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A B S T R A C T
In this paper, we introduce a novel approach to safe learning-based Model Predictive Control (MPC)
for nonlinear systems. This approach, which we call the “compatible model approach”, relies on
computing two models of the given unknown system using data generated from the system. The
first model is a set-valued over-approximation guaranteed to contain the system’s dynamics. This
model is used to find a set of provably safe controller actions at every state. The second model is
a single-valued estimation of the system’s dynamics used to find a controller that minimises a cost
function. If the two models are compatible, in the sense that the estimation is included in the over-
approximation, we show that we can use the set of safe controller actions to constrain the minimisation
problem and guarantee the feasibility and safety of the learning-based MPC controller at all times. We
present a method to build an over-approximation for nonlinear systems with bounded derivatives on
a partition of the states and inputs spaces. Then, we use piecewise multi-affine functions (defined on
the same partition) to calculate a system’s dynamics estimation that is compatible with the previous
over-approximation. Finally, we show the effectiveness of the approach by considering a path-planning
problem with obstacle avoidance.

1. INTRODUCTION
As Model Predictive Control (MPC) has established its

position as a vital tool for many control problems, research to
incorporate data-driven methods into MPC has been surging
recently [8, and references therein], with topics such as
safety and robustness still remaining largely open topics
[16, 11]. While some use input-output data to find optimal
control policies directly, eliminating the need for building a
model [7, 4], others use the data to find data-driven models
and then apply the MPC scheme [1, 9]. A comparison
between these direct and indirect approaches is provided in
[12].

In this work, we use a data set sampled from a given
system to build two models of this system. The first model
is used to ensure strong safety requirements, whereas the
second is used to find a controller minimising a cost function
and thus fulfilling some performance requirements. The idea
of decoupling safety and performance by using two models
is introduced in [1], where one model is used to ensure safety
using tube MPC, and the other model, updated online, is
used to minimise a cost function. By contrast, both models
are calculated offline in this work. Additionally, we do not
impose any linear structure on the studied system.

To calculate the model enforcing the safety requirement,
we use an algorithm introduced in [14] to build set-valued
over-approximations of systems dynamics with bounded
derivatives and subject to bounded disturbance. We first use
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the upper and lower bounds on the derivatives to rewrite
the data set into two new data sets that can be seen as
generated from two monotone functions. Then, by relying
on the monotonicity property, we can build the tightest
interval-valued over-approximation of the two monotone
functions on a given rectangular space partitioning. The
two set-valued maps can then be used to find an interval-
valued over-approximation of the original systems. We use
the interval-valued over-approximation to calculate finite-
state symbolic models of the system or what is called an
abstraction. Using the scenario approach to find finite-state
abstraction is investigated in [10, 13], but instead of calculat-
ing probabilistic guarantees for the relation between the true
system and the finite-state representation, our method offers
robust ones. Working with finite-state representation allows
us to implement discrete controller synthesis techniques to
automatically find at each state a safe set of inputs [15, 3].
The idea of calculating data-driven bounds on the system’s
dynamics is utilised in [6] to compute an MPC controller; but
in our case, the over-approximating model is used to find the
safe inputs.

After finding a set of safe inputs, a single-valued es-
timation of the true system’s dynamics is calculated. This
single-valued model is used to compute the MPC controller
and achieve the desired performance. We show that if we
choose a single-valued estimation which is included in the
first over-approximation model, we can use the set of safe
inputs as a constraint on the MPC optimisation problem to
ensure safety while also optimising the performance. This
notion of single-valued estimation being included in the
over-approximation is referred to as model compatibility.
We provide a way to find such a compatible estimation
by calculating a piecewise multi-affine estimation of the
system’s dynamics on the same space partition we used to
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find the over-approximation. We make use of the fact that
multi-affine functions on interval domains can be written
as a linear combination of the values of the function on
the vertices of the interval [2]. This will help us write
the compatible estimation problem as a sparse quadratic
optimisation problem to estimate the value of the function
on the vertices of the partition.

This paper is organised as follows. In section 2, we intro-
duce the compatible models approach for the safe learning-
based MPC. Section 3 is dedicated to the calculation of the
first set-valued over-approximation model, whereas Section
4 introduces the piecewise multi-affine estimation functions
compatible with the over-approximation. Finally, Section 5
presents a numerical experiment to show the effectiveness
of the proposed approach.
Notations ℝ = [−∞,+∞] is the set of extended real
numbers. We use bold lowercase letters to represent vectors,
e.g. 𝐳 ∈ ℝ𝑛; subscripts are used to differentiate between
multiple vectors 𝐳𝑖, whereas normal lowercase letters with
superscripts 𝑧𝑖 are used to denote the 𝑖𝑡ℎ component of a
vector 𝐳. Given two vectors 𝐳1, 𝐳2 ∈ ℝ𝑛, we define the partial
order ⪯ on ℝ𝑛 to be 𝐳1 ⪯ 𝐳2 if and only if 𝑧𝑖1 ≤ 𝑧𝑖2 for all
𝑖 = 1,… , 𝑛. [𝐳1, 𝐳2] = {𝐳 ∈ ℝ𝑛

| 𝐳1 ⪯ 𝐳 ⪯ 𝐳2} defines
a closed interval of ℝ𝑛. ||.|| denotes the Euclidean norm.
e𝑘 ∈ ℝ𝑛 is the vector whose 𝑘𝑡ℎ component is 1 and all
others are 0.

2. Safe Learning-Based MPC
In this section, we study how to implement a data-driven

MPC strategy under strict safety requirements. The proposed
solution, which we call the “compatible models approach”,
consists of finding two models for the system. The first one
is a set-valued over-approximation of the system’s dynam-
ics which will be used to enforce the safety requirement,
whereas the second one is a single-valued estimation of the
system’s dynamics. From the single-valued estimation, we
can find the controller that minimizes a given cost function.

We start by defining the setup we have. Given 𝑋 ⊆
ℝ𝑛𝑥 , 𝑈 ⊆ ℝ𝑛𝑢 , 𝑊 ⊆ ℝ𝑛𝑥 , let us consider a discrete-time
nonlinear system of the form:

x(𝑡 + 1) = 𝑓 (x(𝑡),u(𝑡)) + w(𝑡) (1)
where x ∈ 𝑋,u ∈ 𝑈,w ∈ 𝑊 are the state, input, and
disturbance. 𝑓 ∶ 𝑋 × 𝑈 → 𝑋 is an unknown nonlinear
function. Throughout this paper, we will make the following
working assumptions:
Assumption 1. The unknown function 𝑓 has bounded
derivatives i.e. for all 𝐱 ∈ 𝑋, 𝐮 ∈ 𝑈 :

𝜕𝑓 𝑖

𝜕𝑥𝑗
(𝐱,𝐮) ∈ [𝛼𝑖𝑗 , 𝛼𝑖𝑗], 𝑖, 𝑗 ∈ {1,… , 𝑛𝑥},

𝜕𝑓 𝑖

𝜕𝑢𝑗
(𝐱,𝐮) ∈ [𝛽

𝑖𝑗
, 𝛽𝑖𝑗], 𝑖 ∈ {1,… , 𝑛𝑥}, 𝑗 ∈ {1,… , 𝑛𝑢},

where the bounds 𝛼𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛽𝑖𝑗 ∈ ℝ are assumed to be
known. The set of disturbances 𝑊 = [𝐰,𝐰], is a bounded

interval with known bounds 𝐰,𝐰 ∈ ℝ𝑛𝑥 and such that
0 ∈ 𝑊 .

Assumption 2. We are given a set of data generated from
the dynamic system (1):

 = {(𝐱𝑘,𝐮𝑘, 𝐱′𝑘) | 𝐱
′
𝑘 ∈ 𝑓 (𝐱𝑘,𝐮𝑘) +𝑊 ,𝑘 ∈ 𝕂}

where 𝕂 is a finite set of indices.

Collecting the data set  can be done in various fashion.
One can for instance sample the dynamics of the system
randomly using independent samples. This can be done
easily if one can use a black box model of (1) to generate
independent simulations. However, our approach does not
require to use samples that are independent. Actually, they
can be collected by recording the evolution of the true system
on a given period of time. In that case, we would have
𝐱′𝑘 = 𝐱𝑘+1.
Remark 1. An algorithm to determine the bounds on the
derivatives of the function 𝑓 and the bounds on the distur-
bance 𝑊 was introduced in [14]. The algorithm uses the set
of data , and the resulting bounds are valid with proba-
bilistic guarantees that depend on the number of sampled
points. However, in that case, the samples are required to be
independent identically distributed.

We want to implement a learning-based MPC scheme
while enforcing a strong safety requirement such that the
system’s state always stays safe x(𝑡) ∈ 𝑋𝑠,∀𝑡 ∈ ℕ, where
𝑋𝑠 ⊆ 𝑋 is a safe set.

First, we find a set of safe inputs using a data-driven over-
approximation of the system’s dynamics
Definition 1. An over-approximation of the dynamics de-
fined in (1) is a set-valued map𝐹 ∶ 𝑋×𝑈 ⇉ 𝑋 that satisfies

𝑓 (x,u) +𝑊 ⊆ 𝐹 (x,u),∀x ∈ 𝑋,∀u ∈ 𝑈. (2)
Section 3 is dedicated to showing how we can com-

pute such an over-approximation. This set-valued over-
approximation can then be used to find a safety controller
𝐶𝐹 using either set-theoretic methods [5] or symbolic con-
trol [15].
Definition 2. A safety controller 𝐶𝐹 for the safe set 𝑋𝑠 and
the map 𝐹 is a set-valued map 𝐶𝐹 ∶ 𝑋 ⇉ 𝑈 satisfying

• dom(𝐶𝐹 ) ⊆ 𝑋𝑠,

• ∀x ∈ dom(𝐶𝐹 ),∀u ∈ 𝐶𝐹 (x), 𝐹 (x,u) ⊆ dom(𝐶𝐹 ),

where dom(𝐶𝐹 ) = {x ∈ 𝑋 | 𝐶𝐹 (x) ≠ ∅} is the domain of
𝐶𝐹 .

As it can be seen from the definition, safety controllers,
calculated using the over-approximation, can attribute to
each state x ∈ dom(𝐶𝐹 ) a set of allowed inputs. To find the
one input (out of several safe ones) that minimizes a receding
horizon cost function, we build a single-valued estimation of
the true function
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Definition 3. An estimation 𝑓 ∶ 𝑋 × 𝑈 → 𝑋 of the
true function 𝑓 is said to be compatible with the over-
approximation 𝐹 if

𝑓 (x,u) +𝑊 ⊆ 𝐹 (x,u),∀x ∈ 𝑋,∀u ∈ 𝑈. (3)
Section 4 deals with finding this compatible estimation.
Now, we have everything we need to introduce the

safe learning-based MPC scheme. First, we find the data-
driven over-approximation 𝐹 . Then, we use it to find the
safe controller 𝐶𝐹 . After that, we build an estimation of
the dynamics 𝑓 compatible with the over-approximation.
The following theorem shows how to use those models
to implement a learning-based MPC program to meet the
strict safety requirements while enforcing a soft performance
optimization by minimizing the estimation of a cost function
𝐽 using an estimate 𝑓 .
Theorem 1. Given a stage costs 𝐽𝑘 ∶ 𝑋 × 𝑈 → ℝ, 𝑘 ∈
{1,… , 𝑁 − 1} and a terminal cost 𝐽𝑁 ∶ 𝑋 → ℝ,
starting from x(0) ∈ dom(𝐶𝐹 ), consider the trajectory of
(1) with u(𝑡) = u(0|𝑡) where u(0|𝑡) is obtained by solving
the optimisation problem below:

min
u(0|𝑡),…u(𝑁−1|𝑡)

𝑁−1
∑

𝑖=0
𝐽𝑖(x(𝑖|𝑡),u(𝑖|𝑡)) + 𝐽𝑁 (x(𝑁|𝑡))

subject to x(𝑖 + 1|𝑡) = 𝑓 (x(𝑖|𝑡),u(𝑖|𝑡)),
∀𝑖 ∈ {0,… , 𝑁 − 1}

x(𝑖|𝑡) ∈ 𝑋𝑠, ∀𝑖 ∈ {0,… , 𝑁}
u(0|𝑡) ∈ 𝐶𝐹 (x(𝑡))
x(0|𝑡) = x(𝑡)

(4)

Then, for all 𝑡 ∈ ℕ, x(𝑡) ∈ 𝑋𝑠 and (4) admits a feasible
solution, i.e. the closed-loop system is safe and well-posed.

PROOF. Let 𝑡 ∈ ℕ, and let us assume that x(𝑡) ∈ dom(𝐶𝐹 ).Let us first show that the optimisation problem (4) has a
feasible solution. At each prediction stage 𝑖 ∈ {0,… , 𝑁 −
1}, let us choose an input u(𝑖|𝑡) ∈ 𝐶𝐹 (x(𝑖|𝑡)) then from (3),

x(𝑖 + 1|𝑡) = 𝑓 (x(𝑖|𝑡),u(𝑖|𝑡)) ∈ 𝐹 (x(𝑖|𝑡),u(𝑖|𝑡)).

Since x(0|𝑡) = x(𝑡) ∈ dom(𝐶𝐹 ), we have, according to the
second item of Definition 2, that for all 𝑖 ∈ {0,… , 𝑁 − 1},
x(𝑖+1|𝑡) ∈ dom(𝐶𝐹 ). Then, it follows from the first item of
Definition 2, that for all 𝑖 ∈ {0,… , 𝑁}, x(𝑖|𝑡) ∈ 𝑋𝑠 and the
optimisation problem is feasible.

Then, by (4), we have that u(𝑡) = u(0|𝑡) ∈ 𝐶𝐹 (x(𝑡)).From (2), we get that
x(𝑡 + 1) = 𝑓 (x(𝑡),u(𝑡)) + w(𝑡) ∈ 𝐹 (x(𝑡),u(𝑡)).

From the second item of Definition 2, it follows that x(𝑡 +
1) ∈ dom(𝐶𝐹 ). Then, starting from x(0) ∈ dom(𝐶𝐹 ), we
have by induction that for all 𝑡 ∈ ℕ, x(𝑡) ∈ dom(𝐶𝐹 ) and (4)
admits a feasible solution. Moreover, from the first item of
Definition 2, we get that for all 𝑡 ∈ ℕ, x(𝑡) ∈ 𝑋𝑠. □

3. Data-Driven Over-Approximation of
Unknown Functions
In this section, we introduce an algorithm to find an

over-approximation of an unknown function starting from
a data set of samples of this function. The algorithm finds an
over-approximation under the assumption that the unknown
function’s derivatives and the disturbances added to the mea-
surements are bounded. This algorithm was first introduced
in our previous work [14] and is briefly presented here with
the goal of making the paper self-contained. The algorithm
relies on a method to over-approximate monotone functions
on a fixed partition of the states and inputs spaces. Using
some mathematical adjustments, we can transfer the problem
at hand to a version where we have monotone functions. By
doing that, we can use the aforementioned algorithm.

Given the system (1) and Assumptions 1 and 2, let
us define the auxiliary matrices 𝐴−, 𝐴+ ∈ ℝ𝑛𝑥×𝑛𝑥 and
𝐵−, 𝐵+ ∈ ℝ𝑛𝑥×𝑛𝑢 , where for all 𝑖, 𝑗 ∈ {1,… , 𝑛𝑥}

𝐴−
𝑖𝑗 =

{

𝛼𝑖𝑗 if 𝛼𝑖𝑗 < 0,
0 otherwise, 𝐴+

𝑖𝑗 =

{

𝛼𝑖𝑗 if 𝛼𝑖𝑗 > 0,
0 otherwise,

and for all 𝑖 ∈ {1,… , 𝑛𝑥}, for all 𝑗 ∈ {1,… , 𝑛𝑢}

𝐵−
𝑖𝑗 =

{

𝛽
𝑖𝑗

if 𝛽
𝑖𝑗
< 0,

0 otherwise, 𝐵+
𝑖𝑗 =

{

𝛽𝑖𝑗 if 𝛽𝑖𝑗 > 0,
0 otherwise.

Then, let the functions 𝑓−, 𝑓+ ∶ 𝑋 × 𝑈 → ℝ
𝑛𝑥 be defined

for all 𝐱 ∈ 𝑋, 𝐮 ∈ 𝑈 , by:
𝑓−(𝐱,𝐮) = 𝑓 (𝐱,𝐮) − 𝐴−𝐱 − 𝐵−𝐮,
𝑓+(𝐱,𝐮) = 𝐴+𝐱 + 𝐵+𝐮 − 𝑓 (𝐱,𝐮).

Functions 𝑓−, 𝑓+ are unknown but monotone since all their
partial derivatives are non-negative.

Now let us define the two auxiliary data sets:
− = {(𝐱𝑘,𝐮𝑘, 𝐲−𝑘 )| 𝐲

−
𝑘 = 𝐱′𝑘 − 𝐴−𝐱𝑘 − 𝐵−𝐮𝑘, 𝑘 ∈ 𝕂},

+ = {(𝐱𝑘,𝐮𝑘, 𝐲+𝑘 )| 𝐲
+
𝑘 = 𝐴+𝐱𝑘 + 𝐵+𝐮𝑘 − 𝐱′𝑘, 𝑘 ∈ 𝕂}.

The two auxiliary sets can be seen as if they were generated
using the two monotone maps1

𝐲− ∈ 𝑓−(𝐱,𝐮) +𝑊 , (5)
𝐲+ ∈ 𝑓+(𝐱,𝐮) +𝑊 . (6)

Now, we introduce the algorithm to over-approximate mono-
tone maps. Without a loss of generality, let us assume that
the sets of states and inputs are intervals; 𝑋 = [𝐱, 𝐱] and
𝑈 = [𝐮,𝐮]. For each coordinate 𝑖 ∈ {1,… , 𝑛𝑥}, let be given
a finite partition (𝑋𝑞𝑖 )𝑞𝑖∈𝑄𝑖 of the interval [𝑥𝑖, 𝑥𝑖] where
𝑄𝑖 = {0,… , 𝐾 𝑖} and

⎧

⎪

⎨

⎪

⎩

𝑋𝑖
0 = [𝑥𝑖, 𝛼𝑖1),

𝑋𝑖
𝑞𝑖 = [𝛼𝑖𝑞𝑖 , 𝛼

𝑖
𝑞𝑖+1), 𝑞

𝑖 = 1,… , 𝐾 𝑖 − 1,
𝑋𝑖

𝐾 𝑖 = [𝛼𝑖𝐾 𝑖 , 𝑥
𝑖],

1A definition of monotone set-valued maps can be found in [14]
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where 𝑥𝑖 < 𝛼𝑖1 < ⋯ < 𝛼𝑖𝐾 𝑖 < 𝑥𝑖. We define 𝑄 =
𝑄1×⋯×𝑄𝑛𝑥 , and let the finite rectangular partition (𝑋𝐪)𝐪∈𝑄
of 𝑋 be given for 𝐪 = (𝑞1,… , 𝑞𝑛𝑥 ) by 𝑋𝐪 = 𝑋1

𝑞1
×⋯×𝑋𝑛𝑥

𝑞𝑛𝑥 .
Similarly, we define the finite rectangular partition (𝑈p)p∈𝑃of 𝑈 . We denote by xq, xq, up, up the lower and upper
bounds of the intervals 𝑋q and 𝑈p.

We also consider a quantization function 𝜙 ∶ 𝑋 × 𝑈 →
𝑄 × 𝑃 associated to the finite partitions (𝑋𝐪)𝐪∈𝑄, (𝑈𝐩)𝐩∈𝑃and defined as

∀𝐱 ∈ 𝑋,∀𝐮 ∈ 𝑈, ∀𝐪 ∈ 𝑄,∀𝐩 ∈ 𝑃 ,
𝜙(𝐱,𝐮) = (𝐪,𝐩) ⟺ 𝐱 ∈ 𝑋𝐪,𝐮 ∈ 𝑈𝐩.

(7)

In what follows, we will build the over-approximation of
the map defined by (5). We can build an over-approximation
of (6) with similar steps. First, let us define the map 𝜎− ∶
𝑄 × 𝑃 ⇉ ℝ

𝑛𝑥 given for all 𝐪 ∈ 𝑄,p ∈ 𝑃 by

𝜎−(𝐪,p) =
⎛

⎜

⎜

⎝

⋂

𝑘∈𝕂−(𝐱𝐪,𝐮𝐩)
{𝐲 ∈ ℝ

𝑛𝑥
| 𝐲−𝑘 + 𝐰 − 𝐰 ⪯ 𝐲}

⎞

⎟

⎟

⎠

∩
⎛

⎜

⎜

⎝

⋂

𝑘∈𝕂+(𝐱𝐪,𝐮𝐩)
{𝐲 ∈ ℝ

𝑛𝑥
| 𝐲 ⪯ 𝐲−𝑘 + 𝐰 − 𝐰}

⎞

⎟

⎟

⎠

(8)

where
𝕂−(𝐱,𝐮) = {𝑘 ∈ 𝕂 | 𝐱𝑘 ⪯ 𝐱,𝐮𝑘 ⪯ 𝐮},
𝕂+(𝐱,𝐮) = {𝑘 ∈ 𝕂 | 𝐱 ⪯ 𝐱𝑘,𝐮 ⪯ 𝐮𝑘}.

we have that 𝜎− is an interval-valued map; for all 𝐪 ∈ 𝑄,
𝐩 ∈ 𝑃 , 𝜎−(𝐪,𝐩) = [𝜎−(𝐪,𝐩), 𝜎−(𝐪,𝐩)].

We denote 𝐹− = 𝜎−◦𝜙. The following proposition
establishes that the map 𝐹− over-approximates the map in
(5).
Proposition 1 (see [14, Theorem 2]). Let 𝜎 and 𝜙 be given
by (8) and (7), then:

𝑓−(𝐱,𝐮) +𝑊 ⊆ 𝐹−(𝐱,𝐮),∀x ∈ 𝑋,∀u ∈ 𝑈.

In our previous work, we established the minimality of
𝐹− in the sense that any other interval-valued map 𝜎′ such
that 𝑓−(𝐱,𝐮) + 𝑊 ⊆ 𝜎′◦𝜙(𝐱,𝐮), for all x ∈ 𝑋, for all
u ∈ 𝑈 will also include 𝐹−, i.e. 𝐹−(𝐱,𝐮) ⊆ 𝜎′◦𝜙(𝐱,𝐮),
for all x ∈ 𝑋, for all u ∈ 𝑈 .

We build the maps 𝜎+, 𝐹+ that over-approximate the
monotone map (6) in the same fashion as 𝜎−, 𝐹−. The
following proposition shows how we use those maps to build
the over-approximation of the true dynamics.
Proposition 2 (see [14, Proposition 8]). Let 𝜎 ∶ 𝑄 × 𝑃 ⇉

ℝ
𝑛𝑥 be given for all 𝐪 ∈ 𝑄, 𝐩 ∈ 𝑃 by:

𝜎(𝐪,𝐩) =
[𝐴−xq + 𝐵−up + 𝜎−(𝐪,𝐩), 𝐴−xq + 𝐵−up + 𝜎−(𝐪,𝐩)]

∩ [𝐴+xq + 𝐵+up − 𝜎+(𝐪,𝐩), 𝐴+xq + 𝐵+up − 𝜎+(𝐪,𝐩)].

Then, the function 𝐹 ∶ 𝑋 × 𝑈 ⇉ ℝ
𝑛𝑥 defined as 𝐹 = 𝜎◦𝜙

satisfies

∀𝐱 ∈ 𝑋,𝐮 ∈ 𝑈, 𝑓 (𝐱,𝐮) +𝑊 ⊆ 𝐹 (𝐱,𝐮).

In terms of computational complexity, it has been shown
in [14] that the over-approximation map 𝐹 can be computed
in linear time with respect to the number of data points,
which makes it possible to deal with large data sets. We also
refer to [14] for an experimental evaluation of the quality
of the over-approximation as function of the number of data
points.

The map 𝐹 can be used to find a discrete state space
representation of the system (symbolic abstraction), which
in turn can be used to find a safety controller using an
iterative algorithm.

4. Piecewise Multi-Affine Compatible
Estimation
In this section, we demonstrate how to build a single-

valued piecewise compatible estimation of the system’s dy-
namics using the class of multi-affine functions. This class
of functions was studied on 𝑛-dimensional intervals in [2].
We make use of this study to build a piecewise multi-
affine estimation compatible with the over-approximation
introduced in the previous section. The piecewise estimation
is defined on the same partition used to build the over-
approximation.
4.1. Piecewise multi-affine functions

Now, we introduce the class of piecewise multi-affine
functions that we will use to estimate the unknown function.
In this section and to simplify the notations, we will note
𝑍 = 𝑋 × 𝑈 and 𝐳 = (𝐱,𝐮).
Definition 4. A multi-affine function 𝑔 ∶ 𝑍 → ℝ𝑚, 𝑍 ⊆ ℝ𝑛

is a function of the form

𝑔(𝑧1,… , 𝑧𝑛) =
∑

𝑖1,…,𝑖𝑛∈{0,1}
𝑐𝑖1,…,𝑖𝑛 (𝑧

1)𝑖1 …(𝑧𝑛)𝑖𝑛 (9)

where 𝑐𝑖1,…,𝑖𝑛 ∈ ℝ𝑚 for all 𝑖1,… , 𝑖𝑛 ∈ {0, 1}

In the case where 𝑍 is an interval; 𝑍 = [z, z], z, z ∈ ℝ𝑛,
we denote the set of vertices of this interval by

𝑉 =
𝑛
∏

𝑖=1
{𝑧𝑖, 𝑧𝑖}.

Let 𝜉𝑖 ∶ {𝑧𝑖, 𝑧𝑖} → {0, 1} for all 𝑖 ∈ {1,… , 𝑛} denote the
indicator function

𝜉𝑖(𝑧𝑖) = 0 𝜉𝑖(𝑧
𝑖) = 1 ∀𝑖 ∈ {1,… , 𝑛}.

The following proposition states that any multi-affine func-
tion defined on an interval can be written as a linear com-
bination of the values of the function on the vertices of this
interval.
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Proposition 3 (see [2, Proposition 1]). Let 𝑍 be an 𝑛-
dimensional interval, 𝑔 ∶ 𝑍 → ℝ𝑚 a multi-affine func-
tion such that, for all v = (𝑣1,… , 𝑣𝑛) ∈ 𝑉 we have
𝑔(𝑣1,… , 𝑣𝑛) = yv. Then, for all z = (𝑧1,… , 𝑧𝑛) ∈ 𝑍 the
function 𝑔 is uniquely given by

𝑔(z) =
∑

v∈𝑉

𝑛
∏

𝑖=1

(

𝑧𝑖 − 𝑧𝑖

𝑧𝑖 − 𝑧𝑖

)𝜉𝑖(𝑣𝑖)(
𝑧𝑖 − 𝑧𝑖

𝑧𝑖 − 𝑧𝑖

)1−𝜉𝑖(𝑣𝑖)

yv. (10)

As a consequence of Proposition 3, we can estimate a
multi-affine function on a given interval by estimating the
function’s values on the vertices of the interval.
Lemma 2 (see [2, Lemma 2]). Let s ∈ ℝ𝑚 and 𝑑 ∈ ℝ.
Then, s𝑇 𝑔(z) ⋈ 𝑑 for all z ∈ 𝑍 if and only if s𝑇 𝑔(v) ⋈ 𝑑,
for all v ∈ 𝑉 , where ⋈ stands for any of <,≤,=,≥, > .

Given a partition (𝑍𝐫)𝐫∈𝑅 of the interval 𝑍 ⊆ ℝ𝑛 ,
we denote the vertices of an interval 𝑍𝐫 by 𝑉𝐫 . A function
𝑔 ∶ 𝑍 → ℝ𝑚 is piecewise multi-affine if for all 𝐫 ∈ 𝑅 the
function is multi-affine on 𝑍𝐫 .

The following proposition establishes that if a piecewise
multi-affine function is continuous on the grid points of the
partition, then it is continuous everywhere
Proposition 4. If a piecewise multi-affine function 𝑔 ∶ 𝑍 →
ℝ𝑚 is continuous on the grid points of the partition (𝑍𝐫)𝐫∈𝑅:

lim
z→v

𝑔(z) = 𝑔(v) ∀𝐫 ∈ 𝑅, v ∈ 𝑉r

then 𝑔 is continuous for all z ∈ 𝑍.

PROOF. To establish the continuity of piecewise multi-affine
functions, it is sufficient to study them on the shared facets
of neighbouring cells in the partition because they are de-
fined as multi-affine functions on the interior of those cells;
and multi-affine functions are continuous. The facets of an
interval 𝑍r = [zr, zr], zr, zr ∈ ℝ𝑛 are given by

𝐸𝑍r,𝑤𝑗 = 𝑍r ∩ {z ∈ ℝ𝑛
| 𝑧𝑗 = 𝑤𝑗}

for all 𝑤𝑗 ∈ {𝑧𝑗 , 𝑧𝑗}, 𝑗 ∈ {1,… , 𝑛} which implies ac-
cording to (9) that 𝑔(𝑧1,… , 𝑤𝑗 ,… , 𝑧𝑛) is also a multi-affine
function.

We also have that the facets of the 𝑛-dimensional interval
are (𝑛 − 1)-dimensional intervals, which implies that the
expression of the function 𝑔 on a given facet is of the form
(10). Therefore, as the shared facets of two neighbouring
intervals in the partition have the same vertices, then the
limit of the function 𝑔 from the two neighbouring intervals
on the shared facet will be the same. □

Based on this result, we can see that to estimate a con-
tinuous piecewise multi-affine function on a given partition,
we only need to estimate its values on the vertices of the
partition.

4.2. Compatible estimation
Now we will describe how we build a piecewise multi-

affine estimation function 𝑓 of the system’s dynamics com-
patible with the over-approximation calculated in the previ-
ous section.

Starting from the given finite rectangular partitions
(𝑋q)q∈𝑄, (𝑈p)p∈𝑃 of 𝑋 and 𝑈 , and Assumption 2, each
transition triple (𝐱𝑘,𝐮𝑘, 𝐱′𝑘), 𝑘 ∈ 𝕂 allows us to write the
following equation

𝐱′𝑘 = 𝑓q,p(𝐱𝑘,𝐮𝑘) + e(𝐱𝑘,𝐮𝑘)

where (q,p) = 𝜙(𝐱𝑘,𝐮𝑘). The function 𝑓q,p ∶ 𝑋q×𝑈p → 𝑋
is the multi-affine estimation of the true function on the
interval 𝑋q × 𝑈p, and the vector e(𝐱𝑘,𝐮𝑘) represents the
residuals of the estimation.

According to (10), we can rewrite 𝑓 as a linear com-
bination of the estimated function on the vertices of the
interval ŷv1 ,… , ŷv2𝑛𝑥+𝑛𝑢

, where v1,… , v2𝑛𝑥+𝑛𝑢 ∈ 𝑉q,p are
the vertices of the interval 𝑋q × 𝑈p

𝑓q,p(𝐱𝑘,𝐮𝑘) =
∑

v∈𝑉q,p

𝛾v(𝐱𝑘,𝐮𝑘)ŷv.

where 𝛾v represent the coefficients of the linear combina-
tion given by (10). Therefore, we can write the estimation
problem to calculate the piecewise multi-affine estimation
function 𝑓 from the data set in a matrix form.

We first denote the set of all vertices of the partition
 =

⋃

𝐪∈𝑄,𝐩∈𝑃
𝑉𝐪,𝐩.

The set  is finite and thus can be numbered  =
{v1,… , v𝐾}, where 𝐾 is the number of grid’s points. For
every 𝑗 ∈ {1,… , 𝑛𝑥}, We aggregate all variables represent-
ing the values of 𝑓 𝑗 on the grid’s points of the partition (
𝑦̂𝑗v, for all v ∈ ) in a single vector Φ𝑗 ∈ ℝ𝐾 , Then, the
regression problem for every component 𝑓 𝑗 is

𝜒𝑗 = 𝐴 ⋅Φ𝑗 + E𝑗 (11)
where 𝜒𝑗 ∈ ℝ|𝕂| is a vector aggregating the 𝑗 components
of the data points’ transitions 𝜒𝑗 = (𝑥′1

𝑗 ,… , 𝑥′𝑗
|𝕂|), E𝑗 ∈

ℝ|𝕂| the vector of residuals, and 𝐴 ∈ ℝ|𝕂|×𝐾 is the sparse
coefficients matrix. Each row of this matrix is built using a
data point and contains 2𝑛𝑥+𝑛𝑢 entries which is the number
of vertices of the interval 𝑋q × 𝑈p to which the data point
belongs. The values of the entries at each row of the matrix
are the coefficients of the multi-affine function defined on
this interval as seen in (10).

We use the least squares estimator to find the values of
Φ𝑗 . The cost function, which is the sum of the squares of
residuals, can be written as

𝑆(Φ𝑗) = E𝑇
𝑗 E𝑗 = (𝜒𝑗 − 𝐴 ⋅Φ𝑗)𝑇 (𝜒𝑗 − 𝐴 ⋅Φ𝑗)

= 𝜒𝑇
𝑗 𝜒𝑗 − 2 Φ𝑇

𝑗 𝐴
𝑇𝜒𝑗 + Φ𝑇

𝑗 𝐴
𝑇𝐴Φ𝑗
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Hence, the estimation problem can be expressed as a sparse
quadratic optimisation problem.

Finally, let us define the two vectors Φ𝑗 ,Φ𝑗 ∈ ℝ𝐾 . For
all the component 𝑖 ∈ {1,… , 𝐾}, we define Φ𝑖

𝑗 ,Φ
𝑖
𝑗

Φ𝑖
𝑗 = max

q′,p′
{𝜎𝑗(q′,p′) ∣ v𝑖 ∈ 𝑉q′,p′} −𝑤𝑗

Φ
𝑖
𝑗 = min

q′,p′
{𝜎𝑗(q′,p′) ∣ v𝑖 ∈ 𝑉q′,p′} −𝑤𝑗

which resemble the minimum of over-approximation’s upper
bound and the maximum of over-approximation’s lower
bound for all the cells that v𝑖 is a vertex of.

The following proposition gives the sufficient condition
so that the estimated piecewise multi-affine function is com-
patible with the over-approximation built using the same
partition and assumptions.
Proposition 5. Given the finite rectangular partitions
(𝑋q)q∈𝑄, (𝑈p)p∈𝑃 of 𝑋 and 𝑈 , and under Assumption
2, the piecewise multi-affine estimation function 𝑓 whose
components are calculated using the following optimisation
problem, for every 𝑗 ∈ {1,… , 𝑛𝑥},

min
Φ𝑗

Φ𝑇
𝑗 𝐴

𝑇𝐴Φ𝑗 − 2 Φ𝑇
𝑗 𝐴

𝑇𝜒𝑗

subject to Φ𝑗 ⪯ Φ𝑗 ⪯ Φ𝑗

(12)

is compatible with the over-approximation 𝐹 , i.e. 𝑓 (x,u) +
𝑊 ⊆ 𝐹 (x,u), for all x ∈ 𝑋, for all u ∈ 𝑈 .

PROOF. First, let us show that the optimisation problem (12)
has a feasible solution. According to Proposition 2 we have
that ∀𝐱 ∈ 𝑋,𝐮 ∈ 𝑈, 𝑓 (𝐱,𝐮) + 𝑊 ⊆ 𝐹 (𝐱,𝐮). Therefore,
for every 𝑗 ∈ {1,… , 𝑛𝑥} the values of the 𝑓 𝑗 on the grid’s
points 𝑦𝑗v = 𝑓 𝑗(v) , for all v ∈ 𝑉q,p for all 𝐪 ∈ 𝑄,𝐩 ∈ 𝑃 are
a a feasible solution for the optimisation problem (12).

From (12), we have that for a given cell 𝑋q ×𝑈p, all the
resulting values of the estimation are included in the over-
approximation map, i.e. 𝑦⋆𝑗

v ≤ 𝜎𝑗(q,p) − 𝑤𝑗 and 𝑦⋆𝑗
v ≥

𝜎𝑗(q,p) − 𝑤𝑗 for all v ∈ 𝑉q,p for all 𝐪 ∈ 𝑄,𝐩 ∈ 𝑃 . This
implies according to Lemma 2 (by choosing 𝐬 = e𝑗) that
𝑓 𝑗(x,u) ≤ 𝜎𝑗(q,p) − 𝑤𝑗 and 𝑓 𝑗(x,u) ≥ 𝜎𝑗(q,p) − 𝑤𝑗 for
all x ∈ [xq, xq] for all u ∈ [up,up]. Hence, 𝑓 (x,u) +𝑊 ⊆
𝐹 (x,u), for all x ∈ 𝑋, for all u ∈ 𝑈 . □

Let us remark that 𝐴𝑇𝐴 ∈ ℝ𝐾×𝐾 and 𝐴𝑇𝜒𝑗 ∈ ℝ𝐾 ,
which makes the size of the quadratic program (12) indepen-
dent of the number of data points. These products of matrices
can be computed in linear time with respect to the number
of data points. Moreover, due to the sparsity of 𝐴 ∈ ℝ|𝕂|×𝐾 ,
these computations can be done efficiently. It follows that
large data sets can be handled in practice.
Remark 2. The estimated function 𝑓 is continuous and
differentiable almost everywhere, making the MPC optimi-
sation problem in (4) solvable using subgradient descent
methods.

5. Case Study
To showcase the validity of our approach, we present in

this section a path planning problem. We learn the dynamics
of a unicycle model by sampling data transitions from it.
Then, we use the learned model to drive the vehicle in
an environment containing obstacles. To do this, we use
the two-model approach described in the paper. We show
how the approach can offer a robust safety guarantee while
moving optimally towards a predefined goal.

We consider the unicycle models defined by the follow-
ing equations

𝑥̇ = 𝑣 ⋅ cos(𝜃) +𝑤1

𝑦̇ = 𝑣 ⋅ sin(𝜃) +𝑤2

𝜃̇ = 𝑣
𝐿
tan(𝛿) +𝑤3

(13)

where 𝑥, 𝑦 are the coordinates of the vehicle, 𝜃 is the heading
angle, as can be seen in Figure 1, 𝐿 is the length of the
vehicle, and we chose the value 𝐿 = 0.1 m. The velocity
𝑣 and the steering angle 𝛿 are considered the input. The goal
of this experiment is to drive the vehicle from a starting
position to a target position in an environment, as shown in
Figure 2. The vehicle should manoeuvre around an obstacle
to reach its target. We consider a 2 × 5 m area, a 1 × 0.5 m
obstacle positioned at 2.5 m away from the left side of the
room.

To build the over-approximation of the dynamics in
(13), we sampled |𝕂| = 106 data points using a black
box simulator of (13). We chose for the states, inputs,
and disturbance intervals the following 𝜃 ∈ [−𝜋

2 ,
𝜋
2 ], 𝛿 ∈

[−1, 1], 𝑣 ∈ [0.025, 0.5],w ∈ [−0.05, 0.05]×[−0.05, 0.05]×
[−0.05, 0.05], and partitioned those intervals uniformly into
30 cells each. We only use 𝜃, 𝛿, and 𝑣 to study the dynamics
of the unicycle model as the function representing this model
clearly does not depend on the states 𝑥 and 𝑦. The resulting

L

Figure 1: The unicycle model. The reference point is at the
center of the rear axle.

Start
Goal

2 m

5 m

1 m

0.5 m

Figure 2: The environment where the vehicle should maneuver
an obstacle to reach a target position
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(a) The over-approximation of
the dynamics of 𝑥̇

(b) The over-approximation of
the dynamics of 𝑦̇

(c) The over-approximation of
the dynamics of 𝜃̇

Figure 3: Over-approximation of the bicycle dynamics

0 1 2 3 4 5
0

0.5

1

1.5

2

Figure 4: The maximal controlled invariant for three values of
𝜃.

over-approximation can be seen in Figure 3. The execution
time to find the over-approximation is 𝑡𝑜𝑣 = 2.78 s.

Then, we use the over-approximation model to build a
symbolic abstraction of the behaviour of the vehicle in the
environment as follows: We partitioned the 𝑥-axis into 100
sections and the 𝑦-axis into 40 sections uniformly. Then,
we found the reachable set of the vehicle starting from each
cell in the partition using the calculated over-approximation.
We use the Euler method for discretizing. The symbolic
abstraction is then used to find the maximal control invariant
inside the safe region and the set of safe actions at each cell.
The speed is chosen to be strictly positive, and hence the
vehicle cannot stop. All the walls of the area are considered
obstacles except the right wall because the vehicle cannot
stop. Figure 4 shows the regions where we can find a safety
controller for certain values of 𝜃. The execution time to find
the maximal controlled invariant is 𝑡𝑖𝑛𝑣 = 871.88 s.

After that, we calculated the piecewise multi-affine es-
timation of the dynamics according to the algorithm intro-
duced in Section 4. Figure 5 shows the result of estimation
for the first component of the dynamical model and the
difference between the true function and the estimation on
the grid’s points. The execution time to find the piecewise
multi-affine estimation is 𝑡𝑒𝑠𝑡 = 31.48 s.

(a) The single-valued estima-
tion of the dynamics of 𝑥̇ ( ̂̇𝑥)

(b) The difference between the
true function and the estimation
on the grid’s points

Figure 5: Estimation with piecewise multi-affine functions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Figure 6: Trajectory of the vehicle

Finally, the calculated estimation and safety controller
are used to find a feasible trajectory to reach the target
position while avoiding the obstacle. We chose a starting
position x0 = (0.3, 0.3) and the target x𝑓 = (4.5, 0.5). The
cost function

𝐽 =
𝑁
∑

𝑖=1
||x(𝑖|𝑡) − x𝑓 || (14)

was chosen to drive the vehicle to the target. The trajectory
is shown in Figure 6, where it can be seen that the vehicle
reached the target position while avoiding the obstacle.
Although we chose a simple sum-of-distances cost function
(14), we were able to reach the goal while avoiding the
obstacle.

6. Conclusion
In this paper, a novel approach to safe learning-based

MPC was introduced. The approach depends on finding
two models representing the system. The first is an over-
approximation of the system’s dynamics and is used to find
the set of safe inputs at each state. The second is a piecewise
multi-affine estimation used to ensure the performance re-
quirements. A compatibility condition between models en-
sures safety and well-posedness. A case study was explored
to show how we can use the proposed approach to navigate
a vehicle in an environment while avoiding obstacles. In
future, a prospect of this work could be to investigate more
complex scenario and the possibility of updating the learned
models online.
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