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Abstract

A cycle with four blocks C(k1, k2, k3, k4) is an oriented cycle formed of four

blocks of lengths k1, k2, k3 and k4 respectively. We conjecture that for every

positive integers k1, k2, k3, k4, there is an integer g(k1, k2, k3, k4) such that every

strongly connected digraph with chromatic number greater than g(k1, k2, k3, k4)

contains a subdivision of C(k1, k2, k3, k4). As evidence, we prove this conjecture

for k2 = k3 = k4 = 1.
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1. Introduction

Throughout this paper, all graphs are considered to be simple, that is, there

are no loops and no multiple edges. By giving an orientation to each edge of

a graph G, the obtained oriented graph is called a digraph. Reciprocally, the

graph obtained from a digraph D by ignoring the directions of its arcs is called5

the underlying graph of D, and denoted by G(D) (a circuit of length 2 in D cor-

responds to one edge in G(D)). The chromatic number of a digraph D, denoted

by χ(D), is the chromatic number of its underlying graph. A digraph D is said
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to be k-chromatic if χ(D) > k. If x is a vertex of D, we denote by N+(x) (resp.

N−(x)) the set of vertices y such that (x, y) (resp. (y, x)) is an arc of D. The10

out-degree (resp. in-degree) of x is the cardinality of N+(x) (resp. N−(x)).

An oriented path (resp. oriented cycle) is an orientation of a path (resp. cy-

cle). The length of a path (resp. cycle) is the number of its arcs. An oriented

path (resp. oriented cycle) is said to be directed if all its arcs have the same

orientation. Given an oriented path P (resp. oriented cycle C), a block is a15

maximal directed subpath of P (resp. of C). We denote by P (k1, k2, ..., kn)

(resp. C(k1, k2, ..., kn)) the oriented path (resp. oriented cycle) formed of n

blocks of lengths k1, k2, ..., kn−1 and kn respectively.

A digraph D is said to be acyclic if it contains no directed cycles. D is said to

be strongly connected if for any two vertices x and y there is a directed path20

from x to y. Recall that a subdivision of a digraph D is a digraph D′ obtained

from D by replacing each arc (x, y) by an xy-dipath of length at least 1, all new

paths being internally disjoint.

An important question to be asked is the following:25

Problem 1. Which are the graphs G such that every graph with sufficiently

high chromatic number contains G as a subgraph?

In this context, Erdös and Hajnal [7] proved that every graph with chromatic

number at least k contains an odd cycle of length at least k. A counterpart of

this theorem for even length was settled by Mihók and Schiermeyer [13]: every30

graph with chromatic number at least k contains an even cycle of length at

least k. Further results on graphs with prescribed lengths of cycles have been

obtained [9, 10, 12, 13, 15].

In their article, Cohen et al. [5] investigated a generalization of Problem 135

by considering the analogous problem for directed graphs:

Problem 2. Which are the digraphs D such that every k-chromatic digraph

2
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contains D as a subdigraph?

A famous theorem by Erdös [6] states that there exist digraphs with arbitrar-

ily large chromatic number and arbitrarily high girth. This implies that if D is a40

digraph containing an oriented cycle, there exist digraphs with arbitrarily high

chromatic number with no subdigraph isomorphic to D. Thus the only possible

candidates to answer Problem 2 are the oriented trees. Burr [4] conjectured that

every (2k− 2)-chromatic digraph contains every oriented tree T of order k, and

he was able to prove that every (k − 1)2-chromatic digraph contains a copy of45

any oriented tree T of order k. The best known bound, due to Addario-Berry et

al. [2], is in (k/2)2. For special oriented trees, better bounds on the chromatic

number are known. The most famous one, known as Gallai-Roy theorem, deals

with directed paths:

Theorem 3. (Gallai [8], Roy [14]) Every k-chromatic digraph contains a di-50

rected path of length k − 1.

However, for paths with two blocks, the best possible upper bound has been

determined by Addario-Berry et al. as follows:

Theorem 4. (Addario-Berry et al. [1]) Let k1 and k2 be positive integers such

that k1 + k2 > 3. Every (k1 + k2 + 1)-chromatic digraph D contains any two55

blocks path P (k1, k2).

The following famous theorem of Bondy shows that the story does not stop

here:

Theorem 5. (Bondy [3]) Every strong digraph D contains a directed cycle of

length at least χ(D).60

The strong connectivity assumption is indeed necessary, because there exists

acyclic digraphs (transitive tournaments) with large chromatic number and no

directed cycle.

Since any directed cycle of length at least k can be seen as a subdivision of the

directed cycle Ck of length k, Cohen et al. [5] conjectured that Bondy’s theorem65

can be extended to all oriented cycles:

3
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Conjecture 6. (Cohen et al. [5]) For every oriented cycle C, there exists a

constant f(C) such that every strong digraph with chromatic number at least

f(C) contains a subdivision of C.

Cohen et al. [5] noticed that the strongly connected connectivity assumption70

is also necessary in Conjecture 6. This follows from proving the existence of

acyclic digraphs with large chromatic number and no subdivisions of C for any

oriented cycle C:

Theorem 7. (Cohen et al. [5]) For any positive integers b, c, there exists an

acyclic digraph D with χ(D) > c in which all oriented cycles have more than b75

blocks.

In fact, Cohen et al. [5] proved Conjecture 6 in their article for cycles with

two blocks. In particular, they showed that the chromatic number of strong

digraphs with no subdivisions of two blocks cycles C(k1, k2) is bounded from

above by O((k1 + k2)4). More recently, Kim et al. [11] improved this upper80

bound to O((k1 + k2)2), and asked whether this upper bound can be improved

to O(k1 + k2), which is remained to be open.

Furthermore, Cohen et al. confirmed the above conjecture for the case of

cycles with four blocks as follows:85

Theorem 8. (Cohen et al. [5]) Let D be a strongly connected digraph with no

subdivisions of four blocks cycles C(1, 1, 1, 1), then χ(D) 6 24.

In this paper, we are interested in the chromatic number of digraphs con-

taining no subdivisions of cycles with four blocks C(k1, k2, k3, k4). In particular,

we conjecture the following:90

Conjecture 9. For every positive integers k1, k2, k3 and k4, there is an integer

g(k1, k2, k3, k4) such that every strongly connected digraph with no subdivisions

of C(k1, k2, k3, k4) has chromatic number at most g(k1, k2, k3, k4).

We confirm this conjecture when k2 = k3 = k4 = 1 (for arbitrary k1) using

4
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the simple notion of a maximal tree and the technique of digraphs decomposing.95

Precisely, we prove that g(k1, 1, 1, 1) = 83.k1.

2. Main Result

We introduce some basic definitions and terminologies that will be elemen-

tary to state our main theorem.

100

A tree is a connected graph containing no cycles. An oriented tree is an

orientation of a tree. An out-tree is an oriented tree in which all vertices have

in-degree at most 1. This implies that an out-tree has exactly one vertex of

in-degree 0, called the source. Given a digraph D having a spanning out-tree

T with source r, the level of a vertex x with respect to T , denoted by lT (x), is105

the length of the unique (r, x)-directed path in T . For a nonnegative integer i,

we define Li(T ) := {x ∈ V (T )|lT (x) = i}. For a vertex x of D, the ancestors of

x are the vertices that belong to T [r, x]. If y is an ancestor of x with respect to

T , we write y 6T x. In this case, the vertices x and y are said to be comparable

with respect to the order (V (T ),6T ) induced by T . Conversely, we denote by110

S(x) the set of vertices v of G such that x is an ancestor of v. Furthermore,

Tx denotes the subtree of T rooted at x and induced by S(x). For two vertices

x1 and x2 of D, the least common ancestor z of x1 and x2 is the common an-

cestor of x1 and x2 having the highest level in T . Note that the latter notion

is well-defined since r is a common ancestor of all vertices. An arc (x, y) of D115

is said to be forward with respect to T if lT (x) < lT (y), otherwise it is called a

backward arc. We say that T is a maximal out-tree of D if for every backward

arc (x, y) of D, y is an ancestor of x.

The next proposition shows an interesting structural property on digraphs120

having a spanning out-tree:

Proposition 10. Given a digraph D having a spanning out-tree T , then D

contains a maximal out-tree.

5
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Proof. Initially, set T0 := T . If T0 is maximal, there is nothing to do. Otherwise

there is an arc (x, y) of D which is backward with respect to T0 such that y is125

not an ancestor of x. Let T1 be the out-tree obtained from T0 by adding (x, y)

to T0, and deleting the arc of head y in T0. We can easily see that the level of

each vertex in T1 is at least its level in T0, and there exists a vertex (y) whose

level has strictly increased. Since the level of a vertex cannot increase infinitely,

we can see that after a finite number of repeating the above process we reach130

an out-tree which is maximal.

An oriented cycle C is said to be antidirected if every vertex of C has either

out-degree 2 or in-degree 2 in C. That is, it is a cycle in which all blocks have

length equal 1. For a positive integer k, an antidirected cycle of length at least

k is denoted by A>k. In their article, Cohen et al. [5] proved the following:135

Theorem 11. (Cohen et al.[5]) Let D be an oriented graph and k be an integer

greater than 1. If χ(D) > 8k − 7, then D contains an antidirected cycle A>2k

of length at least 2k.

Given two digraphs D1 and D2, D1 ∪ D2 is defined as the digraph whose

vertex-set is V (D1) ∪ V (D2) and whose arc-set is A(D1) ∪ A(D2). The next140

lemma will be useful for the coming proofs:

Lemma 12. χ(D1 ∪D2) 6 χ(D1)× χ(D2) for any two digraphs D1 and D2.

Proof. For i ∈ {1, 2}, let φi : V (Di) −→ {1, 2, ..., χ(Di)} be a proper χ(Di)-

coloring of Di. Define ψ, the coloring of V (D1 ∪D2), as follows:

ψ(x) =





(φ1(x), 1) x ∈ V (D1) \ V (D2);

(φ1(x), φ2(x)) x ∈ V (D1) ∩ V (D2);

(1, φ2(x)) x ∈ V (D2) \ V (D1).

We may easily verify that ψ is a proper coloring of D1 ∪ D2 with color-set

{1, 2, ..., χ(D1)} × {1, 2, ..., χ(D2)}. Consequently, it follows that χ(D1 ∪D2) 6
χ(D1)× χ(D2).145

Now we are ready to state our main theorem:

6
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Theorem 13. If D is a digraph having a spanning out-tree T with no subdivi-

sions of C(k, 1, 1, 1), then the chromatic number of D is at most 83.k.

Proof. Due to Proposition 10, we may assume without loss of generality that T

is a maximal out-tree in D. For 0 6 i 6 k − 1, let Vi := ∪α>0Li+αk(T ). Define

Di to be the subdigraph of D induced by Vi, and then partition the arcs of Di

as follows:

A1 := {(x, y)|lT (x) < lT (y) and x 6T y};

A2 := {(x, y)|lT (x) > lT (y) and y 6T x};

A3 := A(Di) \ (A1 ∪A2).

For 0 6 i 6 k − 1 and j = 1, 2, 3, let Dj
i be the spanning subdigraph of Di

whose arc-set is Aj .150

Claim 14. χ(D1
i ) 6 8 for all i ∈ {0, 1, ..., k − 1}.

Proof of Claim 14. Assume to the contrary that χ(D1
i ) > 9. Then Theorem

11 implies that D1
i contains an antidirected cycle of length at least 4, say A2k

with k > 2. Set A2k := x1x2...xkxk+1xk+2...x2k = S1 ∪ S2, where S1 = {xi ∈
V (A2k)| |N+(xi)∩V (A2k)| = 2} and S2 = {xi ∈ V (A2k)| |N−(xi)∩V (A2k)| =155

2}. Let xi ∈ S1 such that lT (xi) is maximal. Assume that N+(xi) ∩ V (A2k) =

{xα, xβ}. Clearly, xα and xβ belong to S2. By the definition of S2, there ex-

ists 1 6 α′, β′ 6 2k other than i such that (xα′ , xα) and (xβ′ , xβ) belong to

A(D1
i ). Note that probably α′ = β′. By the definition of D1

i , xα′ , xβ′ and

xi are all comparable with respect to the order induced by T . Without loss160

of generality, assume that lT (xβ′) < lT (xα′) and lT (xα) 6 lT (xβ). Thus by

the maximality of lT (xi) in S1, we get lT (xβ′) < lT (xα′) < lT (xi). There-

fore, T [xi, xα] ∪ (xi, xβ) ∪ T [xβ′ , xα′ ] ∪ (xα′ , xα) ∪ (xβ′ , xβ) is a subdivision of

C(k, 1, 1, 1), a contradiction.

165

Claim 15. χ(D2
i ) 6 16 for all i ∈ {0, 1, ..., k − 1}.

7
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Proof of Claim 15. Assume to the contrary that χ(D2
i ) > 17. Then Theorem

11 implies that D2
i contains an antidirected cycle of length at least 6, say A2k

with k > 3. Set A2k := x1x2...xkxk+1xk+2...x2k = S1 ∪ S2, where S1 = {xi ∈
V (A2k)| |N+(xi)∩V (A2k)| = 2} and S2 = {xi ∈ V (A2k)| |N−(xi)∩V (A2k)| =170

2}. Let xi ∈ S2 such that lT (xi) is maximal. Assume that N−(xi) ∩ V (A2k) =

{xα, xβ}. Clearly, xα and xβ belong to S1. By the definition of S1, there exists

1 6 α′, β′ 6 2k other than i such that (xα, xα′) and (xβ , xβ′) belong to A(D2
i ).

Note that probably α′ 6= β′, since otherwise we get k = 2, a contradiction to

our assumption. By the definition of A2, xα′ , xβ′ and xi are all comparable175

with respect to the order induced by T . By the maximality of lT (xi) in S2, we

get lT (xα′) < lT (xi) and lT (xβ′) < lT (xi). Without loss of generality, we may

assume that lT (xα′) > lT (xβ′). By the definition of D2
i , lT (xα′)− lT (xβ′) > k.

Thus the union of (xβ , xβ′)∪T [xβ′ , xα′ ], (xβ , xi), (xα, xα′) and (xα, xi) is a sub-

division of C(k, 1, 1, 1), a contradiction.180

Claim 16. χ(D3
i ) 6 4 for all i ∈ {0, 1, ..., k − 1}.

Proof of Claim 16. Assume to the contrary that χ(D3
i ) > 5. Due to Theorem

4, D3
i contains a copy Q of P (2, 2), which is the union of two directed paths Q1

and Q2 which are disjoint except in their initial vertex y0, say Q1 = (y0, y1, y2)185

and Q2 = (y0, z1, z2).

Assume that y2 and z2 are not comparable with respect to the tree-order, and

let x be the least common ancestor of y2 and z2. By the definition of D3
i , x is

distinct from y1 and z1.

Assume that (T [x, y2] ∪ T [x, z2]) ∩ Q = {y2, z2}. Observe that l(T [x, y2]) < k190

and l(T [x, z2]) < k, since otherwise T [x, y2] ∪ T [x, z2] ∪ Q is a subdivision of

C(k, 1, 1, 1), a contradiction. Consider v to be the least common ancestor of y0

and y1. Note that (T [v, y0]∪T [v, y1])∩(T [x, y2]∪T [x, z2]) = φ, since otherwise we

get l(T [x, y2]) > k or l(T [x, z2]) > k, a contradiction. In what follows, if y1 and

z1 are comparable with respect to the tree-order, we will assume without loss of195

generality that y1 6T z1. This implies that T [v, y1]∩Q = {y1}. Thus the union

8
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of T [v, y1]∪(y1, y2), T [v, y0]∪Q2, T [x, y2] and T [x, z2] would be a subdivision of

C(k, 1, 1, 1), a contradiction. This implies that (T [x, y2]∪T [x, z2])∩Q 6= {y2, z2}.
Without loss of generality, we will assume that T [x, y2] ∩Q− y2 6= φ. Let v be

the last vertex of T [x, y2] in Q−y2. By our assumption, z2 is not an ancestor of200

y2, so v is different from z2. Also by the definition of A3, y1 is not an ancestor

of y2, so v is different from y1. Thus v is either z1 or y0. Assume that v = z1.

Let t be the least common ancestor of y0 and z2. Due to our assumption and

to the definition of A3, it is easy to see that y2 and z1 are not on T [t, z2].

Observe that T [t, z2] ∩ Q1 − y0 = φ, since otherwise y1 belongs to T [t, z2] and205

hence T [y1, z2] ∪ (y1, y2) ∪ (z1, z2) ∪ T [z1, y2] is a subdivision of C(k, 1, 1, 1), a

contradiction. Thus the union of T [t, z2], T [t, y0] ∪ Q1, (z1, z2) and T [z1, y2] is

a subdivision of C(k, 1, 1, 1), a contradiction. Therefore, v = y0.

Assume that z1 and y1 are not comparable with respect to the tree-order, and

let t be the least common ancestor of z1 and y1. By the definition of A3, y0 is not210

an ancestor neither of y1 nor of z1, and so (T [t, y1]∪T [t, z1])∩ (Q∪T [y0, y2]) =

{y1, z1}. Thus the union of T [y0, y2], (y0, z1), T [t, y1] ∪ (y1, y2) and T [t, z1]

is a subdivision of C(k, 1, 1, 1), a contradiction. This implies that y1 6T z1

or vice versa. If y1 6T z1, then T [y0, y2] ∪ (y0, z1) ∪ (y1, y2) ∪ T [y1, z1] is a

subdivision of C(k, 1, 1, 1), a contradiction. Thus z1 6T y1 and so the union of215

T [x, z2], T [x, y0] ∪ T [y0, y2], (z1, z2) and T [z1, y1] ∪ (y1, y2) is a subdivision of

C(k, 1, 1, 1), a contradiction. Therefore, y2 and z2 are comparable with respect

to the tree-order.

Without loss of generality, we will assume that y2 6T z2. By the definition of

A3, T [y2, z2]∩Q = {y2, z2}. We suppose that y0 is an ancestor of y2. Again by220

the definition of A3, T [y0, y2]∩Q = {y0, y2}. Now we assume that z1 and y1 are

not ancestors, and we consider t to be the least common ancestor of y1 and z1.

It is clear that (T [t, y1]∪T [t, z1])∩(Q∪T [y0, y2]) = {y1, z1}. Hence the union of

T [y0, y2], (y0, z1), T [x, y1] ∪ (y1, y2) and T [x, z1] is a subdivision of C(k, 1, 1, 1).

This means that y1 and z1 are comparable with respect to the tree-order. If225

y1 6T z1, then we may easily check that T [y1, z1]∪(y1, y2)∪T [y0, y2]∪(y0, z1) is a

subdivision of C(k, 1, 1, 1), a contradiction. Thus z1 6T y1 and hence we obtain
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a subdivision of C(k, 1, 1, 1) which is formed by the union of T [y0, y2]∪T [y2, z2],

(y0, y1), (z1, z2) and T [z1, y1], a contradiction.

It follows that y0 is not an ancestor of y2. By the definition of A3, y1 is not an230

ancestor of y2, so we consider x to be the least common ancestor of y1 and y2. It

is clear that T [x, y2]∩Q = {y2}, since otherwise we get either y0 6T y2, or z1 6T
z2, a contradiction. Moreover, we may easily verify that T [x, y1]∩Q−y1 ⊆ {z1}.
Assume that z1 does not belong to T [x, y1], then the union of T [x, y2]∪T [y2, z2],

T [x, y1], Q2 and (y0, y1) is a subdivision of C(k, 1, 1, 1), a contradiction. Thus235

z1 belongs to T [x, y1], and so T [x, y2]∪T [x, z1]∪Q1∪(y0, z1) forms a subdivision

of C(k, 1, 1, 1), a contradiction.

Therefore, Claims 14, 15, 16 together with Lemma 12 imply that χ(Di) 6 83.

As V (D) is partitioned into V (Di) for i = 0, 1, ...k − 1, then D can be colored

properly using 83.k colors by assigning 83 distinct colors to each Di. This240

completes the proof.

Note that the upper bound in the theorem above can easily be lowered.

However, we made no attempt to it here for two reasons: Firstly, we would like

to keep the proof as simple as possible; secondly using our method, there is no

hope to get an optimal value for χ(D) and all what we look for is to prove that245

it is bounded.

Due to the fact that every strongly connected digraph contains a spanning

out-tree, we can immediately deduce the following:

Corollary 17. Let D be a strong digraph with no subdivisions of C(k, 1, 1, 1),250

then the chromatic number of D is at most 83.k.
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[12] C. Löwenstein, D. Rautenbach, and I. Schiermeyer, Cycle length parities

and the chromate number, J. Graph Theory, 64, pages 210-218, 2010.
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