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Unsteady non-Newtonian fluid flows with boundary conditions of friction type :
the case of shear thickening fluids.
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Abstract

Motivated by applications to industrial processes like lubrication or extrusion / injection we consider in this paper
non-stationary flow problems for general incompressible dilatant (shear thickening) fluids. The conservation of mass
and momentum lead to a p-Laplacian unsteady Stokes system where the real parameter p is greater than 2. Such fluids
undergo complex slip fluid-solid interface laws of friction type which may be described by a subdifferential boundary
condition. Hence the fluid velocity and pressure satisfy a non-linear parabolic variational inequality and belong to
Banach spaces depending on p. We prove the existence of a solution by using a fixed point technique combined with
compactness and monotonicity arguments.

Keywords: unsteady shear thickening fluid flow, p-Laplacian, slip boundary condition of friction type, non-linear
variational parabolic inequality, monotonicity methods
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1. Introduction

Many complex fluids involved in industrial processes like extrusion / injection or lubrification do not satisfy the
classical linear constitutive law of Newtonian fluids and obey rather a power law depending on a real parameter p
given as

o = 24(6.v. |D@)|)| D@ D(w) - nldgs

where p is a given mapping, v is the fluid velocity, n is the pressure, 6 is the temperature and D(v) and o are the
strain rate tensor and the stress tensor respectively. The case p > 2 models the behaviour of dilatant (or shear
thickening) fluids like colloidal fluids and the case p € (1,2) corresponds to pseudo-plastic (or shear thinning) fluids
like molten polymers (see [2, 36, 26] for instance). When p = 2 the dependence of the mapping ¢ with respect to
the temperature, the velocity and the modulus of the strain rate tensor still yields a non-linear constitutive law and we
obtain a generalization of Newtonian fluids which fits the behaviour of fluids like oils (see [20] for instance).

If the fluid is incompressible the conservation of mass and momentum lead to the p-Laplacian Stokes system

% - 2div(,u(9, v, |D(U)|)|D(U)|p_2D(U)) +Vr=f in(0,T)xQ
div(iv) =0 in (0,T) x Q

where (0, T) is the time interval (T > 0) and Q c R3 is the fluid flow domain.
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Such complex fluids exhibit also complex behaviour at the boundary. Indeed experimental studies have shown that
threshold slip phenomena may occur (see for instance [3, 11, 29, 30, 35, 19, 27, 28, 33]). More precisely whenever
the norm of the shear stress is less than the threshold, the fluid tangential velocity coincide with the wall velocity
otherwise some slip occurs and the fluid relative tangential velocity is in the opposite direction of the shear stress but
its modulus is an unknwon of the problem. From the mechanical point of view this kind of behaviour is reminiscent
of Tresca’s friction for solids ([10]) and from the mathematical point of view it can be described by a subdifferential
boundary condition, namely

v, =0, v,—sE€ —GI/IEIR}(OJ()(G'T)

where k is a given positive threshold, Bz,l/ﬁﬂis (04 1s the subdifferential of the indicator function of the closed ball

ERs (0, k), s is the sliding velocity of the wall, v,, v; and o, are the normal component of the velocity, the tangential
component of the velocity and the shear stress respectively.

The first existence results with this kind of boundary conditions have been obtained by H.Fujita ([12, 13]) for
stationary Newtonian Stokes flows, paving the way to an abundant literature in the case of steady or unsteady Newto-
nian fluid flows (see for instance [14, 15, 31, 16, 17, 21, 32, 22, 23, 34, 6, 7, 8]). The case of non-Newtonian fluids
satisfying a power law with p # 2 leads to a very different mathematical framework since both the velocity and the
pressure are expected to belong to Banach spaces depending on p. The reader is referred to [24, 25] or [4, 9] and the
reference therein for the case of a constant mapping u with classical boundary conditions like Dirichlet, Neumann or
Navier boundary conditions. The general case of a constitutive power law with Tresca’s friction boundary conditions
is considered in [5] for steady flows.

The aim of this paper is to extend the study to non-stationary flows. As a first step we start with the case p > 2 (i.e.
shear thickening fluids or generalized Newtonian fluids) while the case p € (1,2) will be considered in a forthcoming
paper. Moreover we assume that the temperature 6 is a given data. This simplified framework is fully justified when
the convection term of the heat equation can be neglected: in such a case the heat equation is decoupled from the flow
problem and can be solved independently, which allows to consider 6 as a data in the study of the flow problem.

The paper is organized as follows. In Section 2 we introduce the mathematical framework and we derive the
formulation of the problem as a non-linear parabolic variational inequality. In Section 3 we consider an auxiliary
problem where the mapping u depends on the modulus of the strain rate tensor |D(v)| while its two other arguments
are given data. By replacing the time-derivative of v by a finite difference we build a sequence of approximate
solutions and we establish its convergence to the unique solution of the auxiliary flow problem by using compactness
and monotonicity arguments. This allows us to apply a fixed point technique combined with De Rham theorem to
prove the existence of a solution to our original fluid flow problem in Section 4.

2. Description of the problem and variational formulation

We consider this fluid flow problem in a domain Q c R? given by
Q= {(x’,)@) ER’XR: X ew, 0<x3< h(x’)}

where w is a non empty bounded domain of R? with a Lipschitz continuous boundary and # is a Lipschitz continuous
function which is bounded from above and from below by some positive real numbers.
We denote by D(v) = (d,- j(v)) 3 the strain rate tensor given by

I<i,j<

1 {dv; an
djw) = >[5+ 2| 1<ij<3,
](U) 2(6xj * 8x,») hJ

where v is the fluid velocity. We assume that the fluid is non-Newtonian and satisfies the following constitutive law
depending on a parameter p > 1:

o = 24(0. v, |D@)|)| D) D(w) ~ nldgs (1)
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where o = (07j)1<i j<3 is the stress tensor, € is the temperature, 7 is the pressure and u is a given mapping such that

(0,e,d) — p(o,e,d) is continuous on R x R® x R, 2)
d — u(.,.,d) is monotone increasing on R, 3
there exists (o, 1) € R? such that 0 < gy < u(o,e,d) < pu; forall (0,e,d) € RxR? x R,. 4)

The fluid is assumed to be incompressible. The problem is then described by the conservation of mass and
momentum (p-Laplacian Stokes system)

{ ‘;_lt’ — 2div((6, v, IDWDIDW)P D)) + Y = [ in (0,T) x Q 5)

div(iv) =0 in (0,T) x Q

where (0, T') is a non-trivial time interval (i.e. T > 0) and f represents the vector of external forces.

We denote by u - v the Euclidean inner product of two vectors u and v in R?. We decompose the boundary of Q as
0Q = F() U FL U Fl with

Ty = {(x',x3) €Q: x;= o}, r = {(x',x3) €Q: x3= h(x')}
and I';, the lateral part of 0Q.
Let us now describe the boundary conditions for the velocity. Let g : 3Q — R3 be such that

fg-ndeO, g=0only, g#0onl;, g-n=0onl)
00

with n = (ny, ny, n3) the unit outward normal vector to 0Q.

In lubrication or extrusion / injection industrial processes the usual physical setting is given by a fixed wall for the
upper part of the boundary of the fluid domain while the lower part is a moving device with a given sliding velocity.
We assume that the velocity is given on (0, T) X (I'; U T'p) by the following non-homogeneous Dirichlet conditions

v=00n(0,T)xI';, v=géon(0,T)xTIy ©6)
where £ is a function depending only on the time variable such that
§0) = 1. (N

We define the normal and tangential velocities on 0Q as v, = v - n and v, = v — v,n and the normal and tangential
components of the stress vector are given by

3 3
0'n=20'ijnjn,-, Or = E O'iji’lj—O'nl’li
J=1

ij=1 1<i<3
We assume that the fluid is subjected to friction boundary conditions on Iy, i.e.
v-n=0 on (0,7)x Ty (slip condition) ®)

and v, is unknown and satisfies Tresca’s friction law [10]

ol <k=>v, =5

o d=k=I1>0 v.=s5-Ido } on (0,T)x Ty (Tresca’s friction law) ©)]
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where s is the sliding velocity of the lower part of the boundary and k is the positive friction threshold.
We complete the description of the problem with the initial condition

v(0) = vy in Q (10)
3
and we assume that vy € (Wl’l’ (Q)) such that
divivg) =0inQ, vy=0only, vo=gonl;, wvo-n=0onT. (1)
Let us introduce now the functional framework. We denote here and throughout this paper by X the functional
space X>. We consider the following subspaces of W!-*(Q):
VS = {goer”’(Q); ¢=0o0nT}, UFLandgo~n=00nFo}
and

VP

P =lee Vi dig) =0inQ}, V2 ={pe W'"(Q); ¢=00nT|

endowed with the norm

1
||U||1‘p:(f|VU|de)’.
Q

By using Korn’s inequality ([37]), there exists Ck, > 0 such that

I/p
( f |D<u>|”dx) = IDWll @y = Cromllull, Yu e VY (12)
Q

and recalling that the mapping z + z” is monotone increasing on R* we have

1/p
( f |D@)|” dx) = D@l s < Mulli, Yue WH(Q). (13)
Q
Starting from the definition of the strain rate tensor o (see (1)) we introduce the mapping 7 : RxR3*xR3*? — R3*3
given by
F (Ao, A1, A2) = 2u(Ay, Ay, |/12|)|/12|p_2/12 if Ay # Opsxs,  F (dg, A1, A2) = Opsxs  otherwise. (14)
With (4) we have immediately
|7 (A0, A1, )| < 2112~ V(Ao A1, A2) € R X R X R¥, (15)
Let g > 1 such that g — p + 1 > 0. Then for any 6 € Lq(O,T;Lﬁ(Q)) with § > 1 and p > 1, and for any u €
Lq(O, T; WI”’(Q)) we have

F(60,u + vo&, Du + vod) € L1 (0, T3 (L7 (@) )

p
p—1

T
Hence we may define f f F(0.u + voé, D(u + voé)) : D(@) dxdt for all G € Lri (0.7: W'r(@)).
0 Q

q
q-—1

where p’ = (resp. ¢’ = ) is the conjugate number of p (resp. g).

In order to deal with homogeneous boundary conditions on (0, 7) X (I'y UT',), we set v = v — vpé. The variational
formulation of the problem (5) with the boundary conditions (6), (8)-(9) and the initial condition (10) is given by

4



Problem (P) Let f € L7(0,T:LX(Q)), k € L7(0,T; L} (Ty)), p satisfying (2)-(4), 6 € LI(0,T; LP(Q)) with § >
land p > 1, 5 € Lq(O,T;L”(Fo)), ¢ € w90, T) satisfying (7) and vy € wWhr(Q) satisfying (11). Find v €

(10, T1; L)) n L9(0, T3 VY, ) with ‘;—lt’

non-linear parabolic variational inequality

T
<£(5,1~9)L2(Q),§> + f f sf(a,muog,n(mvog)):D(ﬁ)gdxdt—< f ndiv(ﬁ),g>
ot oono0n  Jo Jo Q D(0,1),D(0,7)

T
+J@+90) - J@) = f (f - %Uo,{?) Zdt Ve VP, VL € D(O,T)
0 L2(Q)

e LY(o, T:;(V? . Y), and 7 € H™!(0, T;L”’(Q) , satisfying the followin,
0.div 0 ying g

ot
and the initial condition
v(0) = vy — vpé0) =0 in Q 17

where

{ L0, T;V)) —R
J .

T
g f f kg - §ldx'dr,  §=s— (vo)et

and (., '>z)f(0,T),z)(0,T) and (., .)r2(q) denote respectively the duality product between D(0, T) and £ (0, T) and the inner

product in L2(Q).

Then we observe first that Lq(O, T;V?

0.div i.e. if and only if

) © L7 (0, T; W'(©)) if and only if g > —
.

q > p. It allows us to consider the operator A : Lq(O, T; Vg div) - (Lq (O, YER%4

o, div))/ defined by

| Aw).¢| = j; ' fQ F (0. 1+ vo€. D(u + vof)) : D@)dxdt Vg € LI(0. T3V}, ). Vue L9(0,T: V], )

where [ ] denotes the duality product between L? (O, T, Vg div) and its dual (Lq(O, T, Vg_ div)),.

With (15) A is clearly a bounded operator. Nevertheless if ¢ > p we can not establish the coercivity of A. Indeed

for any (u, ¥) € (L‘f (0, T,V dil,))z we have

T
[ﬂ(u), u— U] =2 f f ﬂ(e, U+ vo&, |D(u + u0§)|)|D(u +vd)|” dxdt
T 0 Q
- f f F (0. u + vo&, D(u + vo)) : D(woé + D) dxt.
0 Q

Recalling that L9(0, TV}, ) < L7+ (0,T; VY. ) we obtain with (4) and (12)-(13)

dxdt

T T
[ﬂ(u), u-— u] > 2u f f |D@u + voé)|” dxdt — 2, f f |D(u + U0§)|p_l |D(og + )
0 Q 0 Q

' P _ p-1 N
2 2Coar Holl U0 = 200+ 8 0E 01, g

Since L”(O, TV} div) clLr (O, T; Vé’]) with the same norm, we have

| A0, =] > 2(Crom)po|lilro:7:v7

ai) ”UOf”L”(O,T;Vl’_'])

p—1
=2 (Illsco g + Ioo€llsor ) Tk + R

5



So, whenever ||u||Lq(0yT;ng_) # 0, we get

N r p
[ A - 9] o7,

> 2ACkom) Mo
||M||L‘I(O,T;V(§’,aiv)

ogllro.r:vz )

ooy, | Wl

(18)
||U0§||L4(0,T;v§’l)
L'i’;l’*‘ (O,T;Vl’.’l)

P
-2 A
2l e [1 ) o + oI

+
”u”Lq(O’T;ngiv)

0.div

But if g > p the embedding of L4 (O, T; VP o div

) in L? (0, T;Vv? ) is continuous i.e. there exists C, > 0 such that

. yP
lelloozwe < Collillsorvy,y  Yu€ L9(0,T; VY ).

It follows that

llell? »
LPOT: Vo i) -1 »
= < Cllully o gy MU E L‘I(O, T V()Adiv)
||M||Lq(0,7';v&m) O.7:V5 4,

and we can not infer from (18) that A is coercive.

On the other hand, when g = p > 2 we have

[ﬂ(u), u— ﬁ] lwoéllro.rve |
> 2(Ckom) pollull” -
= Korn) MO LPO.T:VP

llellro.72vz,) vand | Mello,rvy,,)
||UOf||Lp(0,T;v”) ’
=2ulldl)d e [T+ | g + Bl
0.7V iy ||u||L,>(0’T;V[:£d,_V) r|
and recalling that J(«) > 0 for all u € LP(O, TV} dl.v) we obtain
[Au,u — 0] + J(u)
= 400
”u“LP(O'T:V(I)).div)*)+OO ”u”L[’(O!T;Vr’)’.dw)

which proves the coercivity of the operator A.

Hence we will assume for now on that p = ¢ > 2. In order to prove that problem (P) admits at least a solution
(with p = g > 2) we will apply a fixed point method with respect to the second argument of the mapping u. As a
first step we consider in the next section the simplified case when the viscosity p depends only on a given temperature
field 6, a given velocity field u and the modulus of the strain rate tensor |D(v)| = |D(17 + v0§)|.

3. Auxiliary flow problem
Let p > 2 and

K? = 17(0,T; V) div).

Since p > 2 we have (K7) = Lp'(O,T;(V(‘)’_dl.v)’) and K7 C (K?). Moreover let H = {d/ e L2(Q); div(y) =
0inQ, y-n=0o0n 69} endowed with the norm of L*(Q) and H = LZ(O, T; H). Recalling that the embedding of

VP

0.4y 1Nt0 H is dense and continuous (see Theorem 2.8, Chapter I in [18] for instance), we know that any function

P
@ € K? such that a—": € (K7, by possibly modifying @ on a negligible subset of [0, T], belongs to C([O, TY; H) (see
[24]). Hence we may define
_ 0p , —
¢ =Jp e K EG((K‘”), ©0)=0;.

6



For the sake of notational simplicity we will denote from now on by ¢’ the time derivative of any function @ (in
the distribution sense).

Now letu € L? (0, T, L/’(Q)) be given. We define the operator A, : K” — (K?) by

T
[Au(). 7] = fo fg F (0.0 + vof, D + vé)) : D@)dxdt Vg e K?, VueK’

where we recall that [ ] denotes the duality product between K? = L (0, T; Vg div) and its dual (KP) = L” (0, T; (Vg div)’).
We consider in this section the following auxiliary flow problem:

Problem (P,) Let f € LV (0, T; L2(Q)), k € L7 (0,T; LY (Ty)), u satisfying (2)-(4), 6 € LI(0,T; LP(Q)) with g > 1 and
p =1, seLP(0,T:L/(Iy)), £ € W (0,T) satisfying (7) and vy € W'P(Q) satisfying (11). Find 7 € C([0,T]; H) N
KP with ¥’ € (KP) satisfying the following parabolic variational inequality

7,571+ [A@.5-7]+ I@ - I@ > [7.5-7] VBelr(0.T:V],,) (1

and the initial condition (17) where f € (K?) = L* (0, T;(V} div)') is defined as

— T E _ _ ) )
[f7‘/’]=fo (f—voE,t,D dt Yo € K* =L”(0,T;V

) O.div)‘
Lx(Q)

Let v be a solution of Problem (Py). Then for all ¢ € ¢” we have

[7.% -0l + | Au®).,5 - 7] + /@) - @)

=[7.3- 01 + | A@.5- 9|+ J@ - JO) + [§ - 7.5 -7

Y o _ 1 — 1 _ — .
= 0.5 - 01+ [Au®@.3 - 7|+ @) = J@) + 5 IB(T) = 5Dl 0 =5 180) = TO) 0 2 [ £ 7 - T,
e ——— — N
>0 =0
Hence any solution v of Problem (P,) is also a solution of this weaker variational inequality.

In order to prove the existence of a solution v € K? of this weaker inequality, we introduce an approximation of
the time derivative of the test-function ¢ and we will consider a sequence of elliptic variational inequalities.

Proposition 3.1. Let u € L7(0, T;L7(Q)) and 6 € LI(0,T; LP(Q)) with § > 1 and j > 1. Let f € L (0, T; LA(Q)),
k € L(0.T; LY (To)), p satisfying (2)-(4), s € LP(0.T:LP(Tp)), & € W' (0, T) satisfying (7) and vy € W"P(Q)
satisfying (11). Then there exists v € KP such that

7. -0+ | A@).5 - 0|+ I@ - J@) = |[f.6 -] Vpeg (20)
Proof The main idea of the proof is to replace the time derivative in the first term of (20) by a finite time difference.
More precisely we define the semi-group of contractions (S (h)) inX =KP,H,(KP)Y by S(hg =¢_, ie.

h>0

B . 0 if O<t<h
¢—h(t):(S(h)¢)(t):{g_o(t—h) if h<t<T

d
for all ¢ € X. From standard results (see Chapter 2.7 in [24]) we infer that —A, with A = e is the infinitesimal
generator of (S (h))h>0 with domain D(A, X) in X. Moreover, since K? C H, we have ¢? = KP N D(A, (KP)').
7



Now we approach the variational parabolic inequality (20) by the following sequence of variational elliptic prob-
lems depending on the parameter i > 0:

Find v;, € KP? such that

00,5+ (@05 -w] + 1@ - s@ = [FE-T] VEex. @D

For all 4 > 0 we define the operator B, : K — (K?)’ by

I1-Sh
By = L5

u + Au(u) Yu e K?.
For all (u, v) € (K?)* we have
1 T
[B1w) - Bu(),u—v| = ; f f (1=S )@ =v))- (= v)dxdt + | Au() = Auv), u - v].
0 Ja
With Lemma 1 in [5] we know that the mapping 4, — F (-, -, A2) is monotone in R33. Tt follows that
T
| Au() = Au),u = v| = f f (7 (6. u + vo&, D(u + vo€)) = F(6,u + voé, D + w08))) : Dl = v)dxdt 20 (22)
0 Jo
and thus

1
(8160 = Bur), = v] 2 4 (Il = vl = 1S G = Dl e = vl > 0,

Hence 8B;, is monotone. Using (2) and (4) we obtain immediately that it is bounded and hemicontinuous. Furthermore
with the same computations as in Section 2 we get

=

[Buw.u] + Jw) = ]+ [Aatu, ] + 7w 2 [Aut, ]

> Z(CKorn)p:uo‘”u”LF(O,T;Vg_diV) - ||U0§||Lp(0,T;v;’l)

—2u1(||u||L,7(O,T;Vp

»
P T ||U0§||Ll’(0,T;V1’_’l)) loéllro.rvz )

for all u € K? and we infer that B}, is coercive.

Finally for all (u,v) € (KP)? we have

T
) = J)| < f f Klu = vl dx'dt < CylKlly o7yl = Viicr
0 Ty

where C, is the norm of the trace operator 7 : VI{’I — L?(0Q). Thus J is Lipschitz continuous on K?. It follows that
J is proper, convex and lower semi-continuous on K” and we may conclude that (21) admits at least a solution vy, for
allh > 0.

Moreover the sequence (U);-0 is bounded in K”. Indeed with ¢ = 0 in (21) we have

L2005, |+ [Au@in. o] + 1@ < [7.] + 60)

[, 7] <|

which yields

p-1 —
= 240 (IBilr + Iooéllsorvy) - Ioolorag ) < IFlecry Bl + JCO)

_ p
2(Crtor)to|Ballcr = loo€lrioravy



If |[upllgr # 0 we get

-1
» ||UO§||LF(0,T;VIEI) P ”Uoé"”Lp(o‘T;Vl/_’]) P ”UOé:”Ln((),T;V}’]) _ — —p j(())
2(Ckorm) o |1 = —=———| =2 |1+ = = = Ifllxery vnllgey — =7~ <
[[nllxcr [onllxcr [nligcr nllge,
But the mapping
-1
» ”UOé:”LP(O,T;Vl’.’]) g ||U0§||Ln(0,r;vgl) r ||UO§||LW(0,T;V51) _ 1—p J(0)
t = 2(Ckorn) 1o |1 = —l -2 |1+ p : - ”f”(‘Kp)/t — _ﬂ’

admits 2(Ckorm)P o > 0 as limit when 7 tends to +oo. So there exists a real number C > 0, independent of /4, such that
[onllxcr < C.

With (15) we obtain that the operator Ay is bounded and we infer that the sequence (ﬂu(ﬁh))h>0 is also bounded

in (K?)’. Thus, by possibly extracting a subsequence, still denoted (vUj,)n~0, we have:
v, — v weakly in K7 (23)
and
Au(vp) = x  weakly in (K7). 24)

Starting from (21) we obtain

I-Sthy_ _ _ o
- Ws.5- vh] + [ Au@), B~ | + I @) - T
I=Sthy_ _ _ o

> Up, @ — vh] + [ﬂ“(vh),go - vh] + J(p) — J(up)

> |f.e-u| Vpex’

Now let & € ¢7. From (23)-(24) and recalling that ¢” = K” N DA, (K?Y'), we get

A

lim sup|Au@,), U] < limsup
h—0 h—0

(A%~ U] + . @) + /@) ~ liminf /@) - [£.5 ~ .

(5252 -5 + [#@n. 7] + 1@ - s - [7.7 - )

IA

Since the functional J is lower semi-continuous and convex for the strong topology, it is also lower semi-continuous
for the weak topology thus

J() < lirhn i51f J(up)
and we obtain

lim sup| Au(@), ] < [AF. % = 71 + L. %1+ J@) = J@) - [ 7.5 - 7]
ie.

lim sup| Au(@). B ~ 7] < [AG.F ~ 71+ J@) ~J@) + v~ [.7-7] Vg o',

Since S (h)(?(” ) C K7 for all h > 0, we infer that the operator A and K7 are compatible which means that for all
v € K7, there exists a regularizing sequence (U;) jen € ¢” satisfying

lim v7;=v inK” and limsup[Av;,v;-7]<0 (25)

Jo+oo Jjotoo

9



(see Chapter 2, Theorem 9.1 in [24]). It follows that
lim sup| Au(@y), Uy — D] < [AT;, 5 - 01 + J@) - J@) + [y - .0, -0] VjeN.
h—0
Owing (25) we obtain

lim sup| Ay (@), U - 7| < 0. (26)
h—0

With (22) we already know that A, is monotone and with (2) and (15) we obtain that A, is hemicontinuous and
bounded. We infer that Ay is pseudo-monotone and with (26) we get

111}}361f[3{“(vh), Uy - 9|2 [ Au@). V-8 VB e K 27)
Hence
[Au@.5-7] < liminfA@). 7 - ]
< timint (|05, 5 -5 + 1@ - s - [7.5 -
< timswp (| 5.5 - + 1@ - S@ - [F.7-7l) vEeK
Thus
[Au@),7 - 9| < [AG. 7 - 01 + @) - J@) - [F. ¢ - 7]
ie.

[AG. 7 -]+ |[A@). 8- 0|+ J@ - IO = [f.o-1] Vgeq
and we may conclude that v satisfies (20). [
Remark 3.1. We may improve the convergence result (24) by showing that y = Au(V) i.e.
Au(p) = Au(v) weakly in (KPY . (28)
Indeed with (27) and (24)
lim inf[ Au@1). 7| - 0.7 2 [Au@).7-F]  VE e K7, (29)
With ¢ = U we get
lir}lrl}gf[ﬂu(ﬂh),ﬁh] > [y, vl
and thus with (26) and (24)
lirllrljglf[ﬂu(ﬂh),ﬂh] =[y,7] = lir;ljglp[ﬂu(ﬂh),ﬁh].
Going back to (29) with ¢ = v + w with w € K? we obtain
Do W] = [Au@). W] Ve kP
which yields the announced result.

10



Now we can prove that problem (P,) admits an unique solution.

Theorem 3.1. Let u € L7(0,T;L7(Q)) and 6 € LI(0,T; LP(Q)) with § > 1 and j > 1. Let f € L (0, T; LA(Q)),
k € LP(0.T; LY (To)), p satisfying (2)-(4), s € LP(0,T:LP(Ly)), € € W' (0,T) satisfying (7) and vo € W'P(Q)
satisfying (11). Then problem (Py) admits an unique solution.

Proof Let & > 0 and 7, € K? be a solution of (21). Let ¢ € V{;div and £ € LP(0,T). With ¢ = 1, + J/ € KP we obtain

=3 (h)ah,wf] |7.9¢] - [Au@). 5] = I @+ 50) + I

(||f||(7(l’)’ + ”ﬂu(ah)”(wl’)’ + Cy”k”LP’((),T;Lp’(ro)))||l/~/§||‘l(ﬂ~

With ¢ = 7, — ¥ € K we have

=M e| < [7.9¢] - [Au@n. 5] + J@ ~ 50 - S

< (I llgery + 1 AC@R oy + Cy”k”Lp’((),T;Lﬂ’(ro)))Hl,Zgu‘Kﬂ~

Hence

I-Sh)_ — _ -
‘[ - vh,we*”s(nfu(m+||ﬂ.,<vh>||<m+cyukum,w/(ro)))nwgum

and recalling that <ﬂu(5h))h>0 is bounded in (K?)" we get

< CligLligce (30)

=52

where C is independent of 4.
On the other hand,

T
=50, 5d = 4 [ [0 oo [ [ (e o)
h Q
T—h T
f fvh(t) zp(g(t) G +h) dxdt +fT hL u(t) - zﬁg(t)dxdt)

Let us assume now that £ € C([0, T]) such that £(¢) = 0 forall £ € [b, T] with b € (0, T). Then forall & € (0, -b)

h Uy U] l lib X

From Taylor’s formula we have

2
[ +h)—-CE)=hE() + %g”(z’ + ¢y h) withO < ¢, <1

for all ¥/ € [0, T — h]. Thus
T—h T—h
[1 Sz, 3 f fuh(t) §)¢ (1) dxdt ——f fw,(t) 9)" (W + cph) dxdt

h
T—
f fuh(t) zp{(t)dxdt——f fvh(t) wg "(t' + cph)dxdr .
T—h h
‘ f f TuE) - D) + ch) dxdt Eng leworn f f T dxdt

3D

But




Since the embedding of K7 into L2(O, T, Lz(Q)) is continuous and the sequence (v;,);>0 is bounded in K” we have

no(Th )
5[ e o

where C, is independent of 4. With (30) and (32) we obtain

T
[ @0 wrasar
0 Q

Then we consider a converging subsequence of (Uy)0, still denoted (v;,)5-0, satisfying (23)-(24). As & tends to zero

we get
T
f f (E(t’) . &)g’(r’) dxdt’
0 Q

which implies that 7’ belongs to (X”)" and

< Cohl 2@l lleqo.ry (32)

< Cldllger + Cohllglz il Nleqo,ry-

S a74[

7' |lxry < C.

On the other hand, for all ¢ € ¢” we have
0.5 - 0] + |[Au@®),5 - U] + J@) - J@) - | /.7 - 7]
_ 1 1
=[¢.%- 0]+ |[A@).5 - 1|+ J@) - JO) - | f. % - 5]—§|ITD(T) ~ U2y + 51190 - v(©) [
>0

and with (20)
[,% -0l + | Au®),8 - V| + @ - @) - | f.7 - 7| = —%II@(T) ~ DI 2
If 5(T) = 5(T) we may conclude
V.8 -0l + | Au®).8 - 0]+ /@ - J@) 2 | /.5 - 1]

Otherwise, let ¢ € ¢*. For all € € (0,T/2) we define ¢, = X + v(1 — X¢) with X, € C°°([0, Tl; R) such that

1 if 1€[0.T -
X =1 ifte[T—g,T]

and X.() € [0, 1]if t € [T —eT- g]
By construction ¢, € ¢” and ¢ (T) = v(T). Thus
5.~ 01+ [ @5 -] + 1@ - I 2 [F5. -] vee(0.7) (33)
On the other hand, we have
T T
%, - I, = fo - X3l di vee(0,7)

and Lebesgue’s theorem implies that [[p, — Ellg@ tends to zero as € tends to zero. We can pass to the limit in (33) as €
tends to zero and we get

V.5 -0+ |[A@.5-0]|+J@ - J@ 2 [f.6-V] Vpeg
12



Finally, from (25) we infer that ¢” is dense in K”, and we obtain

0.7+ [A@.5- 7]+ I@) - @) 2 [F.5-7]  vpexr. ha

Let us prove now that %(0) = 0. Let € Wy’ = {w € W"(Q); div(w) = 0in Q| and £ € L(0,T). With
@ = v, £ ¢ € KP in (21) we have J(@), + ¥0) = J(v),) and

|22 005, 5] + [ o] = [7.9¢]

Let us assume now that £ € C°°([O, T]) such that { = 0 on [b, T] with b € (0,T) and £(0) = 1. With (31) we have

T — ., N , h T-h _ N ,
B fo fg(“h(f ) ) () dxdt’ - fo fg (Tat") - §)E (¢ + coh) dxdt
+[Au@) G| = [F0¢]  VheO©.T-b).

We pass to the limit when £ tends to zero and using (28) and (32) we obtain
T ~ ~ - o~
- fo fg () - )¢ () dxdt’ + | Au@), 0| = [ £.9¢],
With (34) and @ = U + §¢ € K? we have also
[0 0] + [Au (). 0| = [F.0¢]-

Hence

T

T T
0= fQ (B¢) - )¢ () dxdt + [0, 941 = fo fQ (B - B)0 (') dxdt’ + fo CACONZ4(0) N 4

0 0.div 0.div

_ L(E(T) ) &){(T) dx — L(a(o) . @)((0) dx = — L(U(O) : lﬁ) dx v € W(l)jfl)iv'

. 1,
Since W7

oy 18 dense in H (see for instance Theorem 2.9 in [1] and Theorem 2.8 Chapter 1 in [18]) and v(0) € H
we get

f [U(0) dx = [U(0)F 2 q) = O
Q
and thus v(0) = 0. Hence problem (P,) admits at least a solution.

Let us prove now the uniqueness of the solution by a contradiction argument. So let us assume that problem (P,)
admits two solutions v; and v,. We have

0.5 - 0]+ | A@).5- 01|+ J@ - J@) 2 [F.5 -1 VEeK? =17(0.T: V],

and
[05.% - 0] + [Fu@). G- 0| + J@) - J@) 2 [[.5-T] VG eK? = L/(0.T:V],,).

Let 1 € (0, T]. We may choose ¢ = tljo) + U1(1 — Ljo.p) in the first inequality and & = 1110 + va(1 = 1jo,) in the
second one where 1j( denotes the indicator function of the interval [0, f]. By adding the two inequalities, we get

[¥) = T, @1 = 0)1jo] + [Au(@) = Au(@2), @1 = U2)1j0,] < O
13



ie.

f f (7 (6.0 + vo&, D@ + vo8)) - F (6.0 + voé, D@ + v0¢))) : D@1 — 12)) dxdr’
0 JQ

1 _ _ I_ _
51010 = 20l ) < 5171(0) = T2 O0)l2 g

Recalling that the mapping A, + F (-, -, A) is monotone on R*** we obtain

0< f[ f(l? ( ,u+ U()é ) D(U] Uoé‘:)) 9 (67 u U()é s 1)(1}2 + 1’06))) N l )(Ul —-v )) dxdt/.
0 Q 2
HenCC

I[71(1) = 22Dl 2 ) < [01(0) = 2(O)llf 5y =0 V1 € (0,T]

which proves the uniqueness of the solution of problem (Py). [

4. Existence result for problem (P)

As already explained at the end of Section 2 we will prove now the existence of a solution to problem (P) by using
a fixed point argument. More precisely we consider the mapping A : L”(O, T; L”(Q)) - L”(O, T; L/’(Q)) which is

defined by A(u) = v where v is the unique solution of problem (P,) for all u € LP(O, T; LP(Q)). By using Schauder’s
fixed point theorem we will prove that A admits a fixed point and we will use De Rham’s theorem to establish the
existence of the pressure .

Theorem 4.1. Let f € L7 (0,T:LX(Q)), k € L (0.T: LY Vo)),  satisfying (2)-(4), 6 € LI(0, T; LY (Q)) with § > 1 and
p=>1s€ LP(O, T, LP(FO)), £ e WhP(0,T) satisfying (7) and vy € WP(Q) satisfying (11). Then problem (P) admits

_ 0 ,
a solution i.e. there existv € C([O, TI; L2(Q)>OL”(O, T, ngiv) with B_lt} eLr (O, T, (ngiv)’
such that

T
<2(a, Pz, g> + f f F (0.7 + v, DW + voé)) : DB dxdt - < f 7 div(®), §>
ot D'(0,T),D(0,T) 0 Q Q D'(0,T),D(0,T)

T
+J@+90) - J@) = f (f—%uo,{?
0 ot

)andﬂ € H‘I(O, T; Lg/(Q))

) Zdt v e VP, VL € D(O,T)
L2(Q)

and the initial condition
v(0) = vo — vpé(0) =0 in Q.
Proof As a first step we prove that A satisfies the assumptions of Schauder’s fixed point theorem.
Letu € L7(0,T; L7(Q)). With % = 0 in (19) we obtain
[, 0] + | Au(@), 5| + J@) < [£.5] + J(0).
But

SR S L _
(7, 9] = SOl = 51 ZO) Il > 0
=0

Hence
| Au@), 7] < [V, 01 + [ Au@), 5] + J@) < [£,5] + J(0)
14



and with the same kind of computations as in Proposition 3.1 we get

-1
||u0§||L,,(0,T;Vgl) P ||Uo§||Lp(o,T;Vr”]) ’ ”UOé:”Lﬂ(O,T;Vlf’]) _ NN (1)
2(Cgorn)’pio |1 = ———=——| —2u1 |1+ — — = fllgery llge, — =75 <
[[llgc ([l ([l Vllg,
if [Ullg» # 0. Since the mapping
-1
”UOé:”LI’(O,T;Vl’_’]) b ||U0§||Lp(0,r;vgl) P ||U0§||Lp(0,r;vgl) _ . J(0)
£ 2(Ciom) o || - ———— 2 — 24 [ 1+ N Fllgery £ = =2
tP

admits 2(Cgom)P o > 0 as limit when ¢ tends to +oo, there exists a real number C > 0, independent of u, such that
IA)llger = Dl <C Vu € LP(0,T: LP(Q)). (35)
Hence

IA@)||Lr 0,710 < CpC Yu € L"(O, T; L”(Q))

where C), is the norm of the identity mapping from K7 = L”(O, T; Vé’_ div) into L”(O, T;LP (Q)).
Let us consider now ¢ € V¢ .. and { € LP(0,T). With g = v + § € K? and with the same computations as in
Theorem 3.1 we obtain

7. 91| < (o + 1A@llicry + Cyllkllir 0,72 oy I llcr
where we recall that C, is the norm of the trace operator y : Vl‘_”] — LP(0Q). But with (15) we have

— — p—1 p-1
MA@l xry < 2ullv + Uo§||L,,(0‘T;V#I) < 2/11(0 + ||U0§||Ln(o,r;vgl)) -

It follows that
’ —, — p-1
(A ) llgery = 17 llexery < iFllgery + 21 (C + ooéllrorve )+ Collkllr o v iy (36)
for all u € L7(0, T: L7 (Q)).

By using Aubin’s lemma we infer that the closed ball 8 = By»o,r.1-()(0, C,C) satisfies A(8) C B and that A(B)
is relatively compact in L (0, T;LP (Q)).

It remains to prove that the mapping A is continuous. Indeed, let (u,),>o be a sequence of B which converges
strongly to u. Let us prove that

A(w,) =7, > = Au) strongly in (0, T; LP(Q)).

The sequence (v,),>0 satisfies (35) and (36) so it admits strongly converging subsequences in L” (0, T;L/’(Q)). We
consider such a subsequence, still denoted (v,,),,>0-

For all n > 0 let us choose ¢ = v as test-function in Problem (P, ) and ¢ = v, as test-function in Problem (P,).
By adding the two inequalities we obtain

[¥, = 0,0y = U] + | A, (W) = Au(®). T — 7] < 0.
Since v,(0) = v(0) = 0 we have
— —r - — 1 — —
(7, =¥, 0 = U] = SI0n(T) = UDll2 g

15



and thus
1
SITu(T) = TDliEz g, + [Au, @) = P, (@), = 7] < [Au®) = A, (). T - 7).

We decompose the second term of the left hand side as

[P, @) — A, @).7, - 7] = f ' f (7600 + vo&. D@, + 108) = 70, w, + w0, D@ + 08)) ) : D@, = B) v
0 Q

SO
[ A, @) = A, @), s — T
T
= Ho f f (D@, + vo&)P> D@, + v08) = ID@ + voé)P D + vof)) : D, — V) dxdt
0 Q
T
+ f f (?7(9, U, + voé, D, + voé)) — F (0., + o€, D@ + vo.f))) : DU, — ) dxdt
0 Q
where

F (Ao, A1, ) = 27a(Ad0, A1, |22y i Ay # Ogoo,  F (Ao, A1, Ap) = Ogss  otherwise
_ MO . — .
and =y — > Since y satisfies

d — u(-,-,d) is monotone increasing on R,
0 < % <70, e, d) < ) — % for all (0,e,d) € R X R? x R,,

we infer with the same arguments as in Lemma 1 in [5] that 2, — 7_—“(-, -, A») is monotone on R>3. Hence

T - —

f f (9’(9, U, + v, D@y + vof)) — F (0,0, + voé, D + uog))) : D, — U)dxdt > 0

0 Q

and

| A, @) = A, @), T — 7]

T
> 1 f f (D@, + vo&)" 2 D@, + vo8) — ID@ + voé) "> D@ + vof)) : D(T, — T) dxdr.
0 Q
But for all (1, ') € R¥>*3 x R¥>3 we have
-2 np=-21yr\ . ’ 1 ’
(P2 = 0P20) - (A= ) 2 1A= P

Indeed if A = A" = Ogs« the result is obvious. Otherwise we get
1
-2 np=29r\ . ’ p—2 np-2 72 2 72 -2 1\ p=2
(|A|l" A=) A= 20 2 (A P R)a- AP + (8 - WE) (A - e
-2 np-2 72
> E(W +P)A = AP

Since || + |1’] # 0 we obtain

1]AP=2 + | |P~2 -2
(AP2A-1pP20) s (A= 2) 2 5—' | | 1')72 Al +11)" - 2P
(11 + 101)
1A + | |2
AW,y
(11 + 1)
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Observing that

A+ ]\ p-2
(' [+ ') S(max(l/ll,l/l’l)) < AP 4 P

2
we finally get
P23 _ 1) 1P-2y) - _ np
(P2 = 10P20) s (=) 2 o lu .
Hence
[ﬂun@n) _ﬂun(a), an - U = 2p -1 f ”D(Un U)”(LP(Q))zxs
On the other hand,

[Au(®) ~ A, )., ~ 7]
- fT f ((}‘(0 u + o€, D@ + voé)) — F (6. w, + voé, D + uog))) - D(v,, — T) dxdt
||70"(6 ?1 +voé, D + vof)) (0 u, + voé, D(v + vof))HL,,/(O’T;(Lp,(g))3x3)||D(Un — D110 @)
With Young’s inequality

76, u + vo&, D@ + v0f)) = F(6, w, + voé, D@ + 00l 0.7:1 @ ID@n = Dllro rsar@ye)
< Cf[F (6. u + vo&, D@ +v08)) = T (6. 0 + v0&, D@ + 60| 010 sy + NPT = D1y

1 _
where C, = —,(pe)lTll and we choose € = g—g. We obtain
4

1 _ _ Ho _
_”vn(T) - U(T)”?j(g) _(C CKom)p”Un - U“‘Zp(o T;L7(Q))
< C[[F(0.u+ vot. D@ + Uog)) F (6w, + w0, D@ + 008) 1 -0 e

where we recall that C), is the norm of the identity mapping from K? = L? (0, T; V('; div) into L? (0, T;LP (Q)).

Since the sequence (u,),>o converges to u strongly in L (0, T;L? (Q)), there exists a subsequence, still denoted
(W,),50, such that

u, —u ae.in(0,7)x Q.
By using the continuity and the uniform boundedness of the mapping x, we infer from Lebesgue’s theorem that
F(0. 0, + voé, D@ + v€)) — F(6u+ voé, D + o€))  strongly in L (0, T3 (L7 (Q))>4).
It follows that

lim |[©, = Ul 700 = 0.
n—+oo

So, any subsequence (v,),>0 Which is strongly convergent in L? (0, T; LP(Q)) converges to v = A(u). Recalling that
the whole sequence (U,,),»0 satisfies (35)-(36), we infer that the whole sequence (v,),>0 converges to v = A(u) which
proves the continuity of the mapping A.

With Schauder’s fixed point theorem, we may conclude that A admits a fixed point u € L (0 T;L* (Q)). Let us

denote A(u) = u = 7. We obtain that ¥ € C([0, T1; L*(Q)) N L#(0, T; V5, ) with & € L7 (0, T; (Vj '), 5(0) = 0 and

[, - 01 + | A@), 5 - 0| + J@) - J®) = | £.5 - 7]
17



Hence v is a solution of Problem (Pj).

In order to conclude the study of problem (P) it remains now to construct the pressure term. As usual the key tool
is De Rham’s theorem.

Reminding that v € C([O, TY; L2(Q)) we may define F(¢) € (Vg)’ for all r € [0, T] by
= ! 0¢ = = ! _ _ o -
F(H®) = ( fo ( f- UOE) ds, ﬁ)LZ(Q) ~ (w(), ﬂ)mm - fo fg F (0.7 + voé, DW + wé)) : D) dxds VB € V.

The mapping F belongs to C([O, T ];(Vg )’). Moreover for all 9 € W(l)jsiv and for all ¢+ € [0, T] we may consider
9= ﬁluo,,] el? (0, T; Vg dl.v) and with ¢ = v + ¢ as a test function in Problem (Pz) we obtain

T
f(vf,ﬂ oo dt+ff (6.9 + voé, D@ +voé)) : D(ﬁ)dxdt—f f( —UO—)ﬂdxdt
0 (V()dn) Vo

which implies that F(r)() = 0. We infer that, for all 7 € [0, T, there exists an unique distribution 7(f) € L(’)”(Q) such
that

F(t) = V@)

(see for instance Lemma 2.7 in [1]). Since the gradient operator is an isomorphism from Lg’ (Q) into W7 (Q) (see
Corollary 2.5 in [1]), we obtain that V7 € C([0, T]; W™ (Q)) and 7 € C([0,T]; L (). Then, for all 7 € [0, ] and
for all & € D(Q) = (D(Q))*, we have

» ! 8{,‘: ~ - » ! _ B -
F(H(@®) = fo fg (f—UOE)ﬁdxds—(u(t),ﬂ)LZ(Q)— fo fg F(0. + voé, D@ + voé)) : D(B) dxds

= (Va(), ﬁ)D,(Q)’D(Q) Vo € D(Q).

) ,
Let us define 7 as the time derivative of 7 in the distribution sense. We obtain 7 = (9_7; € D’(O, T; Lg (Q)) and

ot D(Q),D(Q)

f ( f-wu 6§) D dxds — ﬁ(a 5)L2(Q) - fg F (0.5 + vo£, D@ + voé)) : D) dx = (Vm, D) v € D(Q)

in D'(0,T) .
Hence, for all £ € D(0, T) and ¥ € D(Q), we have

T
<ﬁ(a, . g> + f f T (0.5 + voé, D + vo8)) : DB dixdt
ot D0O1),00) JO JQ

(fyramirace) = [ [ (r-n)p
- ndiv(P) dx, = f—vo—== |0 dxdt.
Q DOT).00T) JO JO ot

By density of D(Q) into W(l)’p (Q) the same equality holds for all # € W(])”’ (©). But, for all w € L{(Q) we know that
there exists 9 € W(l)"’(Q) such that

div®d) = w

and the mapping P : Lg Q) — W(l)”7 (Q) given by & = P(w) is linear and continuous (see Corollary 3.1 in [1]). So for
all w € L} (Q) we have

T
d g> =- f Pw))., (' dt
<f rean D(0,7),D(0.,T) (U w)L © ,
f f F (0. + voé, D@ + voé)) : D(P(w)){ dxdt - f f ( f- UO%)P(w)fdxdt
0 Q
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and

< f nwdx,{ >
Q D0,7).D(0,T)

=1y T (1[It p-1 A= | PR 4
+2P T (”U”LP(O,T;V(Q’_M) DN 0 7oy (@l + T Hf Yo,

< @l z0. 72 IP@) | 20,1120

/ IP(w){ L= 0,7:12(02))-
L7 (0,T:L2(Q)

By using the continuous embedding of W(l)’p (Q) into L?(Q) and H(l)(O, T) into L*(0, T) we infer from (38) that there
exists a positive real number C*, independent of w and £, such that

'< f nwdx, {>
Q D(0,7),D(0,T)

Then, for all w* € LP(Q), we may apply the previous inequality with

1
=0 — “d e L2(Q).
w=@ meas(Q)wi * 0

Since 7 € D’(O, T; Lg/(Q)) we have

1
<f7rwdx,§> =<f7r(w*——fw*dx) dx,§> =<f7rw*dx,{>
Q D(0,7),D0,T) Q meas() Jo D(0,7),D0,T) Q D(0,7),D(0,T)

and with Holder’s inequality

< Clwlllg o.7:20 ) Yw € L{(Q), Y € DO, T).

lwllzr @) < 2llw*|lr@)-

So, for all w* € LP(Q) and ¢ € D(0, T) we obtain

K f nw* dx, §>
Q D(0,7),D(0,T)

Finally the density of D(0, T) ® L?(Q) into Hé (0, T;L? (Q)) allows us to conclude that 7 € H‘l(O, T, Lg’(Q)).
Now let § € D(Q) = (D(@) and £ € D(0, T). We have

T O\ ~ 0 _
f f(f_an—f)ﬂgdxdt—<0—(U,0)L2(Q)’§>
o Ja t t (0,7),D(0,T)

T
= f f F (0.9 + voé, D@ + vof)) : DD dxdt—< f ﬂdiv(ﬁ)dx’§>
0 Q Q

< 2CHw" Ll 0,100 (02))-

D'(0,17),D(0,T)

T
0&\ ~ 0 _ ~
f f (f - U()—f) ’l&g dxdt — <—(U, ’ﬂ)LZ(Q), §>
0o Ja ot ot D(0.7).D(0.T)
= <fo- : Vﬁdx,§>
Q D(0,7),D(0,T)

with o = (6,7 + voé, D@ + vo€)) - nldgs (see (1)). Tt follows that

‘<fo- : Vﬁdx,§> %
Q D0.1).D0,T)

f_UOE

< (CCOOTL

/ + C||U||L2(0,T;L2(Q))) 1PN 0,710 (2))
LY (0,T;L*(Q))
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where C, C., denote the norm of the identity mappings from L”(Q) into L?(Q) and from H'(0,T) into L*(0,T)
respectively. By density of D(0, T) ® D(Q) into H(')(O, T;L? (Q)) we may conclude that div(c) € H“(O, T;L" (Q))

and we have

T a . (9 .
f f(f—Uo—f)ﬂ_(dxdt—<—(U,ﬁ)L2(Q),§>
0o Ja ot ot D(0,T),D(0,T)

T
= —< f div(o)d dx, g> = - f f div(o)8 dxdt V& e D(Q), V¢ € DO, T).
Q D'(0,7),D(0,T) 0 Q

By density of D(Q) into L”(Q), the same equality holds for all 3 e LP(Q).
Next we observe that o € H‘I(O, T, M’") where

yr = {5’ e (X' @) divie) e LP’(Q)}.

It follows that we may use Green’s formula and we get

T T T 3
- f f div(o)d¢ dxdt = f f (o : VI dxdt — f f [Z O'ijnj{?,-]{det
0 Q 0 Q 0 oQ

Q=1
for all & € W'(Q) and for all L€ DO,T).
Therefore, for all 9 € V¢ and for all £ € D(0, T) we get

T T
<§(5,5)L2(9),§> + f f F(6,0 + v, DW + voé)) : D@D dxdt f f rdiv(9)¢ dxdt
ot o Ja 0o Ja

DO.D.DO])
~ o0&\ ~ ~
+JU+90) - J(v)dt = f f (f - an—f) I dxdt + A(v, 9)
0 Jo
where
~ T ~ ~
A, 9) = f (o -NdX'dt + J(v+90) - J().
0 Ty
But
f J-ndY=0 VeV
o0
From Lemma 3.3 in [1], we infer that there exists 9 e wWhr (Q) satisfying
div@® =0 inQ, 9=7 onodQ.

Hence 9 € V(’;_ iy and with o = v + D¢ as a test function in Problem (Pg) we obtain
0 _ » T R
<—(U, Piay» §> + f f F (0.7 + voé, DW + voé)) : D) dxdt
o DO..DOT) YO JQ

. d OE\ »
+J(U+ﬂ§)—J(U)—f f(f—vo—)ﬁgdxdtZO
0 Ja ot

(39)

and thus A(v, 19) > (. By observing that A(v, 19) = A(u, D) since 9 = 3 on 0Q we get A(v, ) > 0 and (39) becomes

T
<2(a, ﬁ)Lz(g),g> + f f F(0. + voé, D@ + voé)) : D(f?){dxdt—< f ndiv() dx, g>
ot %) 0 Q Q

(0.7),D0,
o0& ~

+J(U +9¢) - J(w)dt > f (f - vo—,ﬂ)
0 ot L2(Q)

Hence (v, 7) is a solution of Problem (P).

fdt V9 eV Ve DO,T).
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Remark 4.1. If the vicosity u does not depend on the velocity, then problem (P) admits an unique solution. Indeed,
with Theorem 4.1 we already know that problem (P) admits at least two solutions and it remains to prove uniqueness.
Let (uy, 1) and (vy, my) be two solutions of (P). Hence

[l
—,0—-U
0 at : (Vl)

;P
0ain) Vo

T
dt + [ﬂvl(ﬂl)7¢_ H1] +J(@) - J(W) = f (f,e — v
0
and
T oo, _  _ o _ _ r__
—. -0 dt + [A, @), 8- 0| + J@) - J@) = | (F.7- e
o \ 0t Vo Vi 0

forallp e LP(0,T; Vg 4iv)- Since p does not depend on the velocity we have
F (g, A1, A2) = 2/1(/10, /12)|/12|p_2/12 if A3 # Opsxs,  F (g, A1, A2) = Opixs  otherwise

and A,, = A, = Ay foranyu € L”(O, T, L”(Q)). With Theorem 3.1 we infer that v, = v.
It follows that

< f (11 — ) div(P) dx, §> =0 Vde W(l)’p(Q), Y e DO, T)
Q D'(0,7),D(0,T)

and with the same notations as in Theorem 4.1 we get

<f(ﬂ1—ﬂz)w*dx,§> =<f(m—7rz)wdx,§>
Q D(0,T),D(0,T) Q D(0,T),D(0,T)

= <f(ﬂ'1 ) div(P(w)) dx,’ =0 VYo' eL’(Q), Y€ DO,T)
Q D(0.7),D(0.T)

which yields m; = my and allows us to conclude.
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