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Abstract

This paper is devoted to the numerical analysis of non-smooth ensemble optimal
control problems governed by the Liouville (continuity) equation that have been orig-
inally proposed by R.W. Brockett with the purpose of determining an efficient and
robust control strategy for dynamical systems. A numerical methodology for solving
these problems is presented that is based on a non-smooth Lagrange optimization
framework where the optimal controls are characterized as solutions to the related
optimality systems. For this purpose, approximation and solution schemes are devel-
oped and analysed. Specifically, for the approximation of the Liouville model and its
optimization adjoint, a combination of a Kurganov—Tadmor method, a Runge—Kutta
scheme, and a Strang splitting method are discussed. The resulting optimality system
is solved by a projected semi-smooth Krylov—Newton method. Results of numerical
experiments are presented that successfully validate the proposed framework.
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1 Introduction

The ensemble control problems considered in this paper were proposed by Brock-
ett [7-9] to design efficient and robust control strategies for steering ensembles of
trajectories of dynamical systems in a desired way. For this purpose, the adequate
model governing the evolution of the ensembles expressed in terms of a density is
the hyperbolic Liouville (continuity) equation. In application, this ensemble may rep-
resent the probability density of trajectories of multiple trials of a dynamical system
with the initial conditions specified by a distribution function, or the physical den-
sity of multiple non-interacting systems (e.g., particles). In both cases, the function
that determines the dynamics of these systems appears as the drift coefficient of the
Liouville equation. Therefore, the Liouville framework allows to lift the problem of
controlling a single trajectory of a finite-dimensional dynamical system to the optimal
control problem governed by a partial differential equation (PDE) for a continuum
(ensemble) of dynamical systems subject to the same control strategy. We remark that
the Liouville equation represents also the fundamental building block for continu-
ity models as the Fokker—Planck equation for stochastic systems and the Boltzmann
equation for atomistic models. In particular, it can be used to model particle streaming
while neglecting collisions but allowing to consider source terms [19]. Thus, one of
the purposes of this work is to present a numerical optimization framework devoted to
ensemble optimal control problems that can be applied to similar problems involving
continuity equations; see, e.g., [2,13,18,21,31] for different classes of these equations.

The formulation and theoretical investigation of the ensemble control problems
considered in this paper are presented in [3], where existence and regularity of solu-
tions for a class of Liouville optimal control problems is discussed in the case where
the drift function corresponds to a composition of linear and bilinear (input-affine)
control mechanisms for the underlying dynamical system. In this class of problems,
the purpose of the controls is to steer the ensemble of trajectories along a given path
and to come close to a desired target configuration at a given final time. As in [7,8],
these objectives are formulated in terms of minimizing different expectation function-
als that include appropriately chosen costs of the controls. In particular, we consider
L2-, L'- and H!'-costs of the controls, where the L2 term is a classical regularization
term, the L'-cost has the purpose to promote minimum action of the control during
the time evolution by promoting sparsity [15,37], and the H '-cost corresponds to the
minimum attention control proposed by Brockett in [9].

The challenges of the numerical investigation presented in this paper are manifold.
One of these challenges is that we are a considering a nonlinear control mechanism in
the Liouville model where the controls multiply the density function, and this product
is subject to spatial differentiation. A further challenge posed is that the numerical
approximation of the Liouville equation must guarantee non-negativity of the com-
puted density in addition to the required properties of accuracy and stability. Moreover,
turning to the functional structure of the controls’ objectives, we notice that ensemble
cost functionals are a much less investigated topic, especially in combination with
non-smooth costs of the controls. Furthermore, the presence of L! costs and box con-
straints on the values of the controls require further numerical analysis effort due to
the resulting lack of Fréchet differentiability of the resulting optimization problem.
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On the other hand, our formulation covers and extends Brockett’s ensemble optimal
control strategy so as to address many possible requirements in applications of this
framework. For this purpose, in this work we consider all numerical analysis issues
concerning the solution of our general Liouville-based ensemble optimal control prob-
lems.

As thoroughly discussed in [3] and illustrated below, the first step in solving our
ensemble optimal control problems is the derivation of the corresponding first-order
optimality conditions that consist of the controlled Liouville equation, its optimization
adjoint (having the structure of a transport equation), and a variational inequality that
we may also call (with some abuse of wording) the optimality condition equation. The
numerical solution of this optimality system proceeds along two main steps that are the
numerical approximation of the equations involved and their solution by a numerical
optimization scheme.

For the approximation step, we present a novel formulation and analysis of dis-
cretization of the Liouville equation and its optimization adjoint model; the latter is
called the adjoint Liouville equation. For the former, we consider the well-known
second-order finite-volume Kurganov—Tadmor (KT) discretization scheme for the
spatial flux derivatives that results in a generalized monotonic upwind scheme for
conservation laws (MUSCL). For the temporal discretization, we use the second-
order strong stability preserving Runge—Kutta (SSPRK?2) discretization scheme. Such
schemes possess several important properties (such as conservation of probability)
that are inherent to the exact solutions of the Liouville equation. In addition, because
the solution of the Liouville equation represents a density function, it is crucial that
the numerical solution remains non-negative over all times.

We prove that our SSPRK2-KT scheme preserves positivity subject to a restriction
on the time-step size. Further, we prove that our scheme is second-order convergent in
the L' norm. This result is less-known in the context of generic finite-volume schemes
for linear conservation laws. For the adjoint Liouville equation, which is a transport
equation with a source term, we use a second-order Strang time-splitting scheme com-
bined with the KT spatial discretization scheme, and for the resulting approximation
we prove second-order accuracy. Further, we notice that the optimality condition equa-
tion is a variational inequality involving an integral for which we use second-order
accurate quadratures, and we implement a projection step in the optimization proce-
dure. Notice that, while second-order accuracy for the above three components of the
optimality system is separately guaranteed by suitable approximation, we are not able
to prove this order of accuracy of the coupled system; this is an issue that remains
widely open in the scientific literature, apart of the case of much simpler problems
with linear control mechanisms; see, e.g., [6].

The second fundamental step in solving our ensemble optimal control problems is
the design of a numerical optimization procedure. For this purpose, one recognizes that
the optimality condition equation provides the semi-smooth gradient of the ensemble-
cost functional along the constraint given by the Liouville model. However, because
of the presence of control constraints and the combination of L%-, L'- and H'-costs,
the assembling of our gradient is challenging. In particular, by imposing constraints on
the value of the control, we are required to implement a H'! projection of the control
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update. At this point, we remark that the combination of L'- and H'-costs and the H'!
projection are less investigated in the literature.

However, this effort is very well justified by our purpose of implementing a state-of-
the-art semi-smooth Krylov—Newton methodology for our new class of PDE optimal
control problems. In doing this, we also rely on past experience in [14,15], and the
resulting Newton scheme is used to validate our optimal control framework.

In the next Section, we illustrate the formulation of Liouville ensemble optimal
control problems, and discuss the chosen control mechanism and the constitutive
terms of an ensemble cost functional. Further, in correspondence to our optimization
setting, we present the optimality system and discuss the construction of the gradient.

In Sect. 3, we investigate the approximation of the Liouville equation and of adjoint
Liouville equation in the optimality system. For the former, we consider a combination
of a second order accurate strong stability preserving Runge—Kutta discretization in
time and the Kurganov—Tadmor finite volume discretization in space. For the latter, we
discuss a scheme that combines the Kurganov—Tadmor discretization and a Strang’s
splitting technique. For both methods, we present a detailed analysis of stability and
accuracy, and in the case of the Liouville equation we prove that our scheme is positive
preserving.

Section 4 is devoted to the implementation of our semi-smooth Krylov—Newton
method that requires the numerical solution of the Liouville equation and its adjoint
and the implementation of the gradient together with a H!'-projection procedure for
the controls.

In Sect. 5, we present results of numerical experiments with our solution method-
ology that validate our optimal control framework in terms of the ability of the
controls to perform the given tasks. For this purpose, we consider the tracking of
non-differentiable trajectories and also the case of bimodal distributions. A section of
conclusion completes this work.

Notation

In this section, we present our notation that we use throughout the paper.

Given a bounded domain @ C RY, the symbol C2°(2) denotes the space of
infinitely often differentiable functions with compact support in Q. Given k € N,
we denote by C*(Q) the space of all k-times continuously differentiable functions
defined on €2, and by Cﬁ(Q) the subspace of Ck(Q) formed by functions which are
uniformly bounded together with all their derivatives up to the order k. We equip
C ][j (2) with the WX *°-norm as follows

loller = D[] -

|| <k

For « €10, 1], we denote with C%% () the classical Holder space (Lipschitz space if
o = 1), endowed with the norm
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d(x)— D
[®llco.w := sup [®(x)|+  sup Lﬂ()’”
xeQ X, yEQ |x — y|
O<|x—y|=I

In particular, C%1(Q) = W (Q).

Fork e Nand 1 < p < +o00, we denote with Wk-P () the usual Sobolev space of
L? functions with all the derivatives up to the order k in L?; we also set H k(Q) =
Wk2(Q). For 1 < p < +oo, let W%P(Q) denote the dual space of Wk-P (). For
any p € [1, +o0], the space L,OC(Q) is the set formed by all functions which belong
to LP (), for any compact subset ¢ of .

Furthermore, we make use of the so-called Bochner spaces. Given a Banach space
(X, |I'llx) and a fixed time 7 > 0, we define for 1 < p < 00, and a generic represen-
tative function ¢ = ¢ (x, 1), the spaces

1

T P
L7(X):=LP([0,T]; X) with norm IpllLrx) = (/0 (-, OII% dt) ,

and

L7 (X):=L>([0,T]; X) withnorm @]l 5 (x) := ess SUP]||¢( Dl -
0.7

Given a Banach space X and a sequence (®,), , we use the notation (®,) C X
meaning that &, € X for all n € N and that this sequence is uniformly bounded in X:
there exists some constant M > 0 such that |, ||y < M Vn € N.

Given two Banach spaces (X, |||/ x) and (Y, ||-|ly), the space X NY, endowed with
the norm || - ||xny := || - llx + || - lly, is still a Banach space

For every p € [1, +00], we use the notation LY. (RY) := LI (R?) x LL(RY).
Analogously, Hl (R = H; L(RY) x H (R?). In add1t10n given two vectors u and
vinRY, we erte u < vif the inequality is satisfied component by component by the
two vectors: namely, u' < v’ forall 1 <i <d.

2 Formulation of ensemble optimal control problems

Consider a particle whose position at time 7 is denoted with &(r) € R?. Suppose that
this particle is subject to a velocity field a(x, t) over R4, where (x,1) € RY x [0, T,
for some final time 7 > O; then the particle’s trajectory is obtained by integrating
E(r) = a(é (1), t) assuming an initial condition & (0) = &.

Now, suppose we have an infinite number of non-interacting particles subject to the
same vector field and being distributed with a smooth initial density pj;—o = po; then
the evolution of this material density is modelled by the following Liouville equation

dp(x,t)+div (a(x,t)p(x,t)) =0, 2.1
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with the initial condition at r = 0 given by p(x, 0) = pp(x). Notice that, in this model,
the state variable x of the dynamical system defined by a, becomes the space variable
in the Liouville equation. We call a the drift function.

We have the same model (2.1) if we consider a unique particle subject to the flow a
and having the initial condition &y chosen based on the probability density pg. In this
case, the Liouville equation governs the evolution of the probability density function
p of the position of the particle in the interval [0, T']. However, the significance of
the Liouville equation above is not limited to the case where x denotes the space
coordinate and a a velocity field. In fact, it applies equally well in the case where
x represents the velocity of the particle and a plays the role of acceleration/force.
Another possibility is to identify x with the position and velocity of a particle in the
phase space, and in this case the Liouville operator corresponds to the streaming part
in the transport and Boltzmann equations [10,19].

Clearly, the interpretation of p as a probability or material density leads to
the requirement that the initial condition for the Liouville model is non negative,
po > 0. Moreover, we can normalize the total probability or mass requiring that
]Rd po(x) dx = 1. With this conditions, one can show that the evolution of p modeled
by the Liouville equation (2.1) has the following properties

p(x,t) >0 and / px,t)dx =/ po(x)dx =1, t >0. (2.2)
R4 R4

The first property can be proved by the vanishing viscosity method and the maxi-
mum principle or solving along characteristics; see, e.g., [20,22]; the second property
follows from a simple application of the divergence theorem.

We remark that the Liouville equation allows to model the transport of the (material
or probability) density also in the case when the drift function is non smooth [2,18,31],
and also in the case when it includes a control mechanism.

Therefore, the representation of the ensemble of trajectories in terms of an evolving
density and the fact that we can manipulate the drift with a control function to achieve
some purposes of the motion of the particles leads to the formulation of the following
ensemble optimal control problem

T
min J(p, u) ::/ / 6’(x,t)p(x,t)dxdt+/ ox)p(x, T)dx
0 R4 Rd

uelag

T
+/ k(u(t))dt (2.3)
0

st dp(x, 1) +div(a(x, 1;u) p(x, 1)) =0, p(x,0) = po(x). 2.4)

In this problem, the drift a(x, #; u) € R4 includes a time-dependent vector-valued
control function u, and the purpose of this control is to drive p such that the cost
functional J is minimized.
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As in many application, we consider dynamical systems that are controlled by linear
and bilinear control mechanisms as follows

a(x,t;u) =aog(x,t) +bui(t) + cx oup(t), 2.5)

where aq is a given smooth vector field, which is Lipschitz in x, and b, ¢ € R are
constants. Moreover, the function u| corresponds to a linear control mechanism, and
up represents a bilinear (input-affine) control term. We assume that both functions are
defined on the time interval [0, 7] with values in R¢. With o : R? x R — R4, we
denote the Hadamard product of two vectors; we also use the notation u = (u1, u3).

Notice that, in the simple case where ap = 0, b = ¢ = 1, and pg is a normal-
ized Gaussian unimodal distribution, then, the Liouville dynamics can be completely
described by the first- and second-moment equations that include the controls u#; and
uy. To illustrate this fact, consider the following average operator applied to an inte-
grable function g

Ekkﬂ==/‘gunxnndm
Rd

In particular, we have the mean m(t) = E[x](¢) and the variance v(t) = E[(x —

m(-))z] (#). Then, by taking the average of our controlled dynamical system (that is,
using the Liouville equation), we obtain

m(t) = ui(t) +m(t) uz(r), m(0) =mo, 2.6)
v(t) =2v() uz(t), v(0) = vg. '
where the control u#; appears as the main driving force of the mean value of the
density, and u, determines the evolution of the variance of the density. See [7] for
more details on this construction. However, the validity of this setting is very limited
by the assumptions above whereas the Liouville framework allows to accommodate a
more general drift and to consider multi-modal distributions of the density function.
Next, we discuss the meaning of the different terms in our cost functional. The first
term in (2.3) has the purpose to model the tracking of a desired trajectory £p(¢), in the
sense that minimizing this term corresponds to having all trajectories of the ensemble
of particles being close to &£p. For this purpose, we choose a function 6 (x, ¢) that, fora
fixed 7, is required to monotonically increase as a function of the distance |[x — &p (¢)|.
Therefore, by minimization of the first term we have that o is mainly concentrated on
the minimum of 6 corresponding to £p. We refer to 6 as an attracting potential, and
focus on the following choice

=P
2002

9(x,t)=—aexp< ), a>0, oyp>0.
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Similarly, the purpose of the second term in J is to model the requirement that the
density p at final time concentrates on a final position denoted with £7 € R¢. Therefore,
we may choose

Ix — &r]?
2
20¢

<p(X)=—ﬂexp(— ) >0, o,>0.

Notice that, because of (2.2), we can augment this functions by adding a constant such
that J is bounded from below by zero. However, this shift would not influence the
result of the optimization problem.

The last term in (2.3) represents the cost of the controls’ action. Moreover, it deter-
mines the functional space where the control is sought. In our case, the cost function «
is chosen based on the requirement of implementing a slowly varying control function
with sparsity along the time horizon. A control that slowly changes in time can be
obtained considering the following cost of the control

v (T

2 Jo
where v > 0 is a positive weight, and | - | denotes the Euclidean norm. In fact, as v is
taken larger, the emerging optimal control will result in controls with small values of
its time derivative, which corresponds to the “minimum attention control” in [9]. In

addition, we add a L%-cost of the control that should measure the total effort made by
u as follows

du |?

—(t)| dt
77 @) 4t

T
)4 2
= |- dt,

where y > 0is a positive weight. Clearly, if v = y > 0, then these two terms together
correspond to a H L0, T)-cost of the control.
As for inducing sparsity of the control function u, we consider the following L' -cost

of the control
T
8 / lu(t)| dt,
0

where § > 0. This cost promotes sparsity of the control function, in the sense that, as
d is increased, the u resulting from the minimisation procedure will be zero on larger
open intervals in (0, 7'); see Figure 2 of [15]. In our framework, the purpose of this
control is to promote “minimum action”.

Summarizing, we specify the term /c(u (t)) in (2.3) as follows

2

d
c(u®) = S@P +8 @] + 3 ‘d—jm , @.7)
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where y,v > 0 and § > 0. It is clear thag,v with th~is setNting, the cgntrol space U
corresponds to a weighted H' space given by HIT = HT1 X H}, where HT1 corresponds
to the H% space, endowed with the following weighted H ' -product

T

T
(u,v)ﬁ; = y/o u(t)~v(t)dt+v/0 u' (1) -V (1) dt.

The notation ’ = d/dt stands for the weak time derivative.

In order to complete the modelling of the control space, we also require that each
component of the control function # may only take values in a compact convex set of
R. Thus, we define the following set of admissible controls

Uy = {u e AL ®Y) | u® < u@r) < u’ forae. t € [0, T]}, (2.8)

where the inequalities are meant componentwise, and we choose u? = (u’f, ug) and
ub = (ull’, ulz’) in R% with u® < u®. We remark that, with v > 0, the resulting u is
continuous because of the compact embedding H 10, T7) cc c(o, T).

As discussed in detail in [3], the optimal control problem (2.3)-(2.4), with (2.5)
and (2.7) and the admissible set of controls U,;, admits a solution. Furthermore, this
solution can be characterized as the solution to the so-called first-order optimality
condition. This condition can be formulated by first introducing the Liouville control-
to-state map G defined by

G: U — L®([0,T]; L*(RY), u — p:= Gu),

where p is the unique solution to the Liouville equation with the chosen control
u € U,y and the given initial data pg € L?*(R%). Notice that, in our setting,
with pg € H™(R?), the Liouville problem admits a unique weak solution p €
C([0, T1; H™(R%)); see [3] for all details.

With this map, our optimal control problem can be equivalently formulated as

min J(u), (2.9)

uelUyq

where J | (w):=1J (G(u), u) represents the so-called reduced cost functional.

Now, if § = 0, then T (u) is Fréchet differentiable in suitable topologies [3], and a
solution u to our optimal control problem necessarily satisfies the first-order optimality
condition given by (V T (u),v—u)y > 0 forall v € Uyy, where V represents the
gradient in the control space; see [27,40]. However, since we have § > 0, our reduced
cost functional is only sub-differentiable [17,41], and the formulation of the optimality
condition becomes more involved, especially in our case where a ]HIIT (R4) control space
is involved.

In the following, we give a detailed discussion of the formulation of the optimality
condition in terms of an optimality system, where the calculation of V J(u) is achieved
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by introducing an auxiliary adjoint variable with its own constitutive equation. Further,
we use the notion of Clarke’s subdifferential that we illustrate in detail in Sect. 4.

The derivation of the optimality system can be conveniently done in the Lagrange
framework starting from following Lagrange functional

T
L(p,u,q) = J(p,u)+// <8t,o(x,t)+div (a(x,t; u)p(x,t)))q(x,t)dxdt
0 JRA

+ /Rd (p(x,0) = po(x)) qo(x) dx, (2.10)

where ¢ and g represents Lagrange multipliers (the adjoint variables). In this frame-
work, the optimality system is obtained by requiring that the Fréchet derivatives of
L(p, u,q) with respect to each of its arguments are zero. As shown in [3], Fréchet
differentiability of £ with respect to p and ¢ involves a loss of derivatives, which is
natural owing to the hyperbolic nature of the underlying PDEs and which requires
more regular initial data.

Clearly, the derivatives of £ with respect to g and ¢go give the Liouville equation
and its initial conditions. On the other hand, the Fréchet derivative of £ with respect
to p leads to the following adjoint Liouville equation

—0qg —a(x,t;u)-Vg=—0, with g—1 =—0¢. (2.11)

Notice that this is a transport problem with a given terminal condition and thus evolving
backwards in time. However, with our choice of 6 and ¢ as Gaussian functions, the
adjoint equation admits a solution in the same functional space of the solution of the
Liouville equation [3]. We remark that the density p does not explicitly appear in
this equation, which means that the Liouville equation and its adjoint are decoupled;
however, both are driven by the same drift.

Next, we discuss the derivative of £ with respect to u. For this purpose, we remark
that the case §, ¥ > 0 and v = 0 is well-known in the literature [37], whereas the case
that includes the minimum attention control term (v > 0) is novel. For this reason, to
ease our discussion and make it more accessible, we first discuss the case v = 0, for
which IH[IT (Rd) is replaced with ]Lf}o (Rd) in U,q given by (2.8), and thereafter we also
include the term with v > 0.

In the case v = 0, as proved in [3], there exists air € aglu) == 6 3( el 1 ),
the Clarke’s subdifferential [16] of the L!-cost, such that the following inequality
condition must be satisfied at optimality

~ ad
(yu,rn—i-)\;n—i-/ div <—6i )qu,v&—u%) >0
R4 duy, L2(0,T)
YveUy, m=1,2, r=1...d. (2.12)

Notice that in this inequality condition, the argument on the left-hand side in the scalar
product represents the reduced gradient in ]LZT.
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Moreover, because of the presence of constraints for the controls, there exist A4
and A_, belonging to L‘;O(Rd ), such that (2.12) is equivalent to the equations

yuh, + /Rddiv <£Zrﬂ p) gdx 4+ (), — () + A =0
(i) =0, 0, (o) (uhy —up) =0

A = 0, uy —u, =0, (), (uy, —uy) =0 (2.13)
=8 aein {te€[0,T]| ul,) > 0}

r| <6 aein |tel0,T1| ul,() =0}

Wo=—8 aein {rel0,T1| ul () <0},

r
—uy,

v

b
m
r
m

forallm =1,2andalll <r <d.

In (2.13), one usually refers to the first equation as the optimality condition equation;
the conditions given in the second and third line are the complementarity conditions
for the inequality constraints in U,,4. Moreover, the last three lines give an equivalent
expression forx dg(u);see [37]. Inour case,/):;n can be understood to be & sgn(u}, ),
where sgn(x) is the sign function.

Now, in the case v > 0, the control is sought in U4 ~given by (2.8), which requires
to construct the reduced gradient in the space U = HlT (R9). For this purpose, let
n = (1, u2) be the H! Riesz representative of the continuous linear functional

~ 0
vV (A—i—/ div(—a,o>qu,v) .
RY au L2

Then, assuming that u € Uy N HO1 ([O, T1; RZd), we compute u by solving the
following boundary-value problem

d? ~ . (da
—vos+y)u=i+ | div(—p)qdx, u© =0, u(T)=0,
dt RY ou
(2.14)
which has to be understood in a weak sense. Notice that, in this construction, we have
made the modelling choice that the control function u is zero at the beginning and at
the end of the time interval. This setting corresponds to having the control switched
onatt =0andoffatr =T.

Based on (2.12) and the definition of w in the H! space, we identify the reduced
gradient in this space as follows

Vir T(w) = ul, + by, (2.15)
where m = 1,2 and r = 1...d. Thus, the optimality condition (2.12) becomes

(ufn +u, v, — ”:n)ﬁ} >0 (2.16)
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forallv € U,qy, where U,q is givenin (2.8),m = 1,2andr =1...d.
The result of this section is that a solution to our ensemble optimal control problems
can be characterized as the solution to the following optimality system.

dp +div (a(x, t;u) p) =0, Plt=0 = PO
(2.17)
— 0tq —ax,t;u)-Vg=-—26, qit=T7 = — ¢
(2.18)
Uy, + Ly 5 Uy — Uy )51 > 0, Yve Uy, m=1,2, r=1...d
I — )
(2.19)
42 —~ . da
_”ﬁ'ﬂ/ /L=A+/Rddw A qdx, n(0) = pn(T)=0.
(2.20)

Notice that, for the sake of better readability, in the following we choose v = y > 0
and § > 0.

3 Approximation of the Liouville optimality system

In this section, we discuss the spatial and temporal discretization of the Liouville equa-
tion and its adjoint in the optimality system. Our aim is to develop an approximation
framework that is second-order accurate and preserves the two essential properties of
the continuous Liouville model given in (2.2), namely positivity and conservativeness
of its solution.

For simplicity of notation, in the following we focus on a two-dimensional problem,
ie.d =2.Thena = (a', a*) € R?. In view of applications to the numerical study of
our optimal control problem, we consider a large but bounded convex domain Q C R?:
we choose 2 = (—B, B) x (—B, B), for some large B > 0.

We also fix a smooth initial density pg that is (by machine precision) compactly
supported in 2. For 6 and ¢ we take Gaussian functions having sufficiently small
variance and centred sufficiently far from the boundary of €2, so that (by machine
precision) we can assume that also those functions are compactly supported in €2. Then,
we solve problems (2.17) and (2.18) in 2 x [0, T'], supplemented with homogeneous
Dirichlet boundary conditions on d€2. Notice that, in this setting, it is possible to use
the results of [3] to prove existence and uniqueness of smooth enough solutions to
(2.17) and (2.18). For this purpose, one extends the functions pg, 0 and ¢ to be zero
outside the domain €2, and the drift function a to a smooth function, which is bounded
on R? together with all its space derivatives. We remark that this is always possible,
for instance by multiplying a with a smooth compactly supported function x of the
space variable only, such that y = 1 on a neighbourhood of €.

‘We consider our solutions on a time interval [0, 7], where T > 0 is chosen such that
the corresponding solutions p to (2.17) and ¢ to (2.18) are still compactly supported
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in €2, far away from its boundary 9<2. Observe that this property is true by finite
propagation speed, since the (extended) drift is bounded on RY.

For Q = (—B, B) x (—B, B) fixed above, we set a numerical grid that provides a
partitioning of 2 in Ny x Ny, N, > 1, equally-spaced non-overlapping square cells of
side length 7 = 2B/ N,. On this partitioning, we consider a cell-centred finite-volume
setting, where the nodal points at which the density and adjoint variables are defined
are placed at the centres of the square volumes. These nodal points are given by

X1i=\1 2 , Xy =\ ) .

Therefore, the elementary cell is defined as

ij._ i ho h j j
wy=1(x1,x2) € Q X1 € xl—z,x1+— s X2 E|[Xy — x|

Thus, the computational domain is given by

Nx
Q= U w;{.
i j=1

Analogously, the time interval [0, T'] is divided in N, > 1 subintervals of length A¢
and the points 7¥ are given by

x T
t“:=kAt, k=0,...,N;, At:=—.
N,

t

This defines the time mesh I'p; := {tk € [0,T], k=0,..., N;}. Therefore, corre-
sponding to the space-time cylinder Q := €2 x [0, 7] we have its discrete counterpart
On At := S X L.
In this setting, the cell average of the density p (and so of any integrable function),
on the cell with centre (xi, x%) at time 7%, is given by
| xi'+1/2 x£+1/2

~ k
Pij=33 ispn | oip p(x1, x2, %) dxp dx;. (3.1
h X1 X

In particular,

i+1/2 j+1/2
i+1/ x_2/+/

=0 0 L[
Pij = Pij= 73 i po(x1, x2) dxp dxy.

i-1/2 j—1/2
1 X2

Notice that, in our numerical setting, function values are identified with their cell-
based average located at the cell centres. For this reason, our numerical framework
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aims at determining approximation of theses averages Speciﬁcally, we discuss a dis-
cretization scheme that results in values ,o, that approximate pl . Similarly, we

denote with qk i the numerical approximation of qk that is computed asin (3.1).

We also consider a piecewise constant approx1mat10n to the time-dependent control
functions, where we denote with ukT1/2 the value of the control in the time interval
[t%, t**1). Further, for the projection of a continuous u to the corresponding approx-

imation space, we set uk+1/2 = 4 (¢%). For a function f defined on Oh.Ar, we define
the discrete norms || - |1, and || - ||oo,s, as follows:
Ny
k 2 k k k
IO TIVE BV 41 PN FICRERTISVES Jmax i)
s T e X

i,j

where flkj = f(xi, x{, tk), and (xi, x%, tk) denotes a grid point in 2 x [0, T].

3.1 A Runge-Kutta Kurganov-Tadmor scheme for the Liouville equation

In this section, we discuss a suitable approximation of our controlled Liouville equation
in 2 x [0, T']. Supposing that py has compact support, and because of finite propagation
speed, we can choose €2 such that the solution p at the boundary 9<2 is zero for all
times ¢ € [0, T'].

For our purpose, we focus on the finite-volume scheme proposed by Kurganov—
Tadmor (KT) in [26] that involves a generalized MUSCL flux. To describe this scheme,
we denote the flux in the Liouville equation as a function of p with f(p) = ap =
a(x,t) p(x, t). With this definition, the KT scheme for the Liouville equation in semi-
discretized form is given by

H,‘):l_l/lj(p-i_’ﬂ ;1) — H_ 1/21()0 L PT51)
h

H2+1/2(p PTID = HE h(pF e
h bl

d
d—tpi,j(t) = —

ij=1,...,Ny—1,
(3.2)

where the H.)f.’ (pT, p~; t) are the fluxes in r-direction, r = 1, 2. Specifically, for
H''(p™, p~; t) we have

P05 O+ 00 ;O Vi @
X1 b N i+1/2,j i+1/2,j i+1/2,j + —
Hi+1/2,j('0 L P31 = B - B I:)Ol'+1/2.j(t)_pi+1/2,j(t))i|,

(3.3)

where f = (f!, f?) = (a'p,a’p), and similarly for H;fi.il/z(p+, p;1). In this
formula, the so-called local speeds V" (¢) are given by

i+1/2

z+1/2 (0 =1ad"(x xé,t; u®)|, r=1,2, (3.4)

@ Springer



A numerical investigation of Brockett's ensemble optimal...

since f(p) = a p is linear in p.

Further in (3.3), the approximation of p at the cell edges is given by intermediate
values that approximate the function value from above respectively from below as
follows

h _ h
/’i":H/ij(t) = pH»l,j(t) - E(P.xl)i+l,_[(t)v pi+1/2’j(1) = pi,_j(t) + E(pxl)i,j(t)- (35)

We approximate the partial derivatives of p using the minmod function as follows: In
direction x1, this approximation is given by

pi i) — pi—1,j (t)’ Pi+1,j ) — Pifl,j(f)’ Pi+1,j ) — Pi,j(l‘))' (3.6)

(ox )i, j (1) = rninmod( W o i

An analogous expression holds in the direction x;. The multivariable minmod
function for vectors x € R? is given by

min;{x;} ifx; >0, Vjel[l,d]
minmod(x1, X2, ..., Xg) := {max;{x;} ifx; <0, Vje[l,d]
0 otherwise.

Next, we discuss the local truncation error of the semi-discrete KT scheme (3.2)—
(3.4).

Lemma 3.1 The KT scheme given in (3.2)—(3.5) is at least second-order accurate for

smooth p, except possibly at the points of extrema of p.

Proof The flux H, given in (3.3), is a first-order Rusanov flux [34] that is C? with
Lipschitz continuous partial derivatives with respect to p™, p~, in a neighbourhood of
pi,j- Further, by using a Taylor series expansion, we have the following approximation

(oxi+1,j —1LOM). h (oxi,j
Pi+1,j — Pi,j Pi+1,j — Pi,j

h =1+ 0(),

and a similar result holds in the x direction, except at the points of extrema, which are
characterized by (px,);,j = 0 (see [30, Th. 3.2]). Using the result in [29, Lemma 2.1],
we have that the semi-discrete scheme (3.2)-(3.5) is second-order accurate in space
except possibly at points of extrema. O

For the time discretization of the Liouville equation (2.4), we use a second-order
strong stability preserving Runge—Kutta (SSPRK2) method [35] (also known as the
Huen’s method). The combination of this scheme with the KT discretization of the
flux f, givenin (3.2), results in a new approximation method that we call the SSPRK?2-
KT-scheme. This scheme is implemented by the Algorithm 3.1 given below using the
following definition

x1,k _ x1,k x2,k _ x2,k
_Hi+l/2,j Hi71/2‘j _ Hi,j+l/2 Hi,j7]/2 (3.7)

h h

F(of ;) =
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where H,)f.j * denotes H,)f.j , j = 1,2, given in (3.3) corresponding to the time step 7~

Algorithm 3.1 SSPRK2-KT scheme
Require: pg I F

Ensure: Solve the Liouville equation in p as follows

1: Setk =0

2: while 0 < k < Ny do

3: forl<i,j<Ny—1do

4: In (tk tk“) compute p;
computed using (3.7).

a ) + At F (pk .) with initial condition ,o , where F (,ok ) is

( (1)

5: In (tk tk"']) compute p;* + At F(p( )) with initial condition p( ) where F(,o( )) is
computed using (3.7).

6: Time step update: pk‘"1 % p;k + % pi(zj).

7 end for h

8 k=k+1

9: end while

10: return pk

Now, we study the properties of the SSPRK2-KT scheme given in Algorithm 3.1.
This method has the following strong stability property [23, Lemma 2.1]

105 Moo < 10 Nlcons k=0,..., N, — 1.

Further, we have conservativeness of the total probability (or mass) as a consequence
of the finite-volume formulation:

Lemma 3.2 (Conservativeness) The SSPRK2-KT scheme is conservative, in the sense
that

Zpl] Zp[/, k=1,...,N;.

i,j=1 i,j=1

Proof Fix k € {0, ..., N;}. From the first step of the SSPRK2-KT scheme, given in
Algorithm 3.1, summing up over all indices i, j € {1, ..., N} and using the fact that
the solution has zero flux on the boundary (since it has compact support in 2), we get

(1)
Z i Z oL
i,j=1 i,j=1
In a similar way, we have

Ny

(2) (1)
> A Z Pi Z oLy
i,j=1 i,j=1 i,j=1
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Thus,
Ny
2 Ay = szﬁ me > ik
i,j=1 ljl !jl i,j=1

Iterating over k, we have

Ny Ny

pli=p; k=1.....N.

i,j=l1 i,j=l1
O

Next, we show that, starting from a non-negative initial density, the solution obtained
with the SSPRK2-KT scheme remains non-negative. For this purpose, we define the
CFL-number

A=, (3.8)

and require the conditions on the components of the drift a given in (2.5) given by

o]

Notice that the control u belongs to the set U,4 defined in (2.8). Then, for j = 1, 2,
we see that

1

1
S 5 -
LPL>Q) ~ 4

< -.
LPL>Q) ~ 4

]

/] < [os
L (L)

+ (b + ¢ B) max {|u“|, |ub|} ,
LP (L)

so that the aforementioned conditions on the components of the drift a are satisfied
under the following CFL condition.

([

This CFL condition only depends on the components of the vector ag, and it does not
rest on the unknowns of the problem.

With the conditions (3.9), we can prove the following lemma on the positivity of
the SSPRK2-KT scheme.

. j=12 (3.9

SN

+ (b + ¢ B) max {|u“|, |ub|} ) <
LP (