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Evidence for close molecular proximity 
between reverting and undifferentiated cells
Souad Zreika1,2†, Camille Fourneaux1†, Elodie Vallin1, Laurent Modolo1, Rémi Seraphin1, Alice Moussy3, 
Elias Ventre1,4,5, Matteo Bouvier1,6, Anthony Ozier‑Lafontaine7, Arnaud Bonnaffoux1,6, Franck Picard1, 
Olivier Gandrillon1,4† and Sandrine Gonin‑Giraud1*†   

Abstract 

Background: According to Waddington’s epigenetic landscape concept, the differentiation process can be illus‑
trated by a cell akin to a ball rolling down from the top of a hill (proliferation state) and crossing furrows before 
stopping in basins or “attractor states” to reach its stable differentiated state. However, it is now clear that some com‑
mitted cells can retain a certain degree of plasticity and reacquire phenotypical characteristics of a more pluripotent 
cell state. In line with this dynamic model, we have previously shown that differentiating cells (chicken erythrocytic 
progenitors (T2EC)) retain for 24 h the ability to self‑renew when transferred back in self‑renewal conditions. Despite 
those intriguing and promising results, the underlying molecular state of those “reverting” cells remains unexplored. 
The aim of the present study was therefore to molecularly characterize the T2EC reversion process by combining 
advanced statistical tools to make the most of single‑cell transcriptomic data. For this purpose, T2EC, initially main‑
tained in a self‑renewal medium (0H), were induced to differentiate for 24H (24H differentiating cells); then, a part of 
these cells was transferred back to the self‑renewal medium (48H reverting cells) and the other part was maintained 
in the differentiation medium for another 24H (48H differentiating cells). For each time point, cell transcriptomes were 
generated using scRT‑qPCR and scRNAseq.

Results: Our results showed a strong overlap between 0H and 48H reverting cells when applying dimensional reduc‑
tion. Moreover, the statistical comparison of cell distributions and differential expression analysis indicated no signifi‑
cant differences between these two cell groups. Interestingly, gene pattern distributions highlighted that, while 48H 
reverting cells have gene expression pattern more similar to 0H cells, they are not completely identical, which suggest 
that for some genes a longer delay may be required for the cells to fully recover. Finally, sparse PLS (sparse partial least 
square) analysis showed that only the expression of 3 genes discriminates 48H reverting and 0H cells.

Conclusions: Altogether, we show that reverting cells return to an earlier molecular state almost identical to undif‑
ferentiated cells and demonstrate a previously undocumented physiological and molecular plasticity during the 
differentiation process, which most likely results from the dynamic behavior of the underlying molecular network.
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Background
The integration and processing of endogenous and 
exogenous information constitute a fundamental 
requirement for cells to ensure functions and survival 
of unicellular or multicellular organisms. Cellular deci-
sion-making is then at the core of the physiological 
or pathological functioning of living organisms. Early 
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views of the mechanisms governing cell-fate decision-
making, and in particular cell differentiation, were 
based on bulk population data, leading to an over-sim-
plifying deterministic framework. In these first views, 
cell commitment to a predefined cell type was thought 
to be triggered through a stereotyped sequence of 
intermediate states under the influence of specific sig-
nals [1].

Single-cell approaches have allowed to change the scale 
of observation of many molecular processes and revealed 
that an important heterogeneity in gene expression lies at 
the heart of isogenic cell populations [2, 3]. Stochastic-
ity in gene expression arises from different causes, such 
as the probabilistic nature of molecular interactions or 
transcriptional bursts [4]. Cell-to-cell variability is visible 
at all omics levels of gene expression, but is being widely 
studied at the transcriptomic level since various molecu-
lar biology tools are available for this scale of investiga-
tion [5]. Overall, this heterogeneity in gene expression 
has been shown to be critical for the process of differen-
tiation, as it provides diversity without the cost of hard-
wire-encoded fate programs [6, 7].

Furthermore, single-cell studies have also enabled the 
development of stochastic models to describe differen-
tiation from single-cell transcriptomic data. One of the 
best-known models is Conrad Waddington’s landscape, 
which also includes the non-genetic part of cell-to-cell 
heterogeneities [8]. According to Waddington’s model, 
the shape of the landscape is determined by Gene Reg-
ulatory Networks (GRN) and state transitions are mod-
elled as channeling events: a cell, presented as a ball, 
starts from a mountain top and crosses valleys before 
reaching a stable state by occupying basins or attractor 
states, shaped by an underlining GRN [9]. Once this sta-
ble state is reached, the state potential decreases and the 
associated cell fate is restricted or even irreversible [10].

However, it is now clearly accepted that some cells 
retain fate plasticity [11, 12]. Under the forced modifi-
cation of transcription factors stoichiometry, a cell that 
has reached a differentiated state can return to a more 
pluripotent stage challenging the classical hierarchi-
cal view of differentiation [13, 14]. Quite interestingly, 
spontaneous fate reversion can be observed under a 
physiological or damaging condition where progenitors 
or even more committed cells return to an earlier stage, 
potentially more pluripotent, and reacquire progenitor or 
stem-cell-like phenotypes and characteristics [15–18]. In 
this view, our recent study has shown that chicken pri-
mary erythroid progenitor cells (T2EC) have retained 
the capacity to go back to a self-renewal state for up to 
24H after the induction of differentiation before they 
irreversibly engaged in the differentiation process [19]. 
Despite intriguing and promising results, the molecular 

determinants of this so-called fate reversion and the 
molecular characterization of the reverting cells remain 
unexplored.

In this work, we go beyond the cellular and phenotypic 
characterization of the cell reversion process. We charac-
terize the gene expression of primary erythroid progeni-
tors and question if reverting cells undergo an actual fate 
reversion, i.e., in addition to regaining a comparable cel-
lular state, reacquire a molecular state similar to undif-
ferentiated cells.

For this, differentiation of self-renewing cells was 
induced by medium change during 24H. Then, we split 
the differentiating population so that half could pursue 
differentiation, and the second half was shifted back in 
a self-renewal medium (Fig. 1). To provide robust quan-
titative measurements of gene expression variability, 
we combined a highly sensitive targeted quantification 
method (scRT-qPCR) with genome-wide scRNAseq data 
to characterize the transcriptome of each population at 
the single-cell level: undifferentiated (0H), differentiat-
ing (24H and 48H), and reverting (48H reverting) cells. 
Our statistical analyses show that 48H reverting cells and 
undifferentiated cells were much more similar, whereas a 
separation was clearly visible between cells maintained 
in differentiation (48H differentiating cells) and cells in 
reversion (48H reverting cells). Furthermore, a statistical 
comparison of cell distributions indicated no significant 
differences between 0H cells and 48H reverting cells. 
Moreover, gene expression pattern distribution of 48H 
reverting cells showed a shift towards expression pat-
tern distribution of 0H cells. Finally, we identified genes 
that discriminate 48H reverting cells and 0H cells. Using 
sparse PLS [20], we were able to show that the expression 
of 3 genes, HBBA, TBC1D7, and HSP90AA1, was discri-
minant between 48H reverting cells and 0H cells show-
ing that reverting cells kept transcriptional traces of their 
induction to differentiation. In conclusion, our results 
show that reverting cells display gene expression patterns 
that are very similar to undifferentiated cells while retain-
ing traces of their response to differentiation induction, 
which suggests an almost complete molecular reversion 
after 24H of differentiation induction.

Results
Robustness of single‑cell transcriptomics analysis
We sought to characterize at the molecular level the 
cells that were induced to differentiate for 24 h and that 
retained the ability to proliferate when placed back into 
a self-renewal medium. We used two different comple-
mentary single-cell transcriptomics technologies, scRT-
qPCR and scRNAseq. scRT-qPCR allows for highly 
sensitive quantification but is knowledge-driven and 
offers information of a limited number of genes while 
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scRNAseq, although less precise for low expression level 
[21], enables genome-wide quantification without prior 
knowledge. Furthermore, using two different single-cell 
technologies allowed us to cross-validate our observa-
tions and point toward robust conclusions.

We first obtained by scRT-qPCR the expression level 
of 83 genes involved in T2EC differentiation in 173, 173, 
168, and 171 cells for 0H, 24H, and 48H of differentia-
tion and 48H reverting cells, respectively. Those genes 
are known to distinguish cells along the differentiation 
process and include sterol biosynthesis, metabolism, 
globin subunits, and transcription factors expressed by 
erythroid progenitors as published in [19]. The robust-
ness of our measurements was confirmed by a Pearson’s 
correlation of 0.85 (p-value = 2.2e−16) between our 
experiments and the published data [19]. To investigate 
fate-reversion genome-wide by scRNAseq, we adapted 
the MARSseq (massively parallel single-cell RNA-Seq 
[22] — see the “Methods” section). Then, we obtained 
gene expression levels in 174, 181, 169, and 186 single 
cells for 0H, 24H, and 48H of differentiation and 48H 
reverting cells, respectively. The concordance between 
scRT-qPCR and scRNAseq data was confirmed by a Pear-
son’s correlation of 0.73 (p-value = 1.34e−13) between 
the 74 genes common to both datasets.

Similarity between reverting and undifferentiated cells 
revealed by dimension reduction
We used UMAP to uncover potential similarities 
between 48H reverting cells and subgroups of differ-
entiating cells by projecting the 4 conditions (Fig.  2A, 

scRT-qPCR data, and Fig.  2B, scRNAseq data). Then, 
we focused on the normal differentiation process using 
the 3 time points of differentiation (0H, 24H, and 48H 
differentiating cells) (Fig. 2C–H). For both experiments, 
pairwise representations show that 24H differentiating 
cells tend to overlap with both 0H cells (Fig. 2C, D) and 
48H differentiating cells (Fig.  2E, F). On the contrary, 
the undifferentiated cells and 48H differentiating cells 
clearly differ (Fig. 2G, H). Interestingly, pairwise repre-
sentations also reveal that 48H reverting cells separate 
well from the 48H differentiating cells (Fig.  2I, J) and 
from 24H cells (Fig. 2K, L), but are visually not distin-
guishable from the 0H cells (Fig. 2M, N). Almost identi-
cal results were observed when, instead of plotting cells 
on the UMAPs calculated from the mix of the 4 condi-
tions, we recalculated the UMAPs for each pair of con-
ditions (Additional file 1: Fig. S1). Principal Component 
Analysis (PCA) also captured this general separation of 
the data (Additional file 1: Fig. S2). Those analyses sug-
gest that the transcriptomes of 48H reverting cells are 
more similar to the undifferentiated cells than to any 
other condition at both scales of observation. This was 
further confirmed by the pairwise statistical compari-
son of average scRNAseq distributions ([23] — see the 
“Methods” section). As shown in Table  1, the average 
transcriptomes of 48H reverting and 48H differentiat-
ing cells are significantly different, as well as of undif-
ferentiated and 48H differentiating cells. In contrast, 
no significant difference in average transcriptomes was 
detected between 0H and 48H reverting conditions 
(p-value >> 0.05), indicating a very close proximity of 
48H reverting cells to undifferentiated cells.

Fig. 1 Experimental design. At 0H, cells grown in a self‑renewal medium are shifted in a differentiation medium. 24H later, the cell population is 
divided in two, half being kept in a differentiation medium and half being grown back into a self‑renewal medium. At each time point, 192 cells are 
collected for each subsequent experiment: scRT‑qPCR and scRNAseq



Page 4 of 16Zreika et al. BMC Biology          (2022) 20:155 

48H reverting cells and undifferentiated cells have similar 
gene expression patterns
We then questioned if 48H reverting cells had gene 
expression patterns identical to 0H cells or retained, for 
some genes, an expression pattern more similar to 24H 
or 48H differentiating cells.

Pairwise scRNAseq DE (differential expression) analy-
sis revealed that the “normal” erythrocyte differentiation 

Fig. 2 UMAP visualization of scRT‑qPCR and scRNAseq data. All UMAPs are calculated using the 4 biological conditions. A, C, E, G, I, K, M scRT‑qPCR 
data. B, D, F, H, J, L, N scRNAseq data. A, B All 4 conditions. C, D 0H and 24H differentiating cells. E, F 24H and 48H differentiating cells. G, H 0H and 
48H differentiating cells. I, J 48H differentiating and 48H reverting cells. K, L 24H differentiating and 48H reverting cells. M, N 0H and 48H reverting 
cells

Table 1 p‑value output of multivariate two tests between pair of 
conditions compared

0H vs 48H 
reverting

0H vs 48H 
differentiating

48H reverting vs 
48H differentiating

p‑value 1.00 0 0.00000000369
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process showed an increase in the expression of hemo-
globin-related genes during the kinetics (hemoglobin 
subunit epsilon 1 (HBBA), hemoglobin alpha-locus 1 
(HBA1), and hemoglobin alpha, subunit D (HBAD)) 
(Fig. 3A–C). On the other hand, 0H cells expressed a high 
level of LDHA (lactate dehydrogenase A), a marker for 

glycolysis metabolism used by self-renewing cells [24], 
and ID2 (inhibitor of DNA binding 2) coding for a tran-
scription factor involved in differentiation inhibition [25].

Interestingly, when comparing 0H with 48H reverting 
cells, we saw only one gene that was significantly differ-
entially expressed just above the threshold (Fig. 3D), the 

Fig. 3 Volcano plot of differentially expressed genes from scRNAseq data between conditions analyzed two by two. A 0H and 24H differentiating 
cells. B 24H differentiating and 48H differentiating cells. C 0H and 48H differentiating cells. D 0H and 48H reverting cells. E 48H reverting and 48H 
differentiating cells. Genes are considered significantly differentially expressed when the fold change is equal to or above 0.5 and the adjusted 
p‑value is below 0.05
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RSFR (RNase super family related) gene, that is highly 
expressed in precursor cells from chicken bone marrow 
[26]. Furthermore, when comparing 48H reverting with 
48H differentiating cells, we found hemoglobin-related 
genes up in the differentiating cells and LDHA and ID2 
up in reverting cells (Fig. 3E).

We more closely investigated gene expression distri-
butions within the different conditions to see how gene 
expression patterns would evolve during the rever-
sion process (Fig.  4). We selected 8 genes differentially 
expressed and which expression increases or decreases 
during the differentiation process. HBA1, HBBA, HBAD 
(different hemoglobin subunits), and FECH (Ferro-
chelatase) are involved in hemoglobin and heme path-
ways and are more expressed by differentiating cells 
while LDHA, ID2, CSTA (cystatin A1), and CRIP1 
(Cysteine-rich intestinal protein1) are more expressed by 
self-renewing undifferentiated cells. We plotted and com-
pared their distribution between the 4 conditions. For the 
genes involved in differentiation, we see a gradual shift in 
the distributions towards a higher level of expression as 
cells get more differentiated (Fig. 4A–D) and we see the 
opposite shift for genes involved in proliferation (Fig. 4E–
H). In all cases, the 48H reverting cell expression patterns 
for those genes shifted back to patterns closer to the 0H 
cells. At the time of observation and especially for genes 
up in differentiation, the 48H reverting cell expression 
patterns are not completely similar to those of 0H cells. 
This was further confirmed by using a dedicated statisti-
cal tool, sparse PLS (see below).

To go further on gene distribution comparisons, we 
computed Wasserstein distances, a geometric distance 
well suited for comparing multimodal distributions, for 
each 2000 genes of the scRNAseq dataset between each 
condition two by two. We then obtain 6 distributions of 
Wasserstein distance values. Finally, we computed the 
Gini index as a measure of statistical dispersion in each 
distribution (the higher the Gini index is, the higher 
inequality among the values). We performed 100 boot-
straps and compared the Gini values obtained (Fig. 5A). 
Distribution of Wasserstein distances between 0H cells 
and 48H reverting cells had the smallest average Gini 
index among all distributions (Fig. 5B). This result points 
towards a closer global transcriptional state between 48H 
reverting cells and 0H cells.

48H reverting cells retain molecular traces 
of a commitment into differentiation
To further characterize the molecular changes that per-
sisted after reversion, we sought to identify predictive 
genes that discriminate the most the 48H reverting cells 
and the undifferentiated cells. We performed logistic 
regression combined with dimension reduction (partial 

least square [20]) between 48H reverting cells and 0H 
cells and retained common most discriminating genes 
between scRT-qPCR and scRNAseq datasets. Interest-
ingly, our results showed that only 3 common genes dis-
criminate between the two cell groups: HBBA, TBC1D7, 
and HSP90AA1, the expression of which is shown in 
Fig.  6. HBBA is a subunit of the hemoglobin complex 
which carries oxygen, TBC1D7 is presumed to have a 
role in regulating cell growth and differentiation [27], and 
HSP90AA1 codes for an isoform of the HSP90 protein 
chaperone, which its specific transcription is known to 
be induced in response to insulin [28]. Looking closely, 
the 48H reverting cells have an intermediate expression 
level between differentiating cells and undifferentiated 
cells for the three predicted genes. The offset observed 
could be due to a longer duration of mRNA half-life at 
24H of differentiation. We had previously performed a 
quantification of mRNA half-life during avian erythro-
cyte differentiation ([29] Additional file  1: Fig. S3). We 
focused on mRNA half-life at 24H for those three genes. 
TBC1D7 and HSP90AA1 have a relatively short half-
life as opposed to HBBA. Other genes analyzed whose 
expression increases during differentiation, such as 
DPP7, TPP1, or RPL22L1, have also a long half-life dura-
tion mRNA, but only HBBA was identified in our statis-
tical analysis as discriminating between undifferentiated 
and 48H reverting cells.

These results confirmed that the 48H reverting cells 
display a gene expression pattern very close to those of 
0H cells while still retaining traces of their engagement 
into the differentiation process independently of the 
mRNA half-life. The molecular process explaining such 
“lagging genes” will have to be explored.

Cells are distributed as a continuum 
along the differentiation path
At that stage, two hypotheses could be made: (1) Either 
all cells have engaged into a differentiation process and 
do molecularly revert to a self-renewal transcriptional 
state or (2) at 24H of differentiation two subpopulations 
coexist: one that is still undifferentiated and would give 
rise to the 48H reverting cells and a second more differ-
entiated which would lead to the 48H differentiating pop-
ulation and die in the reversion experiment.

We hypothesized that the existence of two subpopula-
tions at 24 h should lead to a higher number of modes in 
the distribution of some genes at that time point. To test 
this hypothesis, we therefore estimated for each condi-
tion the most-likely number of modes for the probability 
distribution of each gene, as assessed through a Gamma 
mixture on scRNAseq (see the “Methods” section). We 
found no significant difference in the number of modes 
observed between the 4 populations (Fig.  7), which 
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Fig. 4 Comparison of gene expression pattern distributions between cells at four experimental time points (0H, 24H, and 48H differentiating and 
48H reverting cells). Histograms of gene expression distribution for HBBA (A), for HBAD (B), for HBA1 (C), for FECH (D), for LDHA (E), for ID2 (F), for CSTA 
(G), and for CRIP1 (H). The X scale represents log1p of gene expression from scRNAseq data
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confirms that the cells collected at 24H do not show 
more multi-stability than the other groups and are thus 
unlikely to be a mix of two populations.

The second hypothesis would also imply that in the 
24H population, the cells engaged too far in the differen-
tiation process would die a short time after media were 

changed, while only the undifferentiated ones would 
survive. We then measured the viability rate during the 
kinetics and found no difference in viability between the 
conditions and especially between the 24H differentia-
tion and the 48H reversion conditions (Additional file 1: 
Fig. S4).

Fig. 5 Comparison of dispersion of gene distribution between cell populations. A Experiment design to compare gene distributions between the 
4 biological conditions. Wasserstein distance is computed for each gene between pair of conditions, then dispersion of all gene distributions is 
calculated using Gini index. B Plot of Gini index values of Wasserstein distance distributions between conditions in pairs computed for each of the 
2000 genes from scRNAseq data bootstrapped 100 times
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Finally, the second hypothesis would also imply that the 
reverting cells are simply cells that have not yet entered 
the differentiation process. It would therefore be at odds 
with the evidence that the 48H reverting cells do retain 
traces of their engagement into the differentiation pro-
cess (see upper).

Those results strongly suggest that the 24H cell popu-
lation is not composed of two coexisting subpopulations 
of cells and that 48H reverting cells enter differentiation 
before going back to a transcriptomic state close to 0H 
cells.

Discussion
In the present study, we coupled two different single-cell 
transcriptomics techniques and state-of-the-art statisti-
cal approaches to demonstrate the fate reversibility of 
avian erythrocyte progenitors induced to differentiate for 
24 h.

Our results revealed a very close proximity of reverting 
and undifferentiated cell transcriptomes. Indeed, statisti-
cal comparison of cell distributions showed no significant 
difference between 0H and 48H reverting cells while, as 
expected, significant changes in gene expression accom-
panied the differentiation sequence. The analysis of gene 
expression distribution patterns of the 48H reverting cells 
confirmed a switch toward the 0H cell gene expression 
profiles. First, DE analysis of scRNAseq data showed only 
one gene significantly differentially expressed between 
the two conditions. Second, Wasserstein distance analy-
sis revealed closer distances between 48H reverting and 
0H cells than to any other group of cells. Third, sparse 

PLS analysis indicated that the expression level of only 
three genes, HBBA, TBC1D7, and HSP90AA1, was pre-
dictive of the 48H reverting and undifferentiated cells. 
Interestingly, the persistence of those three genes in 48H 
reverting cells could not be attributed solely to mRNA 
half-life duration. However, we cannot exclude that it 
could be a mere delay and thus a characterization of the 
reverting cells at a later time point may show a complete 
molecular reversion.

All of our results therefore favor the hypothesis that a 
vast majority of the 48H reverting cells responded to dif-
ferentiation induction by modifying their gene expression 
profiles but then returned to the self-renewal transcrip-
tional state.

One must note that this would not be the sole exam-
ple of large-scale transcriptomic changes on (relatively) 
short time scales [18, 30]. The question as to whether 
such large-scale transcriptome changes are accompanied, 
or not, by (reversible) large-scale epigenetic changes 
remains an open question for future studies.

It has been described in the literature that during cel-
lular decision-making, the cell state is maintained by 
dynamic interactions between positive and negative 
regulatory molecules [31] within the frame of a Gene 
Regulatory Network (GRN). These interactions can be 
repurposed by changing the stoichiometry of ubiquitous 
and specific regulatory molecules and factors [11, 13]. In 
our study, the analysis of gene expression patterns dur-
ing the reversion process confirmed that the determina-
tion of the fate of erythrocyte progenitors is directed by 
the constraints of the dynamics of the GRN, influenced 

Fig. 6 Boxplots with mean of expression levels of the 3 genes identified by sparse PLS as discriminating genes between 48H reverting cells and 0H 
cells. Boxplots of HBBA expression level in log1p on scRNAseq data (A) and scRT‑qPCR data (B) in the 4 biological conditions. Boxplots of the TBC1D7 
expression level in log1p on scRNAseq data (C) and scRT‑qPCR data (D) in the 4 biological conditions. Boxplots of the HSP90AA1 expression level in 
log1p on scRNAseq data (E) and scRT‑qPCR data (F) in the 4 biological conditions
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by signals emitted by changing conditions of the environ-
ment surrounding the cells. In the absence of differentia-
tion signals (or in the presence of self-renewal inducing 
signals), there is no ratchet in place that would prevent 
(at least at early stages in our case) the system to return 
back to its original quasi-steady state. This is in excellent 
agreement with the previous demonstration that there 
is a duration threshold for some GRN under which the 

system can return back to its original state [32]. This was 
proposed to allow cells to discriminate between bona fide 
signals and random noise in their environment and could 
represent a physiological system for finely tuning the 
in vivo production of red blood cells while preserving the 
pool of progenitors. We recently proposed a methodol-
ogy for inferring the GRN underlying T2EC differentia-
tion [29]. For that, we kept in silico cells under constant 

Fig. 7 Repartition in the number of basins which have been detected for the 200 most variables genes from scRNAseq data, characterizing the 
level of multi‑stability which is observed for each condition. A Repartition of the number of modes for each biological condition. B Examples of 
genes which distribution fits 1 basin (left), 2 basins (middle), or 3 basins (right)
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differentiation stimulus. It would be of interest to see if 
the inferred GRN would be able to revert, up to a certain 
point where no “spontaneous” return is possible [19], to 
its original state. This would be a very strong constraint 
to impose and should severely limit the number of puta-
tive GRN able to reproduce experimental data and thus 
approaching the most accurate network.

Taken together, our results point towards a physiologi-
cal plasticity and reversibility with respect to erythrocyte 
decision-making. It is also reminiscent of the plasticity 
observed in cancer stem cells that might not be specific 
to tumor cells [33]. In terms of the epigenetic landscape, 
our work implies that instead of a continuous gradi-
ent that the cells will roll down as in the classical Wad-
dington’s depiction [8], they may go through an unstable 
state and may, sometimes, roll upwards over a bump in 
the landscape [34]. Thus, differentiation should be more 
appropriately described as cells moving from well to well, 
that is, from one metastable state [35–37] to another one 

(Fig.  8). This view abides by the multi-stability frame-
work where a complex quasi-potential landscape aims at 
describing both normal and pathological differentiation 
processes [37, 38], and exemplifies the fact that “commit-
ment (is) a dynamical property of the landscape” [39]. It 
is important at this stage to remember that Waddington 
himself was aware that his drawing was but a simplifi-
cation. Adapting and refining this landscape should not 
be considered as departing from his views. Such a non-
monotonous landscape has been proposed to account for 
the depiction of regeneration in adult tissues [12] and is 
consistent with previously proposed dynamical principles 
of cell fate restriction [10]. It is in excellent accordance 
with the recent depiction that cells can “climb uphill on 
Waddington’s epigenetic landscape” during cranial neu-
ral crest cell development [15] and would also be more 
relevant to account for the “hesitant” behavior of human 
CD34+ stem cells in  vitro [40] than a straight slope. It 
is beyond the scope of this discussion to go into more 

Fig. 8 A quasi‑potential well depiction of the erythroid differentiation process. While the cells have not escaped the zone of influence of the 
progenitor attractor (i.e., when they have not passed the point of commitment, aka the point of no return [19]), the removal of the environmental 
influences results in their relaxing back to their original attractor state
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details, but a cell “climbing uphill” should be seen as 
equivalent to “the landscape bending into a new valley.”

Conclusions
Our work has provided a detailed molecular charac-
terization of the probabilistic nature of erythrocyte cell 
fate determination, influenced by the constraints of the 
underlying Gene Regulatory Network dynamics, and 
driven by environmental influences.

In conclusion, our results clearly depart from a deter-
ministic view of the differentiation process and fully sup-
port the importance of gene expression stochasticity in 
all systems examined to date [4, 41–44], both in vitro [19, 
21, 40, 45–48] and in vivo [49–51].

These new insights into the process of cell reversion 
could also lead to significant improvements of the exe-
cutable GRN inference scheme [29].

Methods
Cellular biology
T2EC were extracted from the bone marrow of 19-day-
old SPAFAS white leghorn chicken’s embryos (INRA, 
Tours, France). Cells were grown in self-renewal in a LM1 
medium (α-MEM, 10% fetal bovine serum (FBS), 1 mM 
HEPES, 100 nM β-mercaptoethanol, 100 U/mL penicillin 
and streptomycin, 5 ng/mL TGF-α, 1 ng/mL TGF-β, and 
1 mM dexamethasone) as previously described [52].

Differentiation was induced by removing the LM1 
medium and placing the cells into a DM17 medium 
(α-MEM, 10% fetal bovine serum (FBS), 1 mM Hepes, 
100 nM β-mercaptoethanol, 100 U/mL penicillin and 
streptomycin, 10 ng/mL insulin, and 5% anemic chicken 
serum (ACS [53]).

Differentiation kinetics were achieved by collecting a 
sub-fraction of the cells at different times after induction 
of differentiation (0H and 24H). After 24H, the DM17 
medium was removed and half of the cells were placed 
back into the LM1 medium while the other half was kept 
in the DM17 medium to achieve 48H reversion and 48H 
differentiation time points respectively (Fig. 1).

Cell population mortality was assessed by count-
ing dead and living cells from the different time points 
and conditions after Trypan blue staining and using a 
Malassez cell.

Single‑cell sorting
For both single-cell transcriptomics methods, cells were 
sorted in 96-well plates using FACS Aria IIμ, BD: 8 plates 
were produced for scRNAseq (2 plates per time point) 
and 8 plates were produced for scRT-qPCR (2 plates per 
time point). Since the first steps of library construction 
are performed per plate, we refer as “batch” the different 
plates.

Single‑cell RT‑qPCR analysis
All the manipulations related to the high-throughput 
scRT-qPCR experiments in microfluidics were per-
formed according to the protocol recommended by the 
Fluidigm company (PN 68000088 K1, p.157-172). All 
steps from single-cell isolation to scRT-qPCR, gene selec-
tion, data generation, and cleaning are described in detail 
in [19]. The expression matrix was log1p transformed 
before subsequent analysis.

Single‑cell RNAseq
scRNAseq was performed using an adapted version of 
the MARSseq protocol [22]. Unless specified, all indi-
cated concentrations correspond to final concentrations.

Individual cells were sorted into 96-well plates contain-
ing 4μL of lysis buffer and index RT primers (0.2% Tri-
ton (Sigma Aldrich), 0.4 U/μL RNaseOUT (Thermofisher 
Scientific), 400nM RT_primers (Sigma Aldrich)). Index 
RT_primers (Table  2) contain oligo-dT chain to cap-
ture mRNA, a T7 RNA polymerase promoter for fur-
ther in  vitro transcription (IVT), unique cell barcodes 
for subsequent de-multiplexing, and unique molecular 
identifiers (UMIs) for PCR bias deduplication. After cell 
sorting, plates were immediately centrifuged and frozen 
on dry ice before storage at −80°C until reverse tran-
scription (RT) was performed. The plates were put at 
72°C for 3 min for denaturation. A total of 4μL of RT mix 
was added in each well (2mM dNTP (Thermo scientific), 
20mM DTT, 2X First stranded buffer, 5 U/μL Superscript 
III RT enzyme (Superscript III RT enzyme kit Thermo 
scientific), 10% (W/V) PEG 8000 (Sigma Aldrich)). ERCC 
RNA spike-in (Thermo Scientific) was diluted into the RT 
mix (dilution 5×10−7). The plates were then transferred 
into a thermocycler (program: 42°C-2min, 50°C-50min, 
85°C-5min, 4°C hold).

Table 2 List and sequences of primers used for scRNAseq library 
construction

Primer name 5′ to 3′

Index_RT_primers 
(cell BC and UMI)

5′‑CGA TTG AGG CCG GTA ATA CGA CTC ACT ATA GGG 
GCG ACG 
TGT GCT CTT CCG ATCTXXXXXXNNNNNNNNTTT 
TTT TTT TTT TTT TTT TTV‑3′

P5N6_XXXX (Plate BC) 5′‑CTA CAC GAC GCT CTT CCG 
ATCTXXXXNNNNNN‑3′

P5.rd1 5′‑AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT 
TCC 
CTA CAC GAC GCT CTT CCG ATCT‑3′

P7.rd2 5′‑CAA GCA GAA GAC GGC ATA CGA GAT 
GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT‑3′
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After reverse transcription, samples were pooled by 
plate and ExonucleaseI (NEB) digestion was performed, 
followed by 1.2X AMpure beads purification (Beck-
man Coulter). Samples were eluted in 10mM Tris-HCl, 
pH=7.5. Second strand cDNA synthesis was performed 
with 1X SSS buffer and SSS enzyme (NebNext mRNA 
second strand synthesis kit NEB; thermocycler program: 
16°C-150min, 65°C-20min, 4°C hold). Resulting double-
strand cDNA were linearly amplified by IVT overnight 
(10mM ATP, 10mM GTP, 10mM UTP, 10mM GTP, 1X 
reaction buffer, 1/10 T7 RNA polymerase mix (High-
Scribe T7 High Yield RNA synthesis NEB)) at 37°C. IVT 
products were purified with 1.3X Ampure beads and 
eluted with 10mM Tris-HCl, 0.1mM EDTA. Amplified 
RNAs were fragmented (1X RNA fragmentation buffer 
(RNA fragmentation reagents Invitrogen)) at 70°C for 3 
min. The fragmentation reaction was stopped with 34μL 
of STOP mix (0.3X Stop solution (RNA fragmentation 
reagents Invitrogen), TE buffer 1X (10mM Tris, 1mM 
EDTA, pH 8 - Invitrogen), and 0.7X AMpure beads to 
proceed with sample purification). Differing from the 
original MARSseq protocol, instead of ligation, a second 
RT was done to incorporate P5N6 primers (Table 2) con-
taining random hexamers and specific barcodes to dis-
tinguish the different plates (5mM DTT, 500μM dNTP, 
10μM P5N6_XXXX, 1X First stranded buffer, 10U/μL 
Superscript III RT enzyme, 2U/μL RNaseOUT; thermo-
cycler program: 25°C 5min, 55°C 20min, 70°C 15min, 4°C 
hold). The cDNAs were then purified with 1.2x AMpure 
beads. Illumina primers (Table 2) were added by PCR (0.5 
μM Mix primer P5.rd1/P7.Rd2, 1X KAPA Hifi HotStart 
PCR Mix (Kapa Biosystem); thermocycler program: 95°C 
3min, 12 times [98°C 20s, 57°C 30s, 72°C 40s], 72°C 5min, 
4°C hold), and PCR products were purified with 0.7x 
AMpure beads and eluted in 15μL.

Libraries were sequenced on a Next500 sequencer 
(Illumina) with a custom paired-end protocol to avoid 
a decrease of sequencing quality on read1 due to the 
high number of T added during polyA reading (130pb 
on read1 and 20pb on read2). We aimed for a depth of 
200,000 raw reads per cell.

Bio‑informatic pipeline
Fastq files were pre-processed through a bio-informatic 
pipeline developed in the team on the Nextflow plat-
form [54]. Briefly, the first step removed Illumina adap-
tors. The second step de-multiplexed the sequences 
according to their plate barcodes. Then, all sequences 
containing at least 4T following cell barcode and UMI 
were kept. Using UMItools whitelist, the cell barcodes 
and UMI were extracted from the reads. The sequences 
were then mapped on the reference transcriptome 

(Gallus GallusGRCG6A.95 from Ensembl) and UMI were 
counted. Finally, a count matrix was generated for each 
plate.

Data filtering, normalization, and analysis
All analyses were carried out using R software (version 
4.0.5; [55]). Matrixes from the eight plates were pooled 
together. Cells were filtered based on several criteria: 
reads number, gene number, count number, and ERCC 
content. For each criterion, the cutoff values were deter-
mined based on SCONE [56] pipeline and were calcu-
lated as follows:

We selected genes present in at least two cells. The fil-
tered matrix was then normalized using SCTransform 
from the Seurat package [57] and we corrected for batch 
effect, time effect, and sequencing depth effect. The 
expression matrix was finally log1p transformed.

Variable genes were identified using FindVariableFea-
tures from Seurat, vst method [58]. Based on visualiza-
tion of gene variance, we retained the 2000 most variable 
features. Differentially expressed genes were identified 
using the FindMarkerGenes function from Seurat [58]. 
Analysis was done by pairwise comparisons between 
conditions; genes with log fold change ≥0.5 and adjusted 
p-value <0.05 were kept as significant. More information 
on QC filtering is given in Additional file 1: Fig. S5.

Statistical analysis
All statistical analyses were performed using the R soft-
ware (version 4.0.5; [55]). Dimensionality reduction and 
visualization were performed using UMAP [59]. UMAP 
was performed directly on the 2000 most variable genes 
(from the scRNAseq dataset) or 83 genes (from the scRT-
qPCR dataset) using default parameters. PCA was per-
formed using prcomp function from the stats R package 
(version 3.6.2). Adaptive sparse PLS for logistic regres-
sion was performed using the plsgenomics package [20]. 
For this analysis, scRT-qPCR data were scaled. Sparse 
PLS is a supervised statistical analysis that allows to pre-
dict the most discriminant variables between two groups.

Wasserstein distance computation was done using the 
Transport R package [60] and was accomplished for each 
gene of the scRNAseq dataset.

Gini indexes were calculated using the Ineq R package 
on Wasserstein distance distributions [61].

Bootstraping was done using the sample_frac function 
from the Dplyr R package [62].

Estimation of multi‑stability levels
For estimating the level of multi-stability in the data, 
we considered that the probability distribution of each 

mean − 3
∗
SD
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gene can be approximated by a Gamma distribution, 
or a mixture of Gamma distributions, since they are 
known to describe continuous single-cell data accu-
rately [63]. More precisely, we parameterized the distri-
bution of a gene i by:

where Γ denotes the Gamma function: 
Ŵ(z) =

∫

∞

o tz−1e−tdt . Note that only the parameters 
(

a
j
i

)

j=1,...,m
 depend on the mixture component j: this is 

related to the distribution arising from the well-estab-
lished two-state model of gene expression [64], when 
only the frequency of mRNA bursts is regulated, as 
described in [65].

For every condition, we constructed 10 training sets 
consisting of 80% of the cells in the population (ran-
domly chosen), and we estimated the parameters 
[ aji

j=1,...,m
, bi   with a MCMC algorithm for the num-

bers of mixture components m = 1, 2, 3 successively. 
We then considered that the optimal number of com-
ponents for gene i  was the one which minimized the 
average BIC score estimated on the 10 corresponding 
test sets.

Multivariate two‑sample test
Samples were compared using a multivariate two-sam-
ple test based on the 2000 most variable genes. We sup-
pose that the normalized gene expression  X1 and  X2 of 
two conditions (0H vs 48H reversion, 0H vs 48H dif-
ferentiation, 48H reversion vs 48H differentiation) fol-
low a multivariate Gaussian distribution N (µ1,�) and 
N (µ2,�) respectively, and we denote by n = n1 + n2 the 
total number of cells. Then, we test the null hypothe-
sis H0 : μ1 = μ2 using the generalized Hotelling’s T2  test 
[23]. The data being high dimensional (p > n), the 
between-gene pooled covariance matrix is not invert-
ible and is replaced by its Moore-Penrose inverse. In 
this setting, the asymptotic distribution of the general-
ized Hotelling statistics is χ2(n − 2). The p-values were 
adjusted according to the Benjamini-Hochberg correc-
tion [66]. Analysis was performed using the fdahotel-
ling R package [67].
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