ C∞(�) represents a unimodal Gaussian distribution centred in ξ0 =
(−0.5, 0.5), with variance σ = 1

4 , and we take C0 = 1
10 . Notice that, by this choice,

the value of ρ0 at the boundary of � is of the order of machine precision.
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(a) (b)

Fig. 4 Setting and results of the first experiment

Table 4 Parameters’ setting for
the first experiment

Parameter Value Parameter Value

γ 5 · 10−4 δ 10−4

ν 5 · 10−4 Nx 26

Nt 80 T 3

umax 1.5 umin −1.5

Cθ 10 σθ 0.45

Cϕ Cθ
T

Nt−1 σϕ 0.45

In this experiment, the purpose of the control is to drive the ensemble of trajectories
along the following piecewise smooth desired trajectory

ξD(t):=

⎧
⎪⎪⎨

⎪⎪⎩

( 3t
T − 1

2 ,
1
2

)
0 ≤ t ≤ T

3( 1
2 ,

3
2 − 3t

T

) T
3 < t ≤ 2T

3(
5
2 − 3t

T ,− 1
2

)
2T
3 < t ≤ T

. (5.4)

A plot of this trajectory in � is given in Fig. 4a. Correspondingly, our potentials in the
objective functional are chosen as follows

θ(x, t) = − Cθ

2πσ 2
θ

exp

(
−|x − ξD(t)|2

2σ 2
θ

)
, ϕ(x) = − Cϕ

2πσ 2
ϕ

exp

(
−|x − ξD(T )|2

2σ 2
ϕ

)
,

where x ∈ � and t ∈ [0, T ], and the values ofCθ , Cϕ, σθ and σϕ are given in Table 4.
Now, we specify a setting that facilitates a comparison of our results of ensemble

control with a simple dynamics for the trajectory. Specifically, suppose that our desired
trajectory is the result of the following dynamics

ξ̇D(t) = u1(t), ξD(0) = ξ0. (5.5)
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(a) (b)

Fig. 5 Comparison of controls for the first experiment

Thenwe can immediately compute the control u1 in this equation such that the solution
to (5.5) is given by (5.4). This control is plotted in Fig. 5b, and we refer to it as the
single-trajectory control, specifically taken u2 ≡ 0, which corresponds to no change
in the variance. Notice that this control is not in our control space Uad (recall its
definition (2.8) above), since it is not continuous. Moreover, in its construction, we do
not require to satisfy the conditions of its value being zero at initial and final times.

In our drift (2.5), we choose a0 = 0, b = 1 and c = 0, and with this setting we
solve our Liouville control problem, taking the numerical values given in Table 4. The
resulting control function is depicted in Fig. 5a, which appears similar to the single-
trajectory control in Fig. 5b. We see that the former is in H

1
T and is zero at t = 0 and

t = T as required, we refer to it as the Liouville control.
Corresponding to the Liouville control, we obtain an evolution of the density with

which we compute the function E[x](t) = ∫
x ρ(x, t) dx . This function is shown in

Fig. 4b. Notice that it closely resembles the desired trajectory.
In our second experiment, we consider the setting a0 = 0, b = 1 and c = 1, an we

take a smooth initial ρ0 that is given by a bimodal Gaussian distribution as follows

ρ0(x) = C0

2πσ
exp

(
−|x − ξ10 |2

2σ 2

)
+ C0

2πσ
exp

(
−|x − ξ20 |2

2σ 2

)
, (5.6)

where

ξ10 =
(

−3

4
,
3

4

)
, ξ20 =

(
−3

4
,−3

4

)
, σ = 1

4
, C0 = 1

10
.
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(a)
(b)

Fig. 6 Setting and results of the second experiment

Table 5 Parameters’ setting for
the second experiment

Parameter Value Parameter Value

γ 10−4 δ 10−5

ν 10−4 Nx 51

Nt 150 T 3

umax 1 umin −1

Cθ 10 σϕ 0.45

Cϕ Cθ
T

Nt−1 σϕ 0.45

The values of the other parameters are specified in Table 5.
In this case, we choose the following desired trajectory

ξD(t):=
(

−3

4
+ 3t

2T
, sin

(
π t

T

))
.

We have that ξD(0) corresponds to the midpoint between the centres of the two Gaus-
sians defining the initial density; see Fig. 6a, where we plot circles around the centres
of the two Gaussians with radius of their standard deviation.

With this setting, we solve our Liouville optimal control problem and obtain the
controls shown in Fig. 6b. The values of Cθ , Cϕ, σθ and σϕ together with the values
of the numerical parameters are given in Table 5.

Corresponding to these controls, we obtain the evolution of the density depicted in
Fig. 7a. Specifically, we plot the shape of the density ρ at all times. One can see that
the bimodal density is driven towards the desired trajectory becoming unimodal. The
same result is visualized in Fig. 7b from a different perspective.

We would like to conclude this section considering a setting that generalizes our
framework. Our purpose is to demonstrate that our control framework is also able to
drive a smooth bimodal distribution to follow two trajectories. In this case, we choose
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Fig. 7 Evolution of the density in the second experiment

a potential θ that resembles a double well, so that it provides two basins of attraction
corresponding to the two trajectories.

In this experiment, we consider the initial bimodal ρ0 given in (5.6), and consider
the following two desired trajectories

ξD1(t) =
(

−3

4
+ 3t

2T
,
3

4
− 3t

4T

)T

, ξD2(t) =
(

−3

4
+ 3t

2T
,−3

4
+ 3t

4T

)T

In correspondence to these trajectories, we define θ as follows

θ(x, t) = − Cθ

2πσ 2
θ

[
exp

(
−|x − ξD1(t)|2

2σ 2
θ

)
+ exp

(
−|x − ξD2(t)|2

2σ 2
θ

)]
.

Similarly, we define ϕ(x) = θ(x, T ).
We solve the resulting ensemble control problem with Algorithm 4.2 and obtain

the controls depicted in Fig. 8. In correspondence to these controls, we obtain the
evolution of the initial bimodal density shown in Fig. 9b. We see that the two initial
Gaussians are driven along the desired trajectories ξD1 and ξD2 shown in Fig. 9a and
merge at the final time.

6 Conclusion

A numerical optimization framework to solve non-smooth ensemble optimal control
problems governed by the Liouville equation was presented. In these problems, the
cost functional has the structure of an expected value function for the ensemble of
trajectories and includes L2, L1 and H1 costs of the controls.

The solutions to these Liouville control problems were characterized as solutions
to first-order optimality systems consisting of the Liouville equation, its optimization
adjoint, and a variational inequality in H1. In order to numerically solve the Liouville
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Fig. 8 Optimal controls in the third experiment; top left: u11, top right: u
1
2, bottom right: u12, bottom left: u22

(a) (b)

Fig. 9 Results of the third experiment

problem, a strong stability-preserving Runge–Kutta method (SSPRK2) in time and a
Kurganov–Tadmor (KT) scheme in space were discussed, proving that the combined
SSPRK2-KT scheme provides a second-order accurate solution. Moreover, positivity
and conservativeness of the SSPRK2-KT scheme were also shown under a CFL con-
dition. To solve the adjoint Liouville equation, a Strang splitting technique combined
with the SSPRK2-KT scheme and exact integration were proposed. The resulting
Kurganov–Tadmor–Strang scheme was shown to be second order accurate.

The above approximation schemes were used to implement a H1-projected semi-
smooth Krylov Newton method to solve the Liouville optimal control problems.
Results of numerical experiments were presented that successfully validated the pro-
posed computational framework and the ability of the resulting control functions to
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drive the ensemble of trajectories in the case of both unimodal and bimodal initial
distributions.
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