
HAL Id: hal-04134056
https://hal.science/hal-04134056

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scholarly Infrastructures for Research Software
Roberto Di Cosmo, Jose Benito Gonzalez Lopez, Jean-François Abramatic,

Kay Graf, Miguel Colom, Paolo Manghi, Melissa Harrison, Yannick Barborini,
Ville Tenhunen, Michael Wagner, et al.

To cite this version:
Roberto Di Cosmo, Jose Benito Gonzalez Lopez, Jean-François Abramatic, Kay Graf,
Miguel Colom, et al.. Scholarly Infrastructures for Research Software: Report from the
EOSC Executive Board Working Group (WG) Architecture Task Force (TF) SIRS. European
Comission. 2020, https://op.europa.eu/fr/publication-detail/-/publication/145fd0f3-3907-11eb-b27b-
01aa75ed71a1/. �hal-04134056�

https://hal.science/hal-04134056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

 EOSC Executive Board

WG Sustainability
December 2020

Scholarly
Infrastructures

for Research

Software

Report from the
EOSC Executive
Board Working

Group (WG)
Architecture Task
Force (TF) SIRS

Scholarly Infrastructures for Research Software

European Commission

Directorate-General for Research and Innovation

Directorate G — Research and Innovation Outreach

Unit G.4 — Open Science

Contact Corina Pascu

Email Corina.PASCU@ec.europa.eu

 RTD-EOSC@ec.europa.eu

 RTD-PUBLICATIONS@ec.europa.eu

European Commission

B-1049 Brussels

Manuscript completed in December 2020.

The European Commission is not liable for any consequence stemming from the reuse of this publication.

The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of the

European Commission.

More information on the European Union is available on the internet (http://europa.eu).

PDF ISBN 978-92-76-25568-0 doi: 10.2777/28598 KI-02-20-998-EN-N

Luxembourg: Publications Office of the European Union, 2020

© European Union, 2020

The reuse policy of European Commission documents is implemented based on Commission Decision 2011/833/EU of 12

December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this

document is authorised under a Creative Commons Attribution 4.0 International (CC-BY 4.0) licence

(https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate credit is given and any

changes are indicated.

For any use or reproduction of elements that are not owned by the European Union, permission may need to be sought directly

from the respective rightholders.

Cover page: © Lonely #46246900, ag visuell #16440826, Sean Gladwell #6018533, LwRedStorm #3348265, 2011; kras99

#43746830, 2012. Source: Fotolia.com.

mailto:Corina.PASCU@ec.europa.eu
mailto:RTD-EOSC@ec.europa.eu
mailto:RTD-PUBLICATIONS@ec.europa.eu

EUROPEAN COMMISSION

Scholarly Infrastructures for

Research Software

Report from the EOSC Executive Board Working

Group (WG) Architecture Task Force (TF) SIRS

Edited by: the EOSC Executive Board

December 2020

2020 Directorate-General for Research and Innovation

2

Table of Contents

1 EXECUTIVE SUMMARY ... 5

2 INTRODUCTION .. 7

2.1 Scope and Goals .. 9

2.1.1 Archive, Reference, Describe, Credit: The Four Pillars 10

2.2 Infrastructures Participating in the TF ... 11

2.2.1 Archives 12

2.2.2 Publishers 16

2.2.3 Aggregators 20

3 STATE OF THE ART ... 24

3.1 Survey on Related Initiatives and Related Works .. 24

3.1.1 Archives 25

3.1.2 Publishers 27

3.1.3 Aggregators 28

3.2 Summary of the State of the Art Presentations in the Group 29

3.2.1 Archives 30

3.2.2 Publishers 30

3.2.3 Aggregators 31

3.3 Best Practices and Open Problems .. 32

3.3.1 Best Practice Principles for Archives 32

3.3.2 Best Practice Principles for Publishers 34

3.3.3 Best Practice Principles for Aggregators 35

3.4 Cross-cutting Concerns ... 36

3.4.1 Metadata 36

3.4.2 Identifiers 37

3.4.3 Quality and Curation 37

3.4.4 Metrics 38

3.4.5 Guidelines 38

3.4.6 Tools and Workflows 39

4 THE ROAD AHEAD ... 40

4.1 General Requirements .. 41

4.1.1 Archive 41

4.1.2 Reference 42

4.1.3 Describe 44

4.1.4 Cite/Credit 45

4.1.5 Easing Adoption 46

4.2 Exemplarity Criteria for Participating Infrastructures ... 47

4.2.1 Accommodating Innovation 48

4.3 Possible Workflows ... 48

4.3.1 Self-Archiving 49

4.3.2 Scholarly Publication with Associated Source Code 53

4.3.3 Aggregators 60

5 RECOMMENDATIONS ... 62

5.1 Funding Development of Tools, Standards, and Guidelines 62

5.1.1 Interactions 62

5.1.2 Metadata About Software 63

5.1.3 Identifiers 63

5.1.4 Credit 63

5.1.5 Policy/Guidelines 64

3

5.1.6 Easing Adoption 64

5.2 Broader Policy Recommendations for the EOSC .. 65

5.2.1 Criteria of Excellence, and Sustainability of the Architecture 65

5.3 Longer Term Perspectives ... 66

5.3.1 Advanced Technology Development 66

5.3.2 Policy 67

6 ANNEXES ... 68

6.1 Glossary ... 68

6.2 Bibliography .. 70

6.3 Task Force Participants ... 76

6.3.1 Roberto Di Cosmo (Chair TF SIRS) 76

6.3.2 Jose Benito Gonzalez Lopez (Co-Chair TF SIRS) 77

6.3.3 Jean-François Abramatic (Chair WG Architecture) 78

6.3.4 Kay Graf 79

6.3.5 Miguel Colom 79

6.3.6 Paolo Manghi 80

6.3.7 Melissa Harrison 81

6.3.8 Yannick Barborini 82

6.3.9 Ville Tenhunen 83

6.3.10 Michael Wagner 83

6.3.11 Wolfgang Dalitz 84

6.3.12 Jason Maassen 85

6.3.13 Carlos Martinez-Ortiz 85

6.3.14 Elisabetta Ronchieri 86

6.3.15 Sam Yates 87

6.3.16 Moritz Schubotz 87

6.3.17 Leonardo Candela 88

6.3.18 Martin Fenner 89

6.3.19 Eric Jeangirard 90

Scholarly Infrastructures for Research Software

 4

FOREWORD

Software has become another medium for people to share knowledge. In the case of

research, software delivers knowledge using programming languages the same way

publications deliver knowledge using natural languages.

In the 21st century, many research activities use computing systems to monitor their

experiments, to visualise or analyse their results, or to check hypotheses through

simulation.

It has therefore become essential to archive, preserve and share research software.

Pioneering efforts have started to ensure persistence and availability of software next to

publications and data.

In order to fulfil its promise to lead Europe towards Open Science, EOSC, the European

Open Science Cloud programme, has to support the development of Scholarly

Infrastructures for Research Software. In June 2020, the EOSC Architecture Working Group

(WG) launched a Task Force (TF) with the mandate to offer recommendations on this topic.

With the partnership of nine organizations involved in research software infrastructures,

the TF was able, in four months, to produce this report.

After providing an initial view of the state of the art of research software infrastructures,

the report suggests best practices, identifies open problems and describes use cases. On

this basis, recommendations are proposed both at the technical and policy levels with

immediate as well long-term horizons.

As the chair of the EOSC Architecture WG, I want to warmly thank the TF members for the

depth of the study and the look into the future that the report delivers.

Jean-François Abramatic

October 16, 2020

Scholarly Infrastructures for Research Software

 5

1 EXECUTIVE SUMMARY

The TF on Scholarly Infrastructures of Research Software, as part of the Architecture WG

of the European Open Science Cloud (EOSC) Executive Board, has established a set of

recommendations to allow EOSC to include software, next to other research outputs like

publications and data, in the realm of its research artifacts. This work is built upon a survey

and documentation of a representative panel of current operational infrastructures across

Europe, comparing their scopes and approaches.

This report summarizes the state of the art, identifies best practices, as well as open

problems, and paves the way for federating the different approaches in view of supporting

the software pillar of EOSC.

As the fuel of innovation, the engine of our industries and a fundamental pillar of academic

research, software is a necessary component of modern scholarly research. Hence,

software developments emerge across many fields and disciplines. Unfortunately, often

forgotten is the important fact that software is actually a special form of knowledge,

designed by humans to be read by humans, executed by machines, in the form of software

source code. Software source code allows the description of data visualisation, data

analysis, data transformation, and data processing in general with a level of precision that

goes way beyond what can be achieved in scholarly articles. It is now well recognized that

without access to the software used in research projects, it is extremely difficult to

reproduce scientific results, and to build upon the results obtained by other researchers.

Over the past decade, awareness has been raised about the importance of software in the

scholarly world. Several infrastructures have started to be built, or adapted, to address

some of the following key challenges that need to be tackled to put software on equal

footing with other research outputs in the scholarly world:

1. Archiving software to ensure research software artifacts are not lost.

2. Referencing software to ensure research artifacts can be precisely identified.

3. Describing software to easily discover and identify research software artifacts.

4. Crediting all authors to ensure their contributions are recognized.

To start addressing these challenges, the TF was formed by representatives of the EOSC

Architecture WG together with representatives from current operational infrastructures

across Europe (presented in Section 2.2 Infrastructures Participating in the TF). The TF

covers the full spectrum of archives, publishers, and aggregators (including catalogues)

and is considered a representative panel based on their wide-ranging experience in

addressing some of the challenges involved in building the four pillars.

The TF considers that addressing these needs will require establishing standards,

developing tools, improving and interconnecting infrastructures, training, outreach, and

involvement with the publishing community. Proper funding will need to be provided both

for the development, communication, and outreach efforts, and for the operational costs.

The TF concretely delivered a set of recommendations that emerged from the analysis of

the current needs and state of the art, and the design of the future architecture. They

include short term actionable items, broader policy recommendations for the EOSC, as well

as a longer-term perspective.

Short term recommendations are foreseen to be turned into concrete development projects

in a 2–4-year time-frame. The concrete recommendations detailed at the end of this report

have the objective to (i) strengthen interactions between archives, publishers, and

Scholarly Infrastructures for Research Software

 6

aggregators, (ii) adopt metadata standards, (iii) generalize the use of extrinsic and intrinsic

identifiers for software, (iv) ensure appropriate citations for research software source code,

(v) foster standardization through policy and guidelines, and (vi) ease adoption of the

processes and tools for the research community at large.

The TF foresees that the EOSC has a key role to play in ensuring the overall architecture

will be built in a way to best cater to the needs of the research community. To ensure

openness, transparency, and good governance, the EOSC should elaborate a set of criteria

of excellence, incorporating these principles, for its participating infrastructures, and

should provide concrete recommendations. Additionally, the EOSC should actively get

involved with the key infrastructures for software, take part in their strategic evolution and

earmark proper funding to ensure their long-term sustainability.

The longer-term perspectives include objectives that should be taken up in the roadmap

to be addressed over a 4–7-year horizon. Of importance is the development of advanced

technology, such as open plagiarism detection technology and advanced search engines

for software source code. Moreover, technology and tools should be explored to address a

proper integration between different research outputs: articles, data, and software.

Lastly, the TF strongly recommends including a clause in all future research funding

programs to request research software is made available under an Open Source license by

default, and that all deviations from this default should be duly motivated. While EOSC

subscribes to the general statement that all research output should be “as open as possible,

as closed as necessary” it is believed that stimulating this default is needed for software

to be put on equal footing with other research outputs.

The consultation period ran from October 21 until November 10. All comments received

were considered.

Scholarly Infrastructures for Research Software

 7

2 INTRODUCTION

Software has become a fundamental component in the modern scholarly ecosystem and

software developments emerge across all fields and disciplines (Van Noorden et al., 2014).

It is now well recognized that without access to the software used in research projects,

data is less suitable for reuse (Baker, 2016) and confirmation (Barnes, 2010; Stodden et

al., 2012).

In the scholarly world, software has been often seen just as a tool, overlooking the

important fact that software is actually a special form of knowledge, written by humans for

humans, in the form of software source code, and only later turned into executable code

for a machine (Abelson & Sussman, 1985; Shustek, 2006).

Software source code implements and describes data generation and collection, data

visualisation, data analysis, data transformation, and data processing with a level of

precision that is not met by scholarly articles alone. Publicly accessible software source

code allows a better understanding of the process that leads to research results, and open

source software allows researchers to build upon the results obtained by others, provided

proper mechanisms are put in place to make sure that software source code is preserved

and that it is referenced in a persistent way (Di Cosmo, Gruenpeter, & Zacchiroli, 2020).

Researchers have always written research articles to present their results. The growing

trend, however, lies in the fact that they more and more include software to support or

demonstrate such results. This latter activity can represent a significant part of their work

and must be properly taken into account when researchers are evaluated by their peers

and institutional authorities (Alliez et al., 2020; Clément-Fontaine et al., 2019).

Last, but not least, software source code developed by researchers is only a thin layer on

top of the complex web of software components, most of them developed outside of

academia, that are necessary to execute the software and produce scientifically meaningful

results (K. Hinsen, 2019): as an example, Figure 1 shows the broad sets of software

components that are needed to use the popular matplotlib library (Hunter, 2007).

As a consequence, scholarly infrastructures that support software source code written in

academia must go the extra mile to ensure they adopt standards and provide mechanisms

that are compatible with the ones used by tens of millions of non-academic software

developers worldwide.

And yet, much is left to be done when it comes to providing adequate support for ensuring

that the source code of software related to research activities is preserved for the long

term, properly identified and described, with credit given to those that contribute to it

(Meeting, 2019).

Scholarly Infrastructures for Research Software

 8

For decades, we have seen software source code made available through development

platforms that are not meant to be archives, and referenced in research articles using links

to them, or just mentioned with their name (Howison & Bullard, 2015). We all knew that

links to these platforms may rot (Spinellis, 2003), and that the platforms themselves may

go away, but only recently the extent of the danger has started to be appreciated, with the

closing down of huge platforms like Google Code1 and Gitorious.org2, and the phasing out

of support for the Mercurial version control system (VCS) in Bitbucket3.

As a result, millions of software projects have been displaced or lost, and the web of

scholarly knowledge has been significantly endangered.

Here are a few out of many examples that show how this phenomenon manifests itself:

 The link to the source code on the web page of the WorldView project from MIT4 now

points to a long-gone repository on Gitorious.org: http://www.gitorious.org/worldview.

 Authors of articles that thought their source code was safe, discover a few years later

that it is lost: see for example what is reported in (Di Cosmo & Danelutto, 2020) or this

recent tweet.

1 https://www.softwareheritage.org/2016/09/01/google-code-content-now-safely-collected-in-software-heritage/

2 https://www.softwareheritage.org/2016/07/21/gitorious-retrieved/

3 https://www.softwareheritage.org/2020/04/23/rescuing-250000-endangered-mercurial-repositories/

4 https://projects.csail.mit.edu/worldview/about/

Figure 1. Example of the complexity in direct and indirect dependencies for a specific python package (matplotlib). Boxes

represent actual packages (libraries that need to be installed on the system), arrows indicate dependencies to other

packages, labels indicate the minimal/maximal version number. In blue the Python dependencies, in red the “true” system

dependencies incurred by python (e.g., the libc or libjpeg62), in green some “fake” dependencies incurred by the package

management system but which are very likely not used by python (e.g., adduser or dpkg).

http://www.gitorious.org/worldview
https://www.softwareheritage.org/2016/09/01/google-code-content-now-safely-collected-in-software-heritage/
https://www.softwareheritage.org/2016/07/21/gitorious-retrieved/
https://www.softwareheritage.org/2020/04/23/rescuing-250000-endangered-mercurial-repositories/
https://projects.csail.mit.edu/worldview/about/

Scholarly Infrastructures for Research Software

 9

In the research world, some initiatives started to arise in order to address this issue of

paramount importance overall but particularly for open science. Scholarly repositories like

Zenodo (in 2014), provided a mechanism for researchers to self-archive their research

software, manually, or automatically directly from GitHub.

Software Heritage (Abramatic et al., 2018; Di Cosmo & Zacchiroli, 2017) is taking over the

heavy lifting of proactively harvesting and archiving all software source code with its full

development history (including, luckily, all the examples above). It is important that all

scholarly repositories, which may be of varying sizes and addressing different institutional

or disciplinary needs, properly interface with Software Heritage and offer researchers the

additional functionalities they expect, and that research articles reference the archived

version of the software.

Indeed, even though the source code in the examples above is now preserved, the links in

research articles that point to the original development platform are now broken. The

source code is less likely to be found, reused, or able to demonstrate its support for the

research findings, and the research articles have also lost some of their content (the source

code). So, although software archival is absolutely necessary, it is also a necessity to

reference the archived version in research articles in a way that ensures the research

remains supported by the code and the reuse potential is maximised, generalising, in

particular, the use of intrinsic identifiers.

Archiving and referencing archived versions within research content is just the beginning.

We need proper identifiers for the artefacts and for the metadata, to deal with tens of

available ontologies for describing software, ensure all required metadata is easily available

for citation purposes, and fill the huge gap that we face when looking for support for

software credit and citation (referencing tools and publisher house styles).

Addressing these needs will require standards, tools, infrastructures, training, outreach,

and involvement with the publishing community. It also needs proper funding both for the

development, communication, and outreach efforts, and for the operational costs.

2.1 Scope and Goals

The Scholarly Infrastructures of Research Software (SIRS) TF was assembled with the clear

mission to explore current practices and approaches, identify best practices and open

problems, and formulate concrete recommendations for a global architecture of

infrastructures that will allow EOSC to put software source code on a par with articles and

data.

As clearly stated in (Clément-Fontaine et al., 2019), “software is a hybrid object in the

world of research as it is equally a driving force (as a tool), a result (as proof of the

existence of a solution) and an object of study (as an artefact). This specific status means

we need to define strategies, tools and procedures which are adapted to the various issues

it raises. These include the citation of contributions to software design and production, the

Scholarly Infrastructures for Research Software

 10

reproducibility of research results involving software and the wider usage and long-term

sustainability of the software heritage created.”

Due to this polymorphic nature of software in the world of research, the term “research

software” may carry very different meanings in different research communities: in this

report, we will use this term simply to designate software that researchers in any discipline

may feel the need to have scholarly infrastructure support for, no matter if it is considered

a tool, a result or an object of study5.

From the outset it is important to clarify that we are well aware of the many difficult

challenges that need to be tackled when one tries to ensure that a given executable or a

full software system can be reliably run again, enabling full reproducibility of research

results, as well as of the complex organizational, economic, and strategy issues that need

to be addressed for its sustainability.

The focus of the work of this TF is different, as we have on purpose addressed only software

source code in the world of research, for two main reasons. First and foremost, the source

code of software is human readable knowledge, and embodies precious technical and

scientific information that cannot be extracted from the executables, and that can be

understood even when the corresponding executable can no longer be run. Second,

properly addressing the issues that handling software source code raises for scholarly

infrastructures is a significant challenge by itself, as will be clearly outlined in this report,

and it is easier to provide actionable recommendations by focusing on this first.

2.1.1 Archive, Reference, Describe, Credit: The Four Pillars

As we have seen above, software source code in the research world is quite different from

research data for a number of reasons (Katz et al., 2016), including two particularly

important ones. First, software is an executable tool, with complex execution semantics

that make each piece of software a node in an intricate dependency network. Second,

software source code is authored by humans as part of doing research, whereas most

research data represents recorded observations.

Hence it is not surprising that the popular FAIR (Findability, Accessibility, Interoperability,

and Reuse) Guiding Principles for research data (Wilkinson et al., 2016) do not fit it well,

as they were not designed for it. It is not our purpose to discuss how FAIR principles should

be modified, or even entirely overhauled, to be of use when dealing with software: other

working groups are grappling with this challenge6.

We focus here on four key concrete issues that need to be tackled to put software on equal

footing with other research outputs, and where scholarly infrastructures play a prominent

role:

 Archiving software that has been developed up until now to ensure research software

artifacts are not lost (Abramatic et al., 2018);

 Referencing software to ensure research software artifacts can be precisely identified

(Di Cosmo, Gruenpeter, & Zacchiroli, 2020);

5 An important remark is that the very same software may be at the same time a tool for some researcher, a result of the research of

another, and the object of study of a third one.

6 See for example the FAIR4RS Working Group of the Research Data Alliance, FORCE11, the Research Software Alliance, FAIRsFAIR task

2.4 on ”FAIR services and software” (Gruenpeter et al., 2020) and (Lamprecht et al., 2020): https://www.rd-alliance.org/groups/fair-4-

research-software-fair4rs-wg

https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg
https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg

Scholarly Infrastructures for Research Software

 11

 Describing software to easily discover and identify research software artifacts (Bönisch

et al., 2012; Di Cosmo, Gruenpeter, & Zacchiroli, 2020);

 Crediting to ensure proper credit is given to authors (Alliez et al., 2020).

We believe that a global architecture of scholarly infrastructures must provide appropriate

means to Archive, Reference, Describe, and Credit software source code in the world of

research, that we refer to as the four pillars, also abbreviated as ARDC, in the following.

To this end, we brought together a representative panel of current operational

infrastructures across Europe that deal with software source code written by researchers,

covering the full spectrum of archives, publishers, and aggregators (including catalogs).

Over the four months of collaborative work, these representatives helped develop a deep

understanding of the issues at stake, based on their concrete and factual experience in

addressing some of the challenges involved in building these pillars.

2.2 Infrastructures Participating in the TF

The SIRS TF consists of representatives of the EOSC Architecture WG and representatives

of operational infrastructures that deal with software source code written by researchers.

The following section is dedicated to the introduction of the participating European

infrastructures. These infrastructures are classified into three groups, depending on the

primary goal of the infrastructure: Archives, Publishers, and Aggregators.

In the context of this report we use the term Archives to designate services that have as

one of their primary goals the long-term preservation of the digital content that they

collect. This includes a broad spectrum of services, ranging from institutional repositories7

to disciplinary repositories8 in the scholarly world, as well as services that have a broader

scope.

Publishers are organizations that prepare submitted research texts, possibly with

associated source code and data, to produce a publication and manage the dissemination,

promotion, and archival process. Software and data can be part of the main publication,

or assets given as supplementary materials depending on the policy of the journal. In

addition, publishers implement a process for ensuring the quality of the accepted research

material (usually peer review), which is carried out by a subject-specific community of

experts.

Finally, we use the term Aggregators to designate services that collect information about

digital content from a variety of sources with the primary goal of increasing its

discoverability, and possibly adding value to this information via processes like curation,

abstraction, classification, and linking. These services, that include scholarly catalogues

and indexes, usually provide a search engine that gives access to a description of the

aggregated content, and may provide links to versions of it archived elsewhere. These

services may be generalistic, or have a disciplinary, geographic, or institutional scope.

The following summary sheets present the nine infrastructures that are represented in the

SIRS TF: three for the archives category (HAL, Software Heritage, and Zenodo), three for

the publisher category (Dagstuhl Publishing, eLife, and IPOL), and three in the aggregators

category (OpenAIRE, ScanR, and swMath).

7 See https://en.wikipedia.org/wiki/Institutional_repository

8 See https://en.wikipedia.org/wiki/Disciplinary_repository

https://en.wikipedia.org/wiki/Institutional_repository
https://en.wikipedia.org/wiki/Disciplinary_repository

Scholarly Infrastructures for Research Software

 12

2.2.1 Archives

The following list provides the set of archives that are represented in the SIRS TF:

 HAL

 Software Heritage

 Zenodo

These infrastructures are a respectable representation of the Archive subgroup landscape,

as the services vary greatly in geographic scopes (national and international); scope in

terms of content (universal and scholarly), size, number of registered users, number of

software projects handled, and their typical workflow.

Scholarly Infrastructures for Research Software

 13

Scholarly Infrastructures for Research Software

 14

Scholarly Infrastructures for Research Software

 15

Scholarly Infrastructures for Research Software

 16

2.2.2 Publishers

The following list provides the set of publishers that are represented in the SIRS TF:

 Dagstuhl Publishing

 eLife

 IPOL

These infrastructures are a respectable representation of the Publisher subgroup

landscape, as the services vary greatly in size, number of registered users, number of

software projects handled, and workflow.

Scholarly Infrastructures for Research Software

 17

Scholarly Infrastructures for Research Software

 18

Scholarly Infrastructures for Research Software

 19

Scholarly Infrastructures for Research Software

 20

2.2.3 Aggregators

The following list provides the set of aggregators, including catalogues, that are

represented in the SIRS Task Force.

 OpenAIRE

 scanR

 swMATH.org

These infrastructures are a respectable representation of the Aggregator subgroup

landscape, as the services vary greatly in geographic scopes (national and international),

scope in terms of content (universal and disciplinary), size, number of registered users,

number of software projects handled, and workflow.

Scholarly Infrastructures for Research Software

 21

Scholarly Infrastructures for Research Software

 22

Scholarly Infrastructures for Research Software

 23

Scholarly Infrastructures for Research Software

 24

3 STATE OF THE ART

3.1 Survey on Related Initiatives and Related Works

Software has played an essential role in research for decades and one can find a few long

established initiatives in some research institutions like Inria (Alliez et al., 2020) or

research communities like Computational Physics (Roberts, 1969), Numerical Computing

(Press et al., 1986), Neurosciences (McDougal et al., 2016) and Astrophysics (Allen &

Schmidt, 2015). The tidal wave of Free Source was also born in academia, before taking

industry by storm as Open Source software. But it seems that general awareness about

the importance of software as a research output has started growing only very recently,

around 2010, in particular as a by-product of the reproducibility crisis (Barnes, 2010;

Borgman et al., 2012; Colom et al., 2015; Konrad Hinsen, 2013; Rougier et al., 2017;

Stodden et al., 2012) .

Without any pretension to exhaustivity, a few remarkable early signals of this awakening

can be found for example in the Science Code Manifesto (Barnes, 2010), the creation of

the INCF Software Center (Ritz et al., 2008), the creation of the Software Sustainability

Institute in the UK in 2010, the creation of the IPOL journal in 2009 (Colom et al., 2015),

and the first Artifact Evaluation introduced in 2011 for the ESEC/FSE Conference9 by

Andreas Zeller with Carlo Ghezzi and Shriram Krishnamurthi, that is now widespread in

Computer Science conferences (Childers et al., 2016; Krishnamurthi, 2011) and led to the

approval of the ACM Badging schema (ACM, 2016).

Around 2015, a wealth of articles were already highlighting the importance of preserving

and referencing software for reproducibility in many different areas and disciplines (Allen

et al., 2017; Baker, 2016; Collberg & Proebsting, 2016; Gil et al., 2016; Krishnamurthi &

Vitek, 2015), and initiatives were launched to start making a change, like the

GitHub/Zenodo integration for archiving source code and registration of persistent

identifiers and scholarly metadata (Making Your Code Citable · GitHub Guides, n.d.), the

CodeMeta initiative (Jones et al., 2016), the creation of the FORCE11 working group on

software citation (Smith et al., 2016), the DARTS artifact series (Wagner, 2017), and the

RDA interest group on software source code (Gruenpeter et al., 2020).

While attention to software was only beginning to rise, the research community had moved

forward at full speed on research data, to the point that the FAIR principles for research

data (Wilkinson et al., 2016) were endorsed at the highest level during the September

2016 G20 meeting10. This chronology of events, and the fact that software was still largely

seen as a tool, or just another piece of data, may explain why significant energy has been

spent trying to see how software may fit into the FAIR principles, possibly with some minor

changes (Gruenpeter et al., 2020; Katz & Clark, 2019; Lamprecht et al., 2020), instead of

developing principles adapted to software anew.

Software development plays an essential role in research, so it is not surprising that for

quite a long time in some countries there have been efforts to federate and support

software developers working in the research community, like the DEVLOG network in

France11. More recently, the term Research Software Engineer (RSE) has been adopted by

several national and multi-national initiatives in Europe and beyond that bring together

individuals with skills in research software development, advocate for recognition of RSEs

9 See https://www.microsoft.com/en-us/research/blog/new-award-honors-distinguished-artifact/

10 See https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967

11 See http://devlog.cnrs.fr/region

https://www.microsoft.com/en-us/research/blog/new-award-honors-distinguished-artifact/
https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967
http://devlog.cnrs.fr/region

Scholarly Infrastructures for Research Software

 25

and promote putting software on equal footing with other research outputs (de-RSE, NL-

RSE, Nordic-RSE, UK-RSE, IS-RSE)12.

In recent years we have seen software in general and software source code in particular

finally start to be mentioned in policy documents, ranging from the French national plan

for Open Science (Clément-Fontaine et al., 2019) to the Paris Call on software source code

issued by the Inria-UNESCO expert group meeting (UNESCO Expert group meeting, 2019).

In this report, we focus specifically on three key components in the scholarly architecture

for software source code used in research: archives, publishers, and aggregators. We

provide below a short overview of relevant initiatives and works in these areas.

3.1.1 Archives

Pioneered by initiatives specifically dedicated to the history of computing, like the

Computer History Museum and similar organizations, the activity of preserving software

programs is a relatively recent concern in the history of archives, and it focused essentially

on the archival of the physical media on which these executable programs were distributed

(floppy disks, game cartridges, CDs, or DVDs), that were catalogued and stored exactly

like books. A remarkable actor in this space is the French national library (BNF), as in

France, unlike in other countries, software programs have been subject to legal deposit

since 199213. More recently, with the advent and commoditization of virtualisation and

emulation technologies, the focus shifted to keeping old software programs running on

more recent machines, in particular as a means to preserve access to digital assets14.

The interest in preserving software source code in its own right, though, is much more

recent, despite having been identified as a crucial issue in a crystal clear seminal article by

Len Shustek in 2006 (Shustek, 2006). Software source code has been largely considered

outside of the scope of scholarly repositories and institutional and national archives until

just a few years ago, when existing scholarly archives and repositories started to allow the

deposit of source code bundles, that were assigned a extrinsic persistent identifier similar

to those used for datasets: as an example, the first DOI (Paskin, 2010) registered for a

software bundle at DataCite dates only from September 7th, 2011 (Fenner et al., 2018)

and the software category was introduced in Zenodo only in 2014 and in HAL only in 2018

(Barborini et al., 2018; Di Cosmo, Gruenpeter, Marmol, et al., 2020). These scholarly

repositories provide the deposited software bundles all the useful mechanisms already

available for the other digital content they handle, like access control, metadata update

mechanism, peer-review anonymous access, and optionally moderation or curation of

deposit, as well as well-established interfaces with other repositories, like the OAI-PMH

protocol.

One means by which software is preserved is via deposition in repositories such as Zenodo,

and this process can be automated for software in GitHub that is formally released.

According to statistics from (Fenner et al., 2018), the largest source of DataCite DOIs for

software is from software in Zenodo. However, software deposits in the form of source

code bundles have been made available in various forms in different scholarly repositories

or digital archives that want to have control of their own data, like the many distribution

platforms mentioned below. Meanwhile, software development has been growing

exponentially over the past half a century, and the tools and platforms that support it have

been evolving at a fast pace, with original content doubling every 22 months, and original

12 See https://researchsoftware.org/ and https://society-rse.org/about/history/

13 See https://www.bnf.fr/fr/le-depot-legal-numerique

14 See the PERSIST project https://unescopersist.org/ and the various projects of the Software Preservation Network for more on this

subject.

https://researchsoftware.org/
https://society-rse.org/about/history/
https://www.bnf.fr/fr/le-depot-legal-numerique
https://unescopersist.org/
https://www.softwarepreservationnetwork.org/

Scholarly Infrastructures for Research Software

 26

commits doubling every 30 months, as shown in Figure 2, taken from the broadest analysis

of software development evolution of which we are aware (Rousseau et al., 2020).

For decades, software source code has been made available by software developers

worldwide essentially through platforms that fall mainly into one of two categories:

Collaborative development platforms

Services that allow the creation and collaborative development of software projects; a few

well-known examples are SourceForge, Gitlab.com, GitHub, and BitBucket.

Distribution platforms

Services mainly used to distribute (versions of) software packages; a few well-known

examples are CPAN, CRAN, CTAN, PyPI, Maven Central, and NPM.

The sudden shutdown of huge development platforms like Google Code and Gitorious.org

in 201515, endangering over one million and a half software projects, brutally reminded all

of us that, surprising as it may seem, none of these platforms was primarily designed as

an archive, meant to preserve for the long term the software source code together with its

development history. These events exposed the urgent need to develop a universal

software source code archive with the mission to collect, preserve, and share the source

code of all software publicly available, with all its development history. As a result of a

combination of circumstances, infrastructures with precisely this mission had started to be

built a few months before, by Software Heritage, an open, non-profit initiative launched by

15 See https://www.softwareheritage.org/2016/09/01/google-code-content-now-safely-collected-in-software-heritage/ and

https://www.softwareheritage.org/2016/07/21/gitorious-retrieved/

Figure 2. Global production of original software artifacts over time, in terms of never-seen-before revisions and file
contents (lin-log scale). Major events in the history of version control systems and development forges are materialised by

vertical bars.

https://www.softwareheritage.org/2016/09/01/google-code-content-now-safely-collected-in-software-heritage/
https://www.softwareheritage.org/2016/07/21/gitorious-retrieved/

Scholarly Infrastructures for Research Software

 27

Inria in collaboration with UNESCO (Abramatic et al., 2018). All those projects were

salvaged in time.

Software Heritage is the only infrastructure designed specifically to preserve in the long

term all software source code with its entire development history, using the same

technology incorporated in modern distributed VCSs like Git or Mercurial (Di Cosmo et al.,

2018; Di Cosmo, Gruenpeter, & Zacchiroli, 2020; Di Cosmo & Zacchiroli, 2017), and it

provides simple and generic mechanisms for archiving and referencing source code in

scholarly publications (Di Cosmo, 2020b).

3.1.2 Publishers

Since Buckheit, Donoho, and others warned about the credibility crisis in scientific research

(Buckheit & Donoho, 1995), the problem of reproducibility has been confirmed by

thousands of scientists from diverse fields (Baker, 2016). This problem is common to many

research disciplines, but it is especially relevant in computational sciences, where in many

cases the result of the research is an algorithm and therefore there is no excuse not to

address reproducibility. From the starting case study of Wavelab (Buckheit & Donoho,

1995) several other works have addressed this topic from the perspective of repeatability

in computer systems (Collberg & Proebsting, 2016), and its relation with research

contributions (Benureau & Rougier, 2018). Note that this problem is not particular to

computational sciences, but to all kinds of research which involves any kind of side

computing. For example, publications on social studies or journals on humanities which

might write their own software to collect data and generate figures to present results.

Several initiatives have been developed to try and provide solutions to this crisis, at

different levels. Peer review of the software artifacts has been introduced, via artifact

evaluation committees and badging schemas (ACM, 2016; Childers et al., 2016;

Krishnamurthi, 2011), and a variety of solutions to archive and reference these artifacts

have been offered by publishers, either via their deposit as ancillary material associated

with the research article (ACM, n.d.), or via publication of software or evaluated research

artifacts in their own right (Seinstra et al., 2015; Smith et al., 2018; Wagner, 2017).

Pioneering journals such as IPOL journal (Image Processing On Line) (Arévalo et al., 2017;

Colom et al., 2015) went much further, building infrastructures to run, evaluate, and

compare algorithms, in the specific field of image processing.

The holy grail of full reproducibility of the executables associated with research articles has

been the object of quite a lot of attention in many disciplines, with a large variety of tools

developed over time, ranging from virtualization or containerization environments, to

notebooks, to fully executable research articles, see e.g. (Konrad Hinsen, 2020; Spagnuolo

& Veltkamp, 2013). A critical survey of the existing solutions and their advantages and

limitations is out of the scope of this report, but we stress here that these efforts are

complementary to the need to properly archive and reference the full corresponding source

code, and do not supersede it.

Several initiatives move towards augmented publications (Barnes, 2010; Clément-Fontaine

et al., 2019; Colom et al., 2019), when the source code and data is a fundamental piece

of the publication, being part of the research work itself by combining text, source code,

and data as a whole (Borgman et al., 2012), and giving to the authors of software source

code the credit they deserve (Alliez et al., 2020; CASRAI, 2015; Di Cosmo, Gruenpeter, &

Zacchiroli, 2020; Smith et al., 2016). This implies changes in the way research is evaluated

(Allen et al., 2017; Childers et al., 2016), given that these items are considered a

significant part of the research work (UNESCO Expert group meeting, 2019). These new

kinds of publishers are encouraged to work tightly with open repositories (Bönisch et al.,

2012) and permanent archives (Abramatic et al., 2018; Di Cosmo, Gruenpeter, Marmol, et

al., 2020) as well as exchanging artifact metadata automatically with standardized

schemas (Burton et al., 2017).

Scholarly Infrastructures for Research Software

 28

3.1.3 Aggregators

Aggregators for research software collect metadata information about software – and in

some cases also the source code – such as persistent identifiers, download URLs, abstracts,

contributors, links to other research products, etc. Information is collected from a variety

of different sources ranging from reference articles to manuals, repositories, and even

other aggregators.

Research software-focused aggregators Aggregators for research software in specific

disciplines such as the swMath service for Mathematics with more than 30.000 curated

entries (Bönisch et al., 2012) or the ASCL service for Astrophysics with over 2.000 curated

entries (Allen & Schmidt, 2015) have been around the longest, but new and lively initiatives

came to life more recently, like the Papers with code initiative in Machine Learning with

over 34.000 entries (Stojnic et al., 2019).

In order to ensure the quality of the information collected, other initiatives rely on a sort

of editorial board, like ASCL for Astrophysics (Allen & Schmidt, 2015). Another remarkable

example is the catalog built by the Plume project in order to collect information about

software that is useful for research activities (The Plume Team, 2013): it maintains a

collection of over 400 entries manually curated about software projects that are

successfully deployed and in use in at least three different research laboratories.

Research software in-context aggregators Software specific aggregators like the one

mentioned above focus particularly on the curation of a collection of software entries, but

software has been attracting attention also of aggregators that were not specifically

designed or built to address software in the first place.

A remarkable actor in this category is DataCite, a DOI registration agency for scholarly

content that has included software in its metadata schema since 201116 and that works

with scholarly repositories like Zenodo that provide DOIs for their deposits. After the

publication of the FORCE11 software citation principles (Smith et al., 2016), it further

updated the schema in 2017, specifically focusing on research software (DataCite Metadata

Working Group, 2017), and as of October 2020, it counts approximately 150.000 DOIs

registered for different software versions of approximately 40.000 different software

projects, mostly via the Zenodo/GitHub integration (Fenner et al., 2018). The main focus

of this effort is on aggregating in a single registry, the DataCite Metadata Store, all the

references to software products, to include them in the DataCite Commons (Fenner, 2020),

or to make them available to other generalistic aggregators, like OpenAIRE, in the DataCite

metadata format, or in other formats, including CodeMeta or schema.org (Burton et al.,

2017), leaving curation and quality control to other actors.

While most aggregators of scholarly publications and metadata, like CORE (Knoth, n.d.) or

Google Scholar, focus on scholarly publications, others are increasingly including in their

underlying information models other research entities such as datasets and software. For

example the OpenCitations initiative has expressed interest in broadening its scope to

cover software citations (Peroni & Shotton, 2020) while OpenAIRE is already harvesting

software related metadata to link it to other scholarly resources and actors into the

OpenAIRE Research Graph (Manghi & Bardi, 2019). Today, OpenAIRE counts 198.000

software entities harvested from Biotools, Zenodo, Figshare, DOE CODE, EGI Application

Database, DataCite sources, which are in turn linked to SoftwareHeritage persistent

16 See for example the publication (Liang & Kai Yong, 2013) referencing a software package used to generate data for the publication

(Liang & KaiYong, 2013).

Scholarly Infrastructures for Research Software

 29

identifiers and original software repositories (e.g. GitHub, BitBucket, etc.). Interestingly,

OpenAIRE has identified (via harvesting and full-text mining) semantic links between

publications and software and ~1.850 links between research projects and software.

Added-value of aggregators The added value of aggregators is twofold. On the one hand

the ability to integrate, harmonize, and offer access to information originating from

different sources, which should otherwise be accessed independently. On the other hand,

the ability of enriching the aggregated content with information that was not available at

the original sources. For example, a variety of approaches have been used to link software

with the relevant research literature: while some workflows fully rely on manual submission

and curation, others also use tools of various degrees of sophistication to help extract

references to software from the scholarly literature in the discipline. Due to the diverse

forms that a mention of software can take in a scholarly work, fully automated extraction

of references is far from being sound and complete (Howison & Bullard, 2015), and there

are different experiments ongoing. For example, the Asclepias project relies on domain-

specific and generic aggregators like PubMed, NASA ADS and CrossRef/DataCite to extract

references to software (Muench et al., 2017), while Papers with code proposes to use

natural language processing and machine learning to help a community effort to build this

correspondence (Stojnic et al., 2019), while OpenAIRE exploits full-text mining to identify

URLs to known software repositories (e.g. BitBucket, GitHub, etc.) into article PDFs and

adds them as relationships into the article metadata, together with the related persistent

URL to SoftwareHeritage.org.

These approaches use research publications as a source of truth to identify relevant

research software, and can produce quality valuable information when leveraging the

quality curation process of the research publications, as is in particular the case of swMath

(Bönisch et al., 2012). Their workflow could be simplified if the publisher directly included,

in the metadata of the article, a persistent identifier for the software projects used,

produced or mentioned in the publication, with appropriate description of the level of

granularity at which the software project is mentioned. This information could be included

in the metadata sent by the publisher to Crossref, or the JATS metadata deposited by the

publisher in full-text archives such as PubMed Central17.

Last, but not least, the growing interest in software from aggregators brings with it at the

same time great hopes for improving the practice of Open Science, and great challenges

due to the potentially disruptive effects that the inevitable emergence of metrics on

software production or citation in the scholarly world might have. On the one hand, the

quality of some of the metrics that have been proposed, e.g. in the Open Science Monitor,

has raised major concerns (Dacos et al., 2018). On the other hand, one would need to

carefully consider all the implications before promoting purely numeric indicators for

software, especially now that a growing international consensus is emerging around

principles that value qualitative criteria over quantitative ones, like DORA (San Francisco

Declaration on Research Assessment (DORA), 2013) or the Hong Kong principles (Moher

et al., 2020).

3.2 Summary of the State of the Art Presentations in the Group

In this section we summarise the key findings that emerged from the exchange sparked

by the presentations of the practices of each participant infrastructure.

17 The Force11 Software Citation Implementation Working Group has undertaken work in this area.

Scholarly Infrastructures for Research Software

 30

3.2.1 Archives

Archiving research software is of importance to ensure that research artifacts are not lost.

At present, various archives with specific discoveries, such as metadata and PID standards,

and different archiving strategies are available for open science and are partly interlinked.

Software Heritage assembles not only research software, but source code in general. It

makes use of systematic harvesting, so no explicit deposit is needed, and uniformly

represents all VCSs, with provenance and traceability. Intrinsic identifiers for software are

used systematically for the over 20 billion software artifacts in the archive, covering all

levels of granularity, such as project status, project release, state of source code, and code

fragment.

HAL, on the other hand, is specific to research software and requires deposit. The service

has extensive, software-specific, metadata and involves human intervention for careful and

manual curation of metadata. Extrinsic identifiers are assigned to the metadata, but

intrinsic identifiers are assigned, via transfer to Software Heritage, to the software source

code itself.

Zenodo assembles mainly research software. Like HAL, a deposit is required, however

deposit automation is possible for users of GitHub that explicitly enable synchronisation

with Zenodo. Metadata can be edited by the owner, and support for more advanced

curation processes is planned. Extrinsic identifiers (DOIs) are assigned to both the project

as a concept, and the software specific release. Integration with Software Heritage is

planned.

Given the diversity in existing software archives, we consider that there is no urgent need

for new infrastructures, but interconnecting the above-mentioned archives and repositories

and the many others that exist or will come into existence should be prioritized. Next step

is to expand the functionalities of existing infrastructures to, for example, automate meta-

data extraction, harmonize software metadata standards, support human curation of

metadata, and support metrics. Guidelines for researchers should explicitly mention

deposit and archival as an important issue.

3.2.2 Publishers

Over the past few years several publishers have led the effort in the transition towards

open access as the predominant model of publication for scholarly outputs. This also paves

a path for fair and affordable conditions from the start for the dissemination of software,

but support for software outside of specialist journals is still limited. The participating

infrastructures reflect a large variety of scopes and strategies, as seen in today’s publishing

business.

Dagstuhl Publishing, instead of explicit support for software in general, focusses on

artifacts supplementing the textual contribution. The software source code is archived

using Dagstuhl’s own storage. Software artifacts are published separately from the related

paper, with their own metadata and DOI. All software artifacts pass an artifact evaluation

and metadata is manually curated.

The eLife journal has implemented open science and reproducibility standards that focus

on use and re-use of software as well as giving credit to software authors. The source code

generated for an article is expected to be licensed under a permissive license and eLife

archives it to the eLife GitHub repository. eLife applies the FAIR principles for software

citations. However, citing software is not common in the Life Sciences sector yet so

schematron (a rule-based validation language for making assertions about the presence or

absence of patterns in XML) is employed during the production process to search the XML

content for software mentions - if the author has not referenced correctly, they are asked

Scholarly Infrastructures for Research Software

 31

to do so. The software metadata is not curated, but quality checks are performed to ensure

the elements required to build a citation are present.

IPOL accepts only free software and open source code and releases its articles under a free

documentation license. The source code is reviewed in detail, focusing on the mathematical

details of the algorithms and checking that the implementation matches accurately the

pseudo-code descriptions in the article. The source code is archived in Software Heritage,

and stored in its own infrastructure. The article and corresponding source code are stored

under the same DOI, and software source code is provided with the SWHID intrinsic

identifier. The metadata is curated via automated verification and credit is given to all

authors and editors of the article, software, and demo editors.

Given the great diversity in strategy, scope and resources of different publishers, there is

a need for a low-barrier-to-entry standard that is easily implemented by all, while allowing

for higher levels of curation to be implemented by some of them (see point (6) in Section

4.1.4 Cite/Credit for details). Also, as authors do not yet understand what is expected from

them to support the four pillars (see Section 2.1.1 Archive, Reference, Describe, Credit:

The Four Pillars), there is an opportunity for publishers to educate authors on the necessity

of sharing software source code and encourage a standard workflow.

3.2.3 Aggregators

Aggregators collect, curate, select, present, and aggregate information about research

software from various sources to improve findability in diverse communities. In general,

the information space data model describes a scientific knowledge graph, whose nodes and

edges conform to known research-related entity types (e.g. publications, data, software,

authors, and organizations). The kind of information collected, the target data sources, its

post-processing, and the data model of the resulting information space, depends on the

target use-case application. Typical applications in the scholarly communication domain

are discoverability (e.g. catalogues), usage statistics, reproducibility, research impact (e.g.

citation indexes), etc. Two main aspects characterise scientific knowledge graph

aggregators (https://doi.org/10.1007/978-3-030-55814-7_16):

Collection of information Aggregators generally collect metadata records, describing

digital or real-world objects, and in some cases the digital object themselves, e.g. scientific

articles (OpenAIRE18, zbMATH19, BASE, Google Scholar, Semantic Scholar20), research data

(e.g. Elsevier Data Search, Google Dataset Search).

Post-processing of collected information Aggregators post-process the information

collected to build the intended information space. Several functional challenges arise,

related with mapping heterogeneous exchange formats, structure, and semantics onto a

common internal representation of the information space data model, but also with

deduplication and creation of identifiers (intrinsic or extrinsic). Also, non-functional

challenges are an issue, related to storage and processing capacity/sustainability.

Aggregators are then characterised by their specific data curation process ensuring quality

of and added-value to the collected data, i.e. by mining, crawling, inferring, editing,

validating, etc.

As examples of aggregators targeting research software we report:

swMATH not only provides access to an extensive database of information on mathematical

software, but also includes systematic linking of software packages with relevant

18 https://www.openaire.eu

19 https://www.zbmath.org

20 https://www.semanticscholar.org

https://doi.org/10.1007/978-3-030-55814-7_16
https://www.openaire.eu/
https://www.zbmath.org/
https://www.semanticscholar.org/

Scholarly Infrastructures for Research Software

 32

mathematical publications (Bönisch et al., 2012). New content is moderated ex-ante as

only software from identified parties is accepted. The software is evaluated, while metadata

is checked to conform with the source code. The metadata is aggregated by editors and is

curated through a semi-automated process. Credit and attribution rely on determination

of the authorship via extraction from the reference article. Whenever possible, a link to the

code archived in Software Heritage is provided.

The OpenAIRE Research Graph is an open and transparent metadata collection bringing in

12,000 trusted scholarly communication sources worldwide, whose content ranges from

publications, datasets, and software to funders, projects, organizations, authors, and

information sources. The Graph data model relies on existing PID systems and promotes

these, but also hosts URLs, cool URLs21, and other local identifiers (from

institutional/thematic repositories, e.g. ArXiv, EuropePMC, etc.). With respect to research

software, descriptive metadata is collected from scholarly sources, e.g. institutional

repositories, research software repositories (e.g. EGI AppDB, DEO-CODE), and crawled

from software repositories when, as a result of data mining article PDFs, a link from an

article to a software repository is identified. Data quality is delegated to data sources and

managed via metadata harmonization and context-propagation. As an orthogonal but key

activity for software metadata aggregation, OpenAIRE created the Guidelines of Software

Repositories22, a metadata profile based in DataCite that focuses on Research Software.

ScanR is a search engine that is specific to research productions, which can be in the form

of a publication, PhD, patent, or software. ScanR interlinks objects that are associated with

each other using IDs from different registries. Articles are scanned for pieces of software

by scanning for GitHub URLs and, if found, linking to Software Heritage. Currently, the

metadata is not curated.

3.3 Best Practices and Open Problems

Following the description of the current state, best practices were identified that the TF

believes should be implemented in the ideal Scholarly Infrastructure for Research Software,

supporting the future EOSC.

The section covers the best practices for all four pillars (see Section 2.1.1 Archive,

Reference, Describe, Credit: The Four Pillars). For each best practice, we indicate which

pillar is concerned, what the current status of the best practice is, what gaps should be

addressed, and what kind of action needs to be taken to overcome the gaps (research,

development, deployment, adoption). Note, any concerns that apply to the three

representative groups are addressed in Section 3.4 Cross-cutting Concerns and not

repeated in the tables of each group.

3.3.1 Best Practice Principles for Archives

The workgroup on archives identified several gaps that need to be addressed to aid the

ideal infrastructure. First, as one does not need to reinvent the wheel, the archival

community should agree on an overall architecture to integrate existing infrastructures.

Next, the software archiving workflow needs automation and should be integrated with the

development platforms. Automation of the workflow will be facilitated by standardisation

and harmonisation of different processes within the workflow, mentioned in the table

below. Additionally, software citations should be promoted and metrics should be

supported. Last, the ideal architecture interconnecting a variety of infrastructures for

research software needs inclusiveness of archives for both open software, as well as non-

open software, and the ability to ensure the universal archival and reference of the source

21 See https://www.w3.org/TR/cooluris/

22 https://software-guidelines.readthedocs.io/en/latest/

https://www.w3.org/TR/cooluris/
https://software-guidelines.readthedocs.io/en/latest/

Scholarly Infrastructures for Research Software

 33

code of all software, not just research software. This clearly leads to an architecture with

a Universal Software Archive that archives all publicly available software source code, and

a variety of scholarly repositories that connect with the Universal Software Archive on one

side, and offer services specific to the academic community on the other side.

Addressing the above-mentioned gaps, the following best practices were identified:

Best practice Pillar Status Gaps Priorities

Inclusiveness of archive
(also non-open and non-

research software)

Archive Software
Heritage (building

the Universal
Software
Archive), and a

broad spectrum
of scholarly
repositories

Interconnection Development

Automation of software
archiving workflow and
integration with
development platforms

Archive Preliminary work
done

Cover the long tail
of development
platforms

Development

Software-specific

category supported in
search filters

Archive

Description

Different

implementations
available

Harmonization Adoption

Identifiers for software
projects and artifacts

Reference Multiple solutions
available (see

(Gruenpeter et

al., 2020)

Clear guidelines
on when to use

intrinsic and/or

extrinsic PIDs

Research

Harmonization

Adoption

Explicit tracking of
versions of software
artifacts

Reference

Description

Different
approaches
available
(depending on
philosophy)

Better
understanding of
how to track
different kinds of
versions, in

Software Heritage
and in scholarly
repositories

Harmonization

Explicit tracking of
versions of metadata

Description Some archives
keep this
information

internally

Make this
information
available

externally

Development

Metadata moderation
and/or curation

Description

Credit

Some
repositories

implement
specific workflows

Harmonization of
practices, and

implementation of
the workflows

Research

Metadata licensing with
aim for an open license
CC0

Description Implemented Awareness Adoption

Guidelines for software
archiving

Description

Credit

Multiple
available:

depends on the
goal sought

Harmonization Research

Support software citation Credit Recommendation
s are available at
different levels

Quality of
metadata
(attribution in

particular)

Research

Development

Scholarly Infrastructures for Research Software

 34

Proper
bibliographic
styles (bibtex
entries only
recently made
available for

BibLaTeX)

3.3.2 Best Practice Principles for Publishers

A lot of variety is found between what each publisher does, and little support for software

is found outside specialist journals. Also, authors do not yet understand what is expected

of them to support the four pillars (see Section 2.1.1 Archive, Reference, Describe, Credit:

The Four Pillars). These are some of the open problems identified by the subgroup working

on journals.

To overcome these issues, the following best practices were identified:

Best practice Pillar Status Gaps Priorities

Support and guidance for
authors regarding
referencing and archiving
source code during
submission

Archive

Reference

Describe

Credit

Sometimes
addressed,
but costly
and time
consuming

Education and
training

Development

Use of VCSs to write code Reference

Describe

Credit

Code hosting
platforms are

not archives

Awareness of code
hosting platforms

Adoption

Automatic posting of code
to an archive on
publication

Archive

Reference

Describe

Credit

Not yet
adopted

Awareness of
differences and
links between code
hosting platforms

and archives

Adoption

Simple to use tools or
guidelines to cite and
reference software
produced or used

Credit Requirements
understood,
but
development
in infancy

Tool availability
Education

Development

Quality control / peer
review of artifact in

conjunction with
associated article/dataset

Credit
(reviewer)

Describe

Status limited
to

Computationa
l Sciences
discipline

Recognition of the
value of this

(resource to
support this
limited)

Lack of
multidisciplinary

skills (software
engineering and
scientific discipline)

Adoption

Submission procedure
regarding code and

software

Credit

Describe

Reference

No standard
yet

Lack of governance

Education

Development

Adoption

Scholarly Infrastructures for Research Software

 35

3.3.3 Best Practice Principles for Aggregators

Aggregators of research software information are hindered in their efforts to provide a

proper open software infrastructure by foundational issues concerning the identification,

description, and exposure of research software. The tools typically used to create and

maintain software are not always designed to support the needs of scholarly

communication, and a lack of agreement on common practices has led to the use of a

variety of metadata schemes and a misalignment between the metadata associated with

code repositories and that required for scholarly purposes. Inconsistent use of PIDs

complicates the unique identification of software and the proper attribution of credit.

Building aggregators for software is consequently a painful process — even what

constitutes research software is not straightforward to define. The following best practices

have been identified to address these issues:

Best practice Pillar Status Gaps Priorities

Software defined as a
specific class at similar

level of datasets and
article publications

Archive

Reference

Describe

Credit

Software is
not always

described as
separate
entity

Not always
possible to

describe
granularity
correctly

Deployment

More disciplinary
discovery resources

Archive

Reference

Describe

Credit

Some exist
(e.g.
swMATH,
BioTools)

Similar
approaches
should be
advocated in

other
communities

Offer solutions
as a “package”
(workflows,
policies, tools)

to facilitate
diffusion

Definition

Ensure each software
entry has a link to a
long-term archive

Archive

Reference

Embryonic Lacking
adoption

Adoption

Promote usage of PIDs Reference Several
established
systems of
identifiers are
available
(Gruenpeter

et al., 2020)

Lacking
adoption

Adoption

Interlinking software
(via PIDs) to other
research entities (e.g.
publications, datasets,
services, authors)

Describe

Credit

Some
metadata
formats
provide
possible

solutions (e.g.
DataCite,
CodeMeta,
Scholix)

Agreed-on
practice/seman
tics is missing

Definition,
endorsement, and
adoption

Scholarly Infrastructures for Research Software

 36

Promote CodeMeta Describe

Credit

Source code
may be found
in several
places, with
different
possibly

inconsistent
or conflicting
metadata

Common
metadata
standard

Crosswalks
between
different

software
metadata
standards

Missing
engagement
with repository
platforms to

establish
metadata
frameworks for
software

Adoption

Metadata collection
protocols (APIs)

Reference

Describe

There is no
general

agreement on
which
protocols
should be
used to share
research

software
metadata and
code

Aggregators
need to face

the complexity
of supporting
(and
maintaining)
code to collect
metadata (and

code)
information
about software
via different

protocols (and
formats)

Definition,
endorsement, and

adoption

3.4 Cross-cutting Concerns

This section presents the cross-cutting concerns identified looking at the results of the

subgroups working on archives, journals, and aggregators/catalogues. For each item, we

try to indicate possible ways of addressing it, either through existing solutions, or via future

work.

3.4.1 Metadata

Proper description of software artifacts is needed across the line. It is essential for the four

pillars (see Error! Reference source not found.) in FAIR. For metadata, the following c

ommon requirements have been identified:

What Candidate solutions ARDC FAIR

Machine readable, standard
format

schema.org23, CodeMeta24,
SPDX25

D F

Roles for authors/contributors (Alliez et al., 2020) C

23 https://schema.org/

24 https://codemeta.github.io/crosswalk/

25 https://spdx.dev/specifications/

https://schema.org/
https://codemeta.github.io/crosswalk/

Scholarly Infrastructures for Research Software

 37

Licence information (metadata) CC0 D R

Licence information (software) SPDX license list26 D R

Linking to other research
outputs

ensure appropriate terms are in
the metadata schema (e.g.

referencePublication for
publications in CodeMeta) with
appropriate identifiers for the
other research outputs (e.g.
DOIs for publications)

D FIR

3.4.2 Identifiers

Proper identification of software artifacts is needed across the line. It is essential for the

R(eference) and C(ite) from the four pillars (see Section 2.1.1 Archive, Reference,

Describe, Credit: The Four Pillars), and for the A(ccessible) in FAIR. The following common

requirements have been identified:

What Candidate solutions ARDC FAIR

intrinsic/decentralised for
reproducibility

SWHID27 RC FA

support versions and all sw
granularities

various (intrinsic and extrinsic) RC FA

persistent (for extrinsic identifiers) various RC FA

standardised various (intrinsic and extrinsic) RC FA

For an introduction to intrinsic and extrinsic identifiers, see this dedicated blog post28. For

a deeper analysis, see (Di Cosmo et al., 2018; Di Cosmo, Gruenpeter, & Zacchiroli, 2020).

3.4.3 Quality and Curation

At various degrees, the issue of the quality of the metadata about software and/or of the

software itself emerges for all actors. The following facets of quality have been identified:

What Candidate solutions ARDC FAIR

Deduplication of software source
code

Intrinsic identifiers (SWHID29) RC

Human curation of metadata Various (see HAL30, swMath31, …) DC FR

Evaluation of software source

code

Various (see IPOL32, AEC33, DARTS34, …) DC

Plagiarism detection Manual inspection, SWH scanner C

26 https://spdx.org/licenses/

27 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

28 https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/

29 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

30 https://dx.doi.org/10.2218/ijdc.v15i1.698

31 https://link.springer.com/chapter/10.1007/978-3-662-44199-2_103

32 https://www.ipol.im/

33 https://www.artifact-eval.org/

34 https://www.dagstuhl.de/en/publications/darts/

https://spdx.org/licenses/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://www.softwareheritage.org/2020/07/09/intrinsic-vs-extrinsic-identifiers/
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://dx.doi.org/10.2218/ijdc.v15i1.698
https://link.springer.com/chapter/10.1007/978-3-662-44199-2_103
https://www.ipol.im/
https://www.artifact-eval.org/
https://www.dagstuhl.de/en/publications/darts/

Scholarly Infrastructures for Research Software

 38

(forthcoming)

Provenance, source of authority Keep information about who
produced/curated the metadata, how,
and when; this may include a reference
to articles that describe the algorithm or

the artifact itself; keep the history of
modifications of the metadata

DC R

Since not all stakeholders/disciplines are able/willing to implement all these levels of

curation and quality control, one should provide a clear indicator of the quality

control/curation level implemented. A possible idea to look at is the ACM Badging35 schema.

3.4.4 Metrics

As for all research outcomes, it will be useful to provide metrics to cater to the needs of a

variety of actors for software too. The group agrees that these metrics should be open,

verifiable, and shareable.

Nonetheless, scholarly indicators about software cannot be simply reduced to the number

of citations of a particular software (or version of) in the scholarly literature, for a variety

of reasons. First, there is still no widely adopted standard to cite software: surprising as it

may seem, while TeX and Bib(La)TeX have been standard tools for more than a generation

of researchers, a full-fledged bibliographic style supporting software as a first class citizen

was made available for BibLaTeX users only in 2020 (Di Cosmo, 2020b). Second, important

software libraries on which many research software depend may not be cited directly

(Chawla, 2016; Zhao & Wei, 2017). Third, research software may have a significant impact

outside of academia, where scholarly citations simply do not count. Last, but not least, the

value of the contribution contained in a piece of a software does not necessarily relate to

its popularity, or amount of reuse36.

For all these reasons, we believe that a variety of metrics need to be developed, and

properly assessed for their quality and impact, before being promoted widely. To this end,

it will be necessary to bring together a broad spectrum of expertise, and include in the

conversation representatives of the research community that will be directly impacted by

the creation of these metrics.

3.4.5 Guidelines

A general need for actionable, standardised guidelines is seen across the line:

 for researchers/developers that self-archive software

 for researchers/developers that submit software in a publication workflow

 for reviewers/moderators that curate software metadata

 for reviewers/moderators that evaluate software itself

 for publishers that handle software in their publication workflow

35 https://www.acm.org/publications/policies/artifact-review-badging

36 Here is a very well-known example of an extremely popular tiny piece of source code https://arstechnica.com/information-

technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/

https://www.acm.org/publications/policies/artifact-review-badging
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/

Scholarly Infrastructures for Research Software

 39

Over the past years, several individuals, institutions and working groups have been

documenting existing processes or proposing new ones (Alliez et al., 2020; Di Cosmo,

2020b; Di Cosmo, Gruenpeter, Marmol, et al., 2020; Gruenpeter & Sadowska, 2018; Katz

et al., 2020; Smith et al., 2016). These approaches, of various degrees of generality and

maturity, should be compared and tested, integrating feedback from the research

community.

3.4.6 Tools and Workflows

Guidelines have usually little effect without proper tools to support them. Here are a few

shared concerns about these tools:

 added value for the researcher: any action demanded on the researcher side should

provide immediate value for the researcher themself.

 automation: of tasks that do not require human intervention (e.g. triggering archival of

new software releases).

 avoid duplication: the same information should not be entered in different

formats/places.

 information preservation: tools and workflows should manipulate machine readable

information and preserve it along the way.

 validation: metadata should be validated early with regard to the specified schemas. As

an example, this is the approach taken in the CodeMeta generator tool37 contributed by

Software Heritage.

 separation of concerns: classical notions of separation between data model and

presentation layer apply. See for example the preparatory work38 done to produce the

biblatex-software package39 that supports software citation.

37 https://codemeta.github.io/codemeta-generator/

38 https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-/blob/master/README.md

39 https://ctan.org/pkg/biblatex-software?lang=en

https://codemeta.github.io/codemeta-generator/
https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-/blob/master/README.md
https://ctan.org/pkg/biblatex-software?lang=en

Scholarly Infrastructures for Research Software

 40

4 THE ROAD AHEAD

In this section we present the general requirements for the architecture of interconnected

scholarly infrastructures supporting archival, reference, description, and citation of

(research) software source code. The special uppercase terms like MUST and SHOULD have

the specific meaning defined in RFC 2119 (Bradner, 1997), and recalled in Section 6.1

Glossary.

The high-level view of the architecture is depicted in Figure 3.

The base layer of the architecture is the Universal Software Archive, that targets all

software source code and not just the source code deposited through the scholarly

repositories. This is necessary to deal with the specificities of the software world, where

software source code developed by researchers is only a thin layer on top of a complex

web of tightly intermixed components and dependencies (see Section 2 Introduction and

Figure 1). It also allows to share standards and approaches, as well as the necessary

efforts, with the broader software development and preservation ecosystems, that includes

a variety of actors, ranging from industry to public administration and cultural heritage.

This Universal Software Archive is built and maintained by Software Heritage, an

international non-profit open organization started by Inria in 2015, in collaboration with

UNESCO: it brings together a growing, broad spectrum of stakeholders, ranging from

industry to academia and public administrations, that support its mission to collect,

preserve and make accessible for the long term, with its complete development history,

the source code of all software publicly available; see (Abramatic et al., 2018; Di Cosmo &

Zacchiroli, 2017) for a presentation of the approach and principles behind Software

Heritage.

A variety of different ecosystems are building applications on top of this basic layer, ranging

from industry (Yates, 2019) to public administration (DINUM, n.d.) and cultural heritage

(Bussi et al., 2019). In this report, we focus on the scholarly ecosystem, with scholarly

Figure 3. Architecture of interconnected scholarly infrastructures supporting archival, reference, description and citation of

(research) software source code.

Scholarly Infrastructures for Research Software

 41

repositories where research software may be deposited explicitly, publishers that may link

publications with the source code of the associated software, and aggregators that offer

researchers a broader view of the available information.

4.1 General Requirements

Components needed to implement basic ARDC functionalities, and their interactions.

4.1.1 Archive

Objective

Support reproducibility, verifiability, and reusability of research results:

 ensure research software artifacts are preserved in the long term

 ensure source code of all their dependencies and associated tools are also archived (K.

Hinsen, 2019)

Components

1. Universal Software Archive: specifically designed for software source code

● proactive archival of all software source code (including all dependencies of

research software)

● faithful representation of the complete history of development in the original

VCSs, including:

○ commits

○ releases

○ tags

○ fork and merge operations

○ their associated metadata (commit messages, etc.)

● ability to trace software provenance across multiple projects

● export of any software artifact (if no other copy is available)

2. Scholarly repositories

● explicit deposit by identified individuals of one or more of the following:

○ software bundles with associated extrinsic metadata

○ extrinsic metadata associated with an artifact already existing in the

universal archive

● non-public deposits and/or embargo periods

● editing of extrinsic metadata

● (optional) moderation of extrinsic metadata

● download of the deposited bundle (as-is) and the associated metadata

Component Interactions

1. Repositories MUST feed the universal archive

● all public explicit deposits are integrated in the universal archive

○ software bundles and/or extrinsic metadata sent to the archive

■ in case of bundles extracted from a VCS, archival of the full

VCS in the universal archive should be triggered

○ reference identifier is returned to the repository, that exposes it

Scholarly Infrastructures for Research Software

 42

2. Repositories SHOULD keep a local copy

● may be mandated by institutional, national, or regional policies

● download more efficient via the repository than via archive export

3. Universal archive MUST keep track of the origin of the deposit

4. Universal archive MUST provide provenance information to the repository

● support disambiguation of repository deposits

Long term preservation of the Universal Software Archive

While the main focus of this section is to detail the interconnection with scholarly

infrastructures, it is important to also address the issue of long-term preservation for the

Universal Software Archive: the best way to guarantee it is by its replication and

diversification through a geographically distributed network of mirrors, implemented using

a variety of storage technologies, controlled by different institutions. Mirrors must preserve

source and all related information: the development history, their revisions, which carry

precious insights into the structure of programs and track inter-project relationships. A

reliable network of mirrors of the Universal Software Archive built by Software Heritage

represents therefore a fundamental component of the infrastructure architecture which

must be implemented from the very beginning.

4.1.2 Reference

Objective

Support reproducibility and verifiability of research results:

● ensure unambiguous identification of one or more of the following:

○ a software artifact, optionally in its context

○ the associated metadata

Components

1. Intrinsic identifiers

Specifically designed for software source code, minimal trusted base (only the

algorithm needs to be agreed upon)

● decentralized, independent identification of all software artifacts, including

files, directories, commits, releases, tags and snapshots

● decentralized, independent verification of the associated software artifacts:

○ technical impossibility to change the object associated with an

identifier independently of administrative processes

(cryptographically strong hashes)

● built-in identification of duplicates

● compatibility with broadly accepted industry standards

2. Extrinsic identifiers

Register based, require structured administrative oversight

● repository controlled identification of explicit deposits and their associated

metadata

● identification of non-digitally native information, in particular:

○ the notion of a software project, as opposed to a specific software

artifact

Scholarly Infrastructures for Research Software

 43

● editing of the metadata associated with a deposit without changing the

identifier compatibility with the traditional workflow in scholarly ecosystem

Trust Model

It is important to notice that intrinsic and extrinsic

identifiers have very different characteristics when it

comes to the trust model involved. Extrinsic systems

of identifiers require an infrastructure that supports

the operations related to the registry that contains

the association between the identifier and the

(metadata that describes the) object that it

designates. The persistence and faithfulness of the

association of an identifier with a designated object

depends on third parties that need to be trusted40, as

shown by (a) and (b) of Figure 4 that we reproduce

here from Section VI of (Di Cosmo, Gruenpeter, &

Zacchiroli, 2020). Intrinsic identifiers do not need

such an infrastructure at all: the only trusted

component is the algorithm that is used to compute

the identifier from the object itself. This is one of the

main reasons why one should never replace an

intrinsic identifier with an extrinsic identifier, when

both are available for a digital object.

Requirements

 All references to a publicly available software

artifact MUST include a qualified intrinsic identifier; references to a non-publicly

available software artifact SHOULD include an intrinsic identifier.

 References to research software artifacts that are explicitly deposited in a scholarly

repository MUST include the corresponding extrinsic identifier.

 References to software projects that are not software artifacts MUST include a qualified

extrinsic identifier.

Recommendations on Identifier Systems

 Use formally specified, open, non-proprietary, version control independent intrinsic

identifiers: SWHIDs41 are recommended.

 Use formally specified, open, persistent, non-proprietary extrinsic identifiers.

The joint FORCE11/RDA Software Source Code Identification WG has recently released a

comprehensive report that details the various use cases and existing approaches for

identifying software source code (Gruenpeter et al., 2020). DOIs have a distinct advantage

among the various systems of extrinsic identifiers because they have a critical level of

adoption in the scholarly publishing world. We recommend that an inclusive approach is

explored to guarantee that existing well-established extrinsic identifiers are taken into

40 This fact is clearly stated, for example, in the specification document of the Handle system, of which DOI is an instance: “The only

operational connection between a handle and the entity it names is maintained within the Handle System. This of course does not guarantee

persistence, which is a function of administrative care.” (Sun et al., 2003)

41 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Figure 4. Trusted third parties (shown as

rounded red boxes) for software artifact

retrieval and verification in three different

scenarios.

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Scholarly Infrastructures for Research Software

 44

account, and we refer to the “PID Architecture for the EOSC” document for further details

of implementation in the EOSC (Schwardmann et al., 2020)42.

4.1.3 Describe

Objective

Support discoverability of (research) software artifacts

Components

1. Metadata

○ intrinsic: found in the source code itself

○ extrinsic: created via a deposit, publication, or aggregation process

2. Vocabularies and ontologies

3. Tools to create, edit, validate, and convert metadata

4. Registries to store metadata

Requirements

In order to support interoperability:

1. Metadata MUST be made available in a machine-readable form using a standard

vocabulary adapted for software. CodeMeta (Jones et al., 2016) is a good candidate

for the following reasons:

● extension of the schema.org43 standard

● extensive vocabulary designed to allow mapping to other metadata

vocabularies44 (including CFF45 and many others)

● embryonic community process to extend it

2. Intrinsic metadata MUST be created and stored according to recognised best

practices in software development46.

3. Metadata SHOULD support relations:

● versioning (part of same software, new version, etc)

● relations with other research objects (papers, etc)

● relations with other identifiers (DOI vs SWHID)

4. Information specific to a software artifact SHOULD be in the intrinsic metadata

● ensures authors/developers maintain it

● reduces metadata entry effort and copy and paste errors when a deposit is

made

42 Bibliography entry will be added when the report on “PID Architecture for the EOSC” is published.

43 http://schema.org/

44 https://codemeta.github.io/crosswalk/

45 https://citation-file-format.github.io/

46 See for example https://reuse.software/ and https://www.tldp.org/HOWTO/Software-Release-Practice-HOWTO/.

http://schema.org/
https://codemeta.github.io/crosswalk/
https://citation-file-format.github.io/
https://reuse.software/
https://www.tldp.org/HOWTO/Software-Release-Practice-HOWTO/

Scholarly Infrastructures for Research Software

 45

Recommendations

 Publishers MUST ensure that software associated with the publication is equipped with

proper metadata

 Scholarly repositories SHOULD provide the necessary means to support metadata

curation

4.1.4 Cite/Credit

Objective

Give credit to the authors of research software, as advocated in (Smith et al., 2016),

supporting an objective and quality assessment of individual contributions, and improving

the current practice, that is far from being satisfactory (Howison & Bullard, 2015; Pan et

al., 2019; Zhao & Wei, 2017).

Components

1. Classification of contributor roles for research software

A detailed proposal based on a decade long experience at INRIA and CNRS in France

is available in (Alliez et al., 2020), where the following roles are identified:

● architecture

● coding

● debugging

● design

● documentation

● maintenance

● management

● support

● testing

2. Bibliographic citation data model adapted for software

This is the subset of software metadata needed for producing a citation in all

contexts of interest. A proposal from the Inria software citation working group is

available at https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-

/blob/master/swentry.org. A link to an external source should be used for the rest

of the software related metadata (e.g. the affiliation, address, and roles of the

authors need not be part of the citation data model). This link can be a PID pointing

to a record in a registry (for example, a DOI giving access to the extensive DataCite

metadata collection (DataCite Metadata Working Group, 2017), an institutional

repository identifier like the one provided by HAL (Di Cosmo, Gruenpeter, Marmol,

et al., 2020), or a discipline-specific identifier like the ones that have been used for

astrophysics software for decades (Allen & Schmidt, 2015)

3. Machine readable representation of the data model

A proposal from the Inria software citation working group for the Bib(La)TeX data

format is available at https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-

/blob/master/swentry.org.

4. Citation styles for typesetting the citation data

https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-/blob/master/swentry.org
https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-/blob/master/swentry.org
https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-/blob/master/swentry.org
https://gitlab.inria.fr/gt-sw-citation/bibtex-sw-entry/-/blob/master/swentry.org

Scholarly Infrastructures for Research Software

 46

A full-fledged citation style specifically designed for software is available on CTAN

in the biblatex-software package47 (Di Cosmo, 2020a); it is implemented in a

modular way, so it can add support for software citations to any of the other

hundreds of citation styles available for BibLaTeX users. This reference

implementation of a software citation style may be used as a touchstone for adding

support for software in existing citation styles.

5. Plagiarism detection mechanisms

As research software becomes an evaluated item, plagiarism is inevitably bound to

emerge, and proper tools to detect it are needed. Similar tools are used in industry

for license compliance, a very expensive process. Lighter tools can be provided by

Software Heritage. As a minimum, standard manual checks should be done by the

publishers

6. (optional) Expert peer evaluation

Several levels of peer evaluation can be implemented:

● best: a process that ensures sufficient quality of research software forming

an integral part of an accepted scientific publication (see the Artifact

Evaluation process popular48 in Computer Science conferences, as published

for example in the Dagstuhl Artifacts series (DARTS)49, the ACM Badging

schema50, and the practice of the IPOL Journal51)

● good: a process that ensures that research software is novel, developed,

and documented properly, and works as expected (see e.g. the criteria of

the Journal of Open Source Software52)

● medium: a process that ensures that research software can be actually

installed and used to produce the results published in a research article (see

e.g. the Reproducibility Label53, and the CODECHECK proposal54)

● minimal: a process that ensures software is properly archived and well

referenced in the publication without any review of the source code

4.1.5 Easing Adoption

A few guiding principles apply across all the architecture to ease adoption and improve

data quality:

● added value for the researcher: any task required of the researcher should provide

immediate value for the researcher themself

○ e.g.: automatic generation of bibliographic entries, curricula, or form filling

○ e.g.: transparent and verifiable metrics (downloads, views), possibly

aggregated across repositories

● metadata validation: metadata that may be used for credit or evaluation should

undergo human validation

47 https://www.ctan.org/tex-archive/macros/latex/contrib/biblatex-contrib/biblatex-software

48 https://www.artifact-eval.org/about.html

49 https://www.dagstuhl.de/publikationen/darts/

50 https://www.acm.org/publications/policies/artifact-review-badging

51 https://www.ipol.im/

52 https://joss.readthedocs.io/en/latest/review_criteria.html

53 https://rrpr2018.sciencesconf.org/resource/page/id/5

54 https://codecheck.org.uk/process/

https://www.ctan.org/tex-archive/macros/latex/contrib/biblatex-contrib/biblatex-software
https://www.artifact-eval.org/about.html
https://www.dagstuhl.de/publikationen/darts/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.ipol.im/
https://joss.readthedocs.io/en/latest/review_criteria.html
https://rrpr2018.sciencesconf.org/resource/page/id/5
https://codecheck.org.uk/process/

Scholarly Infrastructures for Research Software

 47

● avoid duplication: the same information should not be entered in different

formats/places, and in particular:

○ users should not be required to manually enter information that can be

extracted from machine readable metadata

● actionable guidelines: guidelines should provide easy to follow and implementable

steps

● favour automation and integration among infrastructures

4.2 Exemplarity Criteria for Participating Infrastructures

Funding agencies and public bodies are looking at exemplarity criteria for funding open

scholarly infrastructures (Bilder et al., 2015), and have started to roll out guidelines on

how funding decisions related to scholarly infrastructure should be made. In the Open

Access area, for example, one can find general principles shared among organizations like

COAR and SPARC (COAR & SPARC, 2019), GO-FAIR, or the French NFSO (French National

Committee for Open Science, 2019).

Many of these criteria concern the openness and availability of the metadata associated

with the scholarly output: these are clearly relevant to our setting, and we incorporated

them in the design of the architecture presented in this section. Other criteria concern the

openness, sustainability, transparency, and governance of the infrastructures themselves.

We sum up here the criteria that the WG believes are of particular importance for scholarly

infrastructures that handle software of interest for research.

Openness

 metadata should be accessible in a standard format and under a CC0 license

 access to the metadata and the data should be possible through an open API using

standard protocols and without identification

 aggregated metadata should be available “as open as possible as closed as necessary”

(e.g. to respect GDPR regulations)

 the infrastructures should be built from stable existing open source software building

blocks, and all the software of the infrastructure should be available under an open

source license

 communications and data exchange use open standards for data formats and protocols

 the infrastructure should be hosted and run by a non-profit organization to avoid risk of

proprietarisation

Governance

 clear definition of governance bodies

 procedures for the selection of governance bodies’ members are clearly and publicly

stated

 procedures for participation are clearly and publicly stated

Scholarly Infrastructures for Research Software

 48

Sustainability

 the general operation of the infrastructure or platform is not based on the financing of

one-off projects

 a plan for long term availability of the service exists and is made public

 an exit strategy that could give continuity to the data and metadata beyond the life of

the service

Transparency

 terms of use are clearly and publicly stated

 sources of funding are clearly and publicly stated

4.2.1 Accommodating Innovation

New innovative services may appear in the future, and one of the goals of the architecture

proposed here is to make it possible for these innovations to be included easily.

This is made possible by the fact that the proposed architecture relies on open standards

and open formats for the communication and exchange of information between the various

components. In particular, we are proposing to adopt a common open standard for

exchanging metadata (CodeMeta), a common open standard for intrinsic identifiers

(SWHID), to recommend the use of open APIs, and the availability of the source code of

the infrastructures themselves as open source.

This way, if new innovative services for archival, publishing, or aggregation emerge, they

will be able to interoperate seamlessly with the other existing components of the

architecture.

4.3 Possible Workflows

In this section, we provide more details about reference scenarios that have been

identified, together with the corresponding sequence diagrams that allow visualisation of

the steps involved.

In the following, we distinguish the following roles:

 research team: develops or users of software source code; interested in ARDC

 forge: code hosting platform used for collaborative development of the source code

 publisher: academic publishing entity (article and/or source code review)

 scholarly repository: repository run by a research institution (e.g. HAL, Zenodo)

 catalog/aggregator: (e.g. OpenAIRE, swMATH, Scanr)

 SWH: The Software Heritage universal source code archive

 data source: source of input (publications, metadata) for aggregators

Scholarly Infrastructures for Research Software

 49

4.3.1 Self-Archiving

A research team self-archives a software artifact. As already described in the Archive

section55, this can be done directly in SWH, or through an Scholarly Repository, which may

or may not support a certain level of quality review/curation of the metadata of the source

code.

Archive from Forges in SWH (Manual and Automated)

The simplest variant for teams that develop their software using publicly accessible code

hosting platforms. The research team checks whether (the latest version of) its software

project is already archived in SWH, requests its archival if needed, and then gets the

corresponding SWHID. The request for archival may be submitted manually, or

automatically, as part of a release process, or continuous integration process, via the SWH

API. This corresponds to the workflow described in detail in (Di Cosmo, 2020b).

The workflow described in the above diagram can be applied not only to a specific software

project developed by a particular research team, but to any publicly available software

project on a code hosting platform.

Automated deposit of New Releases into Scholarly Repository and SWH (Manual

and Automated)

If the research team has a clear release process in place, and has chosen a designated

scholarly repository, it may be possible to automate the process of deposit in a scholarly

55 https://hackmd.io/LmSc9a3rRUWkYWQx5MIo9g#markdown-header-archive

https://hackmd.io/LmSc9a3rRUWkYWQx5MIo9g#markdown-header-archive

Scholarly Infrastructures for Research Software

 50

repository, which may trigger a new moderation of the updated content (like what happens

with the deposit of new versions of a research article in ArXiv or HAL).

The workflow above, except for the moderation and archival in SWH, has been

implemented to connect the GitHub forge with Zenodo.

Deposit Bundle Through an Scholarly Repository

A research team explicitly deposits a software bundle (.tar.gz, .zip, etc.) and associated

metadata into a scholarly repository. The scholarly repository may implement a moderation

mechanism to ensure a certain level of quality of the deposit (deduplication, affiliations of

the team members, coherence of the metadata, etc.). Once accepted, the bundle and

metadata are archived in SWH, either immediately, or at the end of the optional embargo

period.

The sequence diagram below represents the steps already implemented (except for the

optional deduplication) by HAL56, the French national open access repository, and described

in detail in a dedicated research article (Di Cosmo, Gruenpeter, Marmol, et al., 2020).

56 https://hal.archives-ouvertes.fr/

https://hal.archives-ouvertes.fr/

Scholarly Infrastructures for Research Software

 51

The simplified workflow obtained by removing the moderation step is currently being

considered for interconnecting InvenioRDM57 with SWH.

Registering Already Archived Software in a Scholarly Repository

A research team may need to register an artifact that has been already archived in SWH

in a scholarly repository. To avoid duplication of work, machine readable metadata

contained in designated files in the source code should be used to prefill the metadata

deposit form. This workflow is currently being implemented in the HAL58 open access

repository.

57 https://invenio-software.org/products/rdm/

58 https://hal.archives-ouvertes.fr/

https://invenio-software.org/products/rdm/
https://hal.archives-ouvertes.fr/

Scholarly Infrastructures for Research Software

 52

Updating Existing Metadata in a Scholarly Repository

A research team may also need to update the metadata registered in a scholarly repository

about an already archived software artifact. This workflow is currently being implemented

in the HAL59 open access repository. Zenodo also allows the uploaders to update the

metadata, and foresees curation features in the future.

59 https://hal.archives-ouvertes.fr/

https://hal.archives-ouvertes.fr/

Scholarly Infrastructures for Research Software

 53

Previous versions of the metadata record should be recorded and available, together with

information on who changed what, when, and why.

4.3.2 Scholarly Publication with Associated Source Code

In this scenario, a research team submits an article with associated software source code

to a publisher. Several variants are possible, depending on the level of review/curation

that the publisher implements. We detail a few of the relevant cases.

Source Code Fully Handled on the Author Side

The publisher does not implement any dedicated workflow for the review/curation of the

source code and/or of the associated metadata. In this case, the research team self-

archives the relevant source code, following any of the self-archiving workflows described

above, and includes the proper identifiers in the final version of the publication.

Publisher Implements Review on Publicly Available Source Code Hosted on Public

Forge

The publisher supports a certain level of quality review/curation of the source code and/or

of the associated metadata. The workflow does not detail the review process, which may

vary depending on each publisher’s chosen workflow, but we remark that access to

unmodified source code is necessary to the review, and for publicly available source code

this implies that the identity of the authors of the code is necessarily exposed. This makes

it impossible to implement double anonymous review of source code (i.e. the authors do

not know the reviewers, and the reviewers do not know the authors). As a consequence,

one can find either review processes where the authors are fully known to the reviewers

(the most common option in journals, see for example what IPOL60 does; it can be open

60 https://www.ipol.im/

https://www.ipol.im/

Scholarly Infrastructures for Research Software

 54

review or single anonymous review), or a two phase review process, with a first phase

focused on the article itself (this may be made double anonymous), and a second phase,

once the article is accepted, focused on the software, with the authors of the software

known to the reviewers61 and free to interact with them (this is what is done by the Artifact

Evaluation Committees62 put in place by tens of prestigious conferences in computer

science and recommended in the ACM Badging system63; the Dagstuhl DARTS series64

publishes a selection of the results of these processes).

The publisher propagates metadata about the acceptance of the publication containing the

software artifact into a Scholarly Repository (which propagates to SWH) or directly to SWH,

and optionally to relevant aggregators/catalogues; notice that in general this is extrinsic

metadata about the software artifact. The publisher may also play a role in the archival of

the source code associated with the published article. A few variants are shown below.

Variant 1.a. Author self-archives in a Scholarly Repository

This workflow shows a common case in scholarly publication, which is the usage of Project

DOIs that facilitate the review process by keeping the same PID throughout all the

revisions.

61 We remark here that in all major CS conferences that implement software evaluation, the Artifact Evaluation Committee is separate

from the program committee that reviews the articles. The AEC steps in after acceptance of the paper, and can openly interact with the

software authors.

62 https://www.artifact-eval.org/

63 https://www.acm.org/publications/policies/artifact-review-badging

64 https://www.dagstuhl.de/publikationen/darts/

https://www.artifact-eval.org/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.dagstuhl.de/publikationen/darts/

Scholarly Infrastructures for Research Software

 55

Variant 1.b. Author self-archives directly in SWH

Variant 2.a. Publisher archives in scholarly repository

Scholarly Infrastructures for Research Software

 56

Variant 2.b. Publisher archives directly in SWH

This variant requires less author intervention, as the publisher handles all the archival

steps.

Publisher Implements Review on Source Code Submitted as a Bundle

If the software is submitted as a bundle, it needs to be archived through the SWH deposit

API, either by the publisher, or via a scholarly repository.

Variant 1. Publisher archives directly in SWH

This is the workflow currently implemented by IPOL65.

65 See https://www.softwareheritage.org/2020/06/11/ipol-and-swh/.

https://www.softwareheritage.org/2020/06/11/ipol-and-swh/

Scholarly Infrastructures for Research Software

 57

Variant 2. Publisher requests author to archive in scholarly repository

Variant 3. Publisher archives in scholarly repository

A workflow similar to the above is being implemented in a prototype developed by Dryad

and Zenodo66.

66 See https://blog.zenodo.org/2020/03/10/dryad-and-zenodo-our-path-ahead/

https://blog.zenodo.org/2020/03/10/dryad-and-zenodo-our-path-ahead/

Scholarly Infrastructures for Research Software

 58

Conferences with Artifact Evaluation Committees

In computer science, differently from what happens in many other disciplines, the research

community is used to publishing more in conference proceedings than in journals. This has

a series of interesting consequences, ranging from the program committee changing

regularly, to the fact that in many cases the identity of the conference has little to do with

the publisher of the proceedings. Here, we are interested in a workflow based on the one

that has been widely adopted since 2011 in many prestigious computer science conferences

that have put in place an Artifact Evaluation Committee (AEC) (Childers et al., 2016)67.

The workflow shown below differs from the previous ones in several respects:

● the Program Committee of the conference is not bound to a particular publisher

● the evaluation of the artifact is performed by a dedicated AEC, distinct from the

Program Committee, only for accepted articles; as a consequence, anonymous

review is no longer needed when it comes to artifacts and the AEC can freely interact

with the authors;

● the publisher is not involved at all in the artifact evaluation process. It only comes

into play after the artifact has been positively evaluated, to perform two actions

○ save the artifact, obtaining a persistent identifier

○ add a badge to the article, with an optional link to the saved artifact

Currently, support for this process is not fully satisfactory, as the artefact evaluation

workflow is not supported natively in the conference handling software, and the archival

of the artifact is often left to the authors. Some conferences do recommend archival in

SWH68, or in the publisher’s own digital library, but we believe it would be better to have

the publisher take responsibility for ensuring archival, as depicted in the workflow. Proper

support for artifact evaluation and archival should be added to the software used in

publishing systems, with different levels of quality review. This would allow the uptake of

the AEC process, or processes inspired from it, more broadly, in conferences and in

journals.

67 See the https://www.artifact-eval.org/ for the seminal idea, and http://evaluate.inf.usi.ch/ for an actual list of conferences, and updated

bibliography. The ACM has adopted a similar badging schema, but does not mandate any particular process for the evaluation, see

https://www.acm.org/publications/policies/artifact-review-badging

68 See for example https://popl20.sigplan.org/track/POPL-2020-Artifact-Evaluation

https://www.artifact-eval.org/
http://evaluate.inf.usi.ch/
https://www.acm.org/publications/policies/artifact-review-badging
https://popl20.sigplan.org/track/POPL-2020-Artifact-Evaluation

Scholarly Infrastructures for Research Software

 59

Scholarly Infrastructures for Research Software

 60

4.3.3 Aggregators

It is being identified that aggregators fit into two groups or models: Push model and Pull

model. The former is a model in which Data Sources send proactively software-related

metadata and publications to the Aggregators; the latter is a model in which the

Aggregators fetch software-related metadata and publications directly from the Data

Sources. Independently of the model, aggregators main role in the scholarly publishing

workflows is always to harvest information, process it (harmonization, deduplication,

enrichment, etc) and provide the aggregated outcome to the user community, usually with

extra added value coming from such aggregation. The aggregated information can then be

consumed again by the very same Data Sources (e.g. Archives) to provide better services

to final users.

Pull model

Aggregators proactively harvest software-related metadata and/or publications from Data

Sources. In the case of publications, they are processed, software-related information is

extracted and uniquely identified. In the case of metadata, it gets validated and merged

into the internal graph of information.

Both, swMATH and OpenAIRE implement most of this workflow, with the difference of

focusing on a specific domain (mathematics) or multi-domain.

Scholarly Infrastructures for Research Software

 61

Push model

Aggregators enable APIs to other Services (e.g. Archives) to allow them to submit new

publications (including metadata) directly, without the need of harvesting.

OpenAIRE could also fit in this Push Model, as well as Papers with Code69. DataCite,

although not a traditional aggregator, could be seen as one and fitting in the Push model;

this is because Scholarly Repositories push software-related metadata directly to DataCite

and the aggregated metadata is available via their APIs and User Interface.

69 https://paperswithcode.com

https://paperswithcode.com/

Scholarly Infrastructures for Research Software

 62

5 RECOMMENDATIONS

As recalled in Section 2 Introduction of this report, building a proper architecture of

connected scholarly infrastructures for research software is a significant undertaking, and

requires standards, tools, infrastructures, training, outreach, and involvement with the

publishing community. It also needs proper funding both for the development,

communication, and outreach efforts, and for the operational costs. In this section, we

summarise the key recommendations that emerged from the analysis of the current needs

and state of the art, and the design of the future architecture.

5.1 Funding Development of Tools, Standards, and Guidelines

The following set of recommendations includes actionable items that should be turned into

concrete development projects in the short term.

5.1.1 Interactions

As discussed in Section 4.1.1 Archive, it is important to ensure a vertical interconnection

between a universal software archive and scholarly repositories, for the latter to feed the

universal archive (see Figure 5). This requires engineering and funding for the development

of proper adaptors. Deployment is foreseen in a 2-year timeframe. Simultaneously, it

should be avoided that publishers implement their own solutions for software archival.

Rather, they should rely on scholarly repositories or a universal software archive to ensure

software preservation and citation. In order to include the act of depositing or archiving

software source code in scholarly repositories and a universal software archive in the

publishing workflow it is necessary to adapt the publishers’ internal processes, and we

consider that this may be implemented in a 2-year timeframe. Development of tools for

automating the software source code archival and reference workflow needs engineering

and funding, and can be implemented in a 4-year timeframe. Additionally, it should be

ensured that curated metadata is archived alongside the source code archived in a

universal software archive to support reproducibility and verifiability of research results.

Figure 5. Architecture of interconnected scholarly infrastructures supporting archival, reference, description and citation of

(research) software source code.

Scholarly Infrastructures for Research Software

 63

Therefore, engineering and funding of tools for automating the curated metadata archival

workflow is required and is foreseen to be implemented in a 4-year timeframe.

Finally, it is important to ensure a reliable and broad network of mirrors of the Universal

Software Archive, taking into account its fundamental importance both for the long-term

preservation and to make the full content of the archive readily available for research

activities. An appropriate coordination activity of this network of mirrors should also be

funded.

5.1.2 Metadata About Software

The following set of recommendations concern metadata about software. First, all

metadata about software must be licensed as Creative Commons CC0. Second, all

metadata exchange between the different components of the architecture should be based

on the CodeMeta vocabulary. EU representatives should get involved in the CodeMeta

community and help establish a stable, long-term governance. Also, additional converters

and adaptors should be developed as needed to consume and expose metadata using the

CodeMeta vocabulary. This requires engineering and funding and can be deployed in a 2-

year timeframe. Third, metadata should include all information relevant for software source

code in the scholarly world, including in particular licence, identifiers, repositories, authors,

and funders that supported the software development (e.g. EU or national grants). Last, it

must be ensured that mainstream formats used by publishers for citations (e.g. JATS)

properly support all metadata items that are relevant for software citations, and there is a

JATS4R recommendation for software citations. Here, contribution to the existing

standards is the norm in order to extend them as needed.

5.1.3 Identifiers

Creation of new systems of identifiers is unwanted and instead reuse should be fostered.

Generalizing the use of the following list of identifiers is recommended (see Section 4.1.2

Reference Error! Reference source not found.for details):

 SWHID70 intrinsic identifiers for publicly available software source code.

 Extrinsic identifiers for research source code explicitly deposited in a scholarly

repository.

 Extrinsic identifiers for software projects.

DOIs have a distinct advantage among the various systems of extrinsic identifiers because

they have a critical level of adoption in the scholarly publishing world. We recommend that

an inclusive approach is explored to guarantee that existing well-established extrinsic

identifiers are taken into account, and we refer to the “PID Architecture for the EOSC”

document for further details of implementation in the EOSC (Schwardmann et al., 2020)71.

5.1.4 Credit

To ease adoption, development of tools that can produce appropriate citations for research

software source code, and enhancement of existing reference management tools to support

the same approach, is desired. Specifically, this includes development of and contribution

to the needed extensions to the mainstream reference manager tools (Mendeley, Zotero,

etc.) to ensure that the underlying data model can accommodate all the specificities of and

roles related to software source code, as identified in (Alliez et al., 2020; Di Cosmo, 2020a;

70 https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

71 Bibliography entry will be added when the report on “PID Architecture for the EOSC” is published.

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Scholarly Infrastructures for Research Software

 64

Gruenpeter et al., 2020; Katz et al., 2020). Additionally, the publishers and the research

community at large should work together to produce guidelines about how to cite software

specifically, agreeing on a common set of citation styles. Also, publishers must ensure all

links/mentions to any code not written for the research in hand are treated as proper

references in the bibliography, including all associated required metadata. Metrics that

cater to the needs of a variety of actors should be explored and common standards to

share and reuse them agreed upon. As detailed in Section 3.4.4 Metrics, these metrics

should be open, verifiable, and shareable. These metrics should not be reduced to simple

numeric indicators, to avoid reproducing in the research software world the negative effect

that bibliographic indicators have had in the research publishing world. It is necessary to

bring together a broad spectrum of expertise, and include in the conversation

representatives of the research community that will be directly impacted by the creation

of these metrics. Publishers must ensure that the peer review process also covers software

source code, with the level of evaluation most appropriate for their field, as mentioned in

Section 4.1.4 Cite/Credit (point 6), and develop a set of common guidelines for moderation

and curation protocols. Development of a set of standard tools and workflows should be

funded to support and ease adoption of more sophisticated levels of review, like the ones

implemented by AECs.

5.1.5 Policy/Guidelines

Building a proper architecture of connected scholarly infrastructures for research software

needs guidelines to increase the treatment of software on equal footing with other research

outputs. Specifically, Open Science guidelines for researchers should clearly recommend

software deposit in trustworthy scholarly repositories and in the universal software archive

maintained by Software Heritage to ensure long term preservation. Simultaneously, Open

Science guidelines should raise awareness about the existence of modern approaches to

software development (including Version Control Systems, continuous integration, etc.),

and encourage their use where appropriate. Last, all publishers must be made aware of

the importance of source code and data, and make the publication and archival of these

artefacts in conjunction with the article publication mandatory.

5.1.6 Easing Adoption

As detailed in Section 4.1.5 Easing Adoption, it is important to ensure particular attention

is paid to ease adoption and increase the quality of the (meta)data collected. To this end,

the participation of researchers is of paramount importance, and in developing tools and

guidelines one needs to ensure that if the researchers are asked to do extra work, there is

an immediate added value for researchers (e.g. automatic generation of bibliographic

entries, curricula, or form fillers, simplification of existing procedures, etc.) and that

researchers should not be required to manually enter information more than once, or

information that can be extracted from machine readable metadata. A particular sensitive

factor is the quality of information that may be used for crediting authors or evaluating

researchers, so metadata that may be used to this end should undergo human curation

(Alliez et al., 2020).

Scholarly Infrastructures for Research Software

 65

5.2 Broader Policy Recommendations for the EOSC

We believe that besides the technical development, the technical standards, and general

guidelines for the various actors, the EOSC has a key role to play in ensuring that the

overall architecture will be built in a way to best cater to the needs of the research

community, in the same spirit of the general principles shared about Open Access

infrastructures among organizations like COAR and SPARC (COAR & SPARC, 2019), GO-

FAIR or the French NFSO (French National Committee for Open Science, 2019).

5.2.1 Criteria of Excellence, and Sustainability of the Architecture

The following set of recommendations provide concrete actionable steps for the EOSC to

ensure openness, transparency, good governance, and sustainability of the key

infrastructures.

First, EOSC should elaborate a set of criteria of excellence for participating infrastructures

that incorporate the principles of openness, good governance, and transparency detailed

in Section 4.2 Exemplarity Criteria for Participating Infrastructures. The following list of

criteria should be included for the alignment with the principle of openness:

 metadata should be accessible in a standard format and under a CC0 license;

 access to the metadata and the data should be possible through an open API using

standard protocols and without identification;

 aggregated metadata should be available “as open as possible and as closed as

necessary” (e.g. to respect GDPR regulations);

 the infrastructures should be built from stable existing open source software building

blocks, and all the software of the infrastructure should be available under an open

source license;

 communications and data exchange use open standards for data formats and protocols;

 the infrastructure should be hosted and run by a non-profit organization, to avoid risk

of proprietarisation72.

Additionally, the following list of criteria of excellence are included for alignment with the

principles of transparency and good governance:

 clear definition of governance bodies;

 procedures for the selection of governance bodies’ members are clearly and publicly

stated;

 procedures for participation are clearly and publicly stated;

 terms of use are clearly and publicly stated;

 sources of funding are clearly and publicly stated.

Second, the EOSC should actively get involved with key infrastructures to ensure their long

term sustainability, and take part in their strategic evolution, avoiding common pitfalls that

72 This is also part of the draft recommendations for Open Science released by UNESCO in October 2020, Section II, point (iv) (UNESCO,

2020).

Scholarly Infrastructures for Research Software

 66

have been identified over the years in the history of essential Open Source projects

(Eghbal, 2016) and that are not identical to the concerns related to infrastructures for

research data (Rosenthal et al., 2014). This involves several aspects:

 Technical: ensure archives adopt standard practices for data preservation.

 Financial/Institutional: contribute to a long-term funding plan and/or a wind down

and migration plan for the key infrastructures. In particular, do not rely on project

money for funding the operation of the infrastructures.

 Organisational: ensure the key components of the architecture are run as a non-profit

infrastructure, and actively participate in their governance.

5.3 Longer Term Perspectives

On a longer-term perspective, we believe that the following objectives should be clearly on

the roadmap, and that research and development effort should be spent to address them

at the 4-7-year horizon.

5.3.1 Advanced Technology Development

Of importance is the development of an advanced search engine for software source code.

This search engine should leverage recent results in machine learning73, and go beyond

simple text search, integrating scholarly metadata, provenance and dependency

information, and software development metrics. Moreover, the network of mirrors of

Software Heritage, together with the scholarly ecosystem (repositories, publishers and

aggregators) may help develop an emerging domain of research that will lead to the

development of advanced tools at the service of the software community as a whole, "Big

Code”. This research area leverages new methodologies of artificial intelligence and big

data to analyse the entire body of publicly available source code and take full advantage

of the knowledge that is sealed within it.74

Another longer-term need is the development of an efficient and open plagiarism detection

technology on top of the universal source code archive provided by Software Heritage. This

will allow archives, publishers, and aggregators to spot near-duplicates and avoid fraud,

much like it happens with traditional publications, but without the limitations of the closed

datasets and commercial agreements that are needed for articles but do not exist in the

open source software world. Similar technology is in use in industry, with high costs and

different main objectives, and needs to be retargeted and adapted for the scholarly world.

The global corpus of software source code amassed by Software Heritage, together with

the global graph of software development that it maintains, is a key enabler for this task.

The same plagiarism detection building blocks can be used to trace how a particular

research software evolves over time, through forks or other means, and how it can be

reused elsewhere.

Moreover, building efficient and open spam filtering tools, which allow filtering out of non-

software projects, protects scholarly repositories and archives that do not enforce human

moderation of deposits, and eases the work of moderators for those that do.

73 See (Feng et al., 2020) for an example of the many possible features.

74 Two mirrors of the Software Heritage archive are currently being developed: one by the Stockholm company FOSSID, a leader in open

source software compliance and security, and one by ENEA, the Italian National Agency for New Technologies, Energy and Sustainable

Economic Development in collaboration in collaboration with the Department of Computer Science and Engineering of Bologna University.

ENEA Mirror will be part of the Bologna Big Data Technopole, one of the leading centers for scientific calculation at the European and world

level, that will host the ECMWF Data Center and one of the pre-exascale computers financed by EuroHPC Joint Undertaken initiative.

Scholarly Infrastructures for Research Software

 67

Last but not least, in order to foster full reproducibility of research results, mechanisms,

technology, and tools should be explored to ensure that a given executable or a full

software system and workflows can be reliably executed again, with proper integration

between articles, data, and software. This is a complex subject, with a broad variety of

tools and approaches that will need to be surveyed and assessed. The ultimate goal of

research and development efforts in this area should be the inclusion of execution

environments for research software into infrastructure services available to all researchers,

both for performing research and for evaluating submitted or published research.

5.3.2 Policy

While we subscribe to the general statement that all research output should be “as open

as possible, as closed as necessary”, we believe that to fully achieve the potential of Open

Science, all research software should be made available under an Open Source

license by default, and all deviations from this default practice should be properly

motivated. We recommend including this clause in all future research funding programs.

Scholarly Infrastructures for Research Software

 68

6 ANNEXES

6.1 Glossary

Term Definition

Aggregator One of the tree typologies of operational infrastructures

this report is targeting. Any service that collects information
about digital content from a variety of sources with the
primary goal of increasing its discoverability, and possibly
adding value to this information via processes like curation,
abstraction, and classification, and linking. This class of
service, that include scholarly catalogues and indexes,

usually provide a search engine that gives access to a

description of the aggregated content, and may provide links
to versions of it archived elsewhere. These services may be
generalist, or have a disciplinary, geographic or institutional
scope

Architecture The term architecture usually refers to the high-level design

of the components needed to build a system, and their
relationships. In this report we use the term scholarly
architecture of infrastructures to designate the high-level
organization and relationship of operational infrastructures
that may satisfy the ARDC needs in the scholarly world

Archive One of the tree typologies of operational infrastructures
this report is targeting. Any service that has as one of its
primary goals the long-term preservation of the digital
content that it collects. This includes a broad spectrum of

services, ranging from institutional repositories to
disciplinary repositories in the scholarly world, as well as
services that have a broader scope than the scholarly world

AEC Artifact Evaluation Committee. A panel of reviewers, usually
disjoint from the program committee, that evaluates the
quality of the software artifact associated with a publication
accepted in a conference. See https://www.artifact-
eval.org/ for more details.

ARDC An acronym that stands for Archive, Reference, Describe and
Cite, i.e. the four pillars that scholarly infrastructures should
support for software source code management in the world
of research

CodeMeta A project called to develop a concept vocabulary (the

CodeMeta schema) that can be used to standardize the
exchange of software metadata across repositories and
organizations.

Extrinsic identifiers Systems of identifiers that rely on a register to keep the
correspondence between the identifier and the designated
object. Very well-known examples in the scholarly world are

ARK, Handle and DOI.

FAIR A set of principles developed to promote Findability,
Accessibility, Interoperability, and Reuse of digital assets,
mainly datasets

Infrastructure See Operational Infrastructure

https://www.artifact-eval.org/
https://www.artifact-eval.org/

Scholarly Infrastructures for Research Software

 69

Term Definition

Intrinsic identifiers Identifiers that can be computed from the designated object
itself without needing a register to maintain the
correspondence. Well known systems of intrinsic identifiers
before the digital age are the musical notation and the

chemical notation. For software source code, the current
standard is the SWHID.

JATS Journal Article Tag Suite

MUST Used as in RFC 2119: This word, or the terms "REQUIRED"
or "SHALL", mean that the definition is an absolute

requirement of the specification

Operational Infrastructure A complex system consisting of deployed facilities,
equipment, services, policies, procedures and human
resources needed for the operation of an organization.

PID PID stands for “Persistent IDentifier”, a term generally used
to designate systems of extrinsic identifiers (e.g. DOI, Ark,
Handle), for which organizational support has been set up to
maintain the association between identifiers and the
designated objects.

Publisher One of the tree typologies of operational infrastructures

this report is targeting. Any organization that prepares
submitted research texts, possibly with associated source
code and data, to produce a publication and manage its
dissemination, promotion, and archival process. Software

and data can be part of the main publication, or assets given
as supplementary materials depending on the policy of the

journal. In addition, publishers implement a process for
ensuring the quality of the accepted research material
(usually peer review), which is carried out by the subject-
specific community of experts

Research Software Software that researchers in any discipline may feel the need
to have scholarly infrastructure support for, no matter if it is

considered a tool, a result or an object of study

Scholarly Infrastructure An operational infrastructure called to support the
scholarly communication process

Scholarly Repository An organisation called to archive and make available

research artifacts, e.g. articles, datasets, software.

Examples include HAL, Zenodo, figshare, Dryad

SHOULD Used as in RFC 2129: This word, or the adjective
"RECOMMENDED", mean that there may exist valid reasons
in particular circumstances to ignore a particular item, but
the full implications must be understood and carefully

weighed before choosing a different course

SIRS Scholarly Infrastructures for Research Software

Software Source Code As very concisely stated in the General Public Licence, “The
source code for a work means the preferred form of the work

for making modifications to it.” This definition includes the
common case of human readable instructions usually written

Scholarly Infrastructures for Research Software

 70

Term Definition

as plain text.

SWHID SoftWare Heritage persistent IDentifier

Universal Software Archive An organization that maintains an archive that collects,
preserves and gives access to all the publicly available
software source code, independently of where, why and how
it is developed. Currently, this is the role of the Software
Heritage Foundation.

VCS Version control system: software tool set used by developers

to track and manage changes made to source code over

time.

6.2 Bibliography

Abelson, H., & Sussman, G. J. S. with J. (1985). Structure and Interpretation of

Computer Programs. The MIT Press.

Abramatic, J.-F., Di Cosmo, R., & Zacchiroli, S. (2018). Building the universal archive of

source code. Communications of the ACM, 61(10), 29–31.

https://doi.org/10.1145/3183558

ACM. (n.d.). Data & software artifacts. https://www.acm.org/publications/artifacts

ACM. (2016). Artifact review and badging.

https://www.acm.org/publications/policies/artifact-review-and-badging

Allen, A., Aragon, C. R., Becker, C., Carver, J., Chis, A., Combemale, B., Croucher, M.,

Crowston, K., Garijo, D., Gehani, A., Goble, C. A., Haines, R., Hirschfeld, R., Howison, J.,

Huff, K. D., Jay, C., Katz, D. S., Kirchner, C., Kuksenok, K., … Vinju, J. J. (2017).

Engineering Academic Software (Dagstuhl Perspectives Workshop 16252). Dagstuhl

Manifestos, 6(1), 1–20. https://doi.org/10.4230/DagMan.6.1.1

Allen, A., & Schmidt, J. (2015). Looking before leaping: Creating a software registry.

Journal of Open Research Software, 3(e15). http://dx.doi.org/10.5334/jors.bv

Alliez, P., Di Cosmo, R., Guedj, B., Girault, A., Hacid, M.-S., Legrand, A., & Rougier, N.

(2020). Attributing and Referencing (Research) Software: Best Practices and Outlook

From Inria. Computing in Science and Engineering, 22(1), 39–52.

https://doi.org/10.1109/MCSE.2019.2949413

Arévalo, M., Escobar, C., Monasse, P., Monzón, N., & Colom, M. (2017). The IPOL Demo

System: A Scalable Architecture of Microservices for Reproducible Research. In B.

Kerautret, M. Colom, & P. Monasse (Eds.), Reproducible Research in Pattern Recognition

(Vol. 10214, pp. 3–16). Springer International Publishing. https://doi.org/10.1007/978-

3-319-56414-2_1

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452–

454. https://doi.org/10.1038/533452a

Barborini, Y., Di Cosmo, R., Dumont, A. R., Gruenpeter, M., Marmol, B. P., Monteil, A.,

Sadowska, J., & Zacchiroli, S. (2018). The creation of a new type of scientific deposit:

Scholarly Infrastructures for Research Software

 71

Software. https://www.softwareheritage.org/wp-content/uploads/2020/01/barborini-rda-

poster.pdf https://hal.inria.fr/hal-01738741

Barnes, N. (2010). Science code manifesto. http://sciencecodemanifesto.org

Benureau, F. C. Y., & Rougier, N. P. (2018). Re-run, Repeat, Reproduce, Reuse,

Replicate: Transforming Code into Scientific Contributions. Frontiers in Neuroinformatics,

11. https://doi.org/10.3389/fninf.2017.00069

Bilder, G., Lin, J., & Neylon, C. (2015). Principles for open scholarly infrastructures-v1.

https://doi.org/10.6084/M9.FIGSHARE.1314859

Bönisch, S., Brickenstein, M., Greuel, G.-M., & Sperber, W. (2012). SwMATH – citations

for your mathematical software. JournalId:00006143, 2012.

https://doi.org/10.1007/BF03345852

Borgman, C. L., Wallis, J. C., & Mayernik, M. S. (2012). Who’s Got the Data?

Interdependencies in Science and Technology Collaborations. Computer Supported

Cooperative Work, 21(6), 485–523. https://doi.org/10.1007/s10606-012-9169-z

Bradner, S. O. (1997). Key words for use in RFCs to indicate requirement levels. 2119.

https://doi.org/10.17487/RFC2119

Buckheit, J. B., & Donoho, D. L. (1995). WaveLab and Reproducible Research. In A.

Antoniadis & G. Oppenheim (Eds.), Wavelets and Statistics (Vol. 103, pp. 55–81).

Springer New York. https://doi.org/10.1007/978-1-4612-2544-7_5

Burton, A., Fenner, M., Haak, W., & Manghi, P. (2017). Scholix metadata schema for

exchange of scholarly communication links. https://doi.org/10.5281/zenodo.1120265

Bussi, L., Di Cosmo, R., Montangero, C., & Scatena, G. (2019). The Software Heritage

acquisition process (CI-2019/WS/8). UNESCO, Università di Pisa, Inria.

https://unesdoc.unesco.org/ark:/48223/pf0000371017

CASRAI. (2015). The CRediT Taxonomy. https://casrai.org/credit/

Chawla, D. S. (2016). The unsung heroes of scientific software. Nature, 529(7584), 115–

116. https://doi.org/10.1038/529115a

Childers, B. R., Fursin, G., Krishnamurthi, S., & Zeller, A. (2016). Artifact Evaluation for

Publications (Dagstuhl Perspectives Workshop 15452). Dagstuhl Reports, 5(11), 29–35.

https://doi.org/10.4230/DagRep.5.11.29

Clément-Fontaine, M., Di Cosmo, R., Guerry, B., Moreau, P., & Pellegrini, F. (2019).

Encouraging a wider usage of software derived from research [Research report].

Committee for Open Science’s Free Software and Open Source Project Group.

https://hal.archives-ouvertes.fr/hal-02545142

COAR, & SPARC. (2019, January). Good practice principles for scholarly communication

services. https://www.coar-repositories.org/news-updates/good-practice-principles-for-

scholarly-communication-services-2/

Collberg, C. S., & Proebsting, T. A. (2016). Repeatability in computer systems research.

Commun. ACM, 59(3), 62–69. https://doi.org/10.1145/2812803

Colom, M., Kerautret, B., & Krähenbühl, A. (2019). An Overview of Platforms for

Reproducible Research and Augmented Publications. In Bertrand Kerautret, M. Colom, D.

Scholarly Infrastructures for Research Software

 72

Lopresti, P. Monasse, & H. Talbot (Eds.), Reproducible Research in Pattern Recognition

(Vol. 11455, pp. 25–39). Springer International Publishing. https://doi.org/10.1007/978-

3-030-23987-9_2

Colom, M., Kerautret, B., Limare, N., Monasse, P., & Morel, J.-M. (2015). IPOL: A new

journal for fully reproducible research; analysis of four years development. 2015 7th

International Conference on New Technologies, Mobility and Security (NTMS), 1–5.

https://doi.org/10.1109/NTMS.2015.7266500

Dacos, M., Di Cosmo, R., & Pellegrini, F. (2018). About the proposal for software

indicators in Open Science Monitor. Free and Open Source software working group,

National Committee for Open Science. https://www.ouvrirlascience.fr/wp-

content/uploads/2018/11/2018.09.19-About-the-proposal-for-software-indicators-in-

OSM.pdf

DataCite Metadata Working Group. (2017). DataCite Metadata Schema Documentation

for the Publication and Citation of Research Data v4.1 [Application/pdf]. 72 pages.

https://doi.org/10.5438/0014

Di Cosmo, R. (2020a, May). Bilatex-Software. CTAN: /Tex-

Archive/Macros/Latex/Contrib/Biblatex-Contrib/Biblatex-Software.

https://www.ctan.org/tex-archive/macros/latex/contrib/biblatex-contrib/biblatex-

software

Di Cosmo, R. (2020b). Archiving and referencing source code with Software Heritage.

ICMS, 12097, 362–373. https://doi.org/10.1007/978-3-030-52200-1_36

Di Cosmo, R., & Danelutto, M. (2020). [Rp] Reproducing and replicating the OCamlP3l

experiment. In ReScience C (Vol. 6, Issue 1, p. #2).

https://doi.org/10.5281/zenodo.3936402

Di Cosmo, R., Gruenpeter, M., Marmol, B., Monteil, A., Romary, L., & Sadowska, J.

(2020). Curated archiving of research software artifacts: Lessons learned from the french

open archive (HAL). International Journal of Digital Curation, 15(1), 16.

https://doi.org/10.2218/ijdc.v15i1.698

Di Cosmo, R., Gruenpeter, M., & Zacchiroli, S. (2020). Referencing Source Code

Artifacts: A Separate Concern in Software Citation. Computing in Science and

Engineering, 22(2), 33–43. https://doi.org/10.1109/MCSE.2019.2963148

Di Cosmo, R., Gruenpeter, M., & Zacchiroli, S. (2018). Identifiers for Digital Objects: The

Case of Software Source Code Preservation. 1–9.

https://doi.org/10.17605/OSF.IO/KDE56

Di Cosmo, R., & Zacchiroli, S. (2017, September). Software Heritage: Why and How to

Preserve Software Source Code. Proceedings of the 14th International Conference on

Digital Preservation, IPRES 2017, Kyoto, Japan. https://hal.archives-ouvertes.fr/hal-

01590958

DINUM. (n.d.). Browse french public sector source code.

https://code.etalab.gouv.fr/en/repos

Eghbal, N. (2016). Roads and Bridges: The Unseen Labor Behind Our Digital

Infrastructure. https://www.fordfoundation.org/work/learning/research-reports/roads-

and-bridges-the-unseen-labor-behind-our-digital-infrastructure/

Scholarly Infrastructures for Research Software

 73

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong (YIMING), M., Shou (寿林钧), L.,

Qin, B., Liu, T., Jiang (姜大昕), D., & Zhou, M. (2020, September). CodeBERT: A pre-

trained model for programming and natural languages. Findings of EMNLP 2020.

https://www.microsoft.com/en-us/research/publication/codebert-a-pre-trained-model-

for-programming-and-natural-languages/

Fenner, M. (2020). DataCite Commons—Exploiting the Power of PIDs and the PID Graph.

https://doi.org/10.5438/F4DF-4817

Fenner, M., Katz, D. S., Nielsen, L. H., & Smith, A. (2018, May 17). DOI Registrations for

Software. https://doi.org/10.5438/1NMY-9902

French National Committee for Open Science. (2019). Examplarity Criteria for funding

from the National Open Science Fund through platforms, infrastructures and editorial

content. https://www.ouvrirlascience.fr/examplarity-criteria-for-funding-from-the-

national-open-science-fund/

Gil, Y., H. David, C., Demir, I., Essawy, B., Fulweiler, W., Goodall, J., Karlstrom, L., Lee,

H., Mills, H., Oh, J.-H., Pierce, S., Pope, A., Tzeng, M., Villamizar, S., & Yu, X. (2016).

Towards the Geoscience Paper of the Future: Best Practices for Documenting and Sharing

Research from Data to Software to Provenance: Geoscience Paper of the Future. Earth

and Space Science, 3. https://doi.org/10.1002/2015EA000136

Gruenpeter, M., Allen, A., Bandrowski, A., Chan, P., Di Cosmo, R., Fenner, M., Garcia, L.,

Jones, C. M., Katz, D. S., Kunze, J., Schubotz, M., Todorov, I. T., & Research Data

Alliance/FORCE11 Software Source Code Identification WG. (2020). Use cases and

identifier schemes for persistent software source code identification (V1.0).

https://doi.org/10.15497/RDA00053

Gruenpeter, M., & Sadowska, J. (2018). Moderation of a Software Deposit [Technical

report]. Inria ; CCSD ; Software Heritage. https://hal.inria.fr/hal-01876705

Hinsen, K. (2019). Dealing with software collapse. Computing in Science Engineering,

21(3), 104–108.

Hinsen, Konrad. (2013). Software Development for Reproducible Research. Computing in

Science and Engineering, 15(4), 60–63. https://doi.org/10.1109/MCSE.2013.91

Hinsen, Konrad. (2020). Computational reproducibility. In Computation in science. IOP

Publishing. https://doi.org/10.1088/978-0-7503-3287-3ch6

Howison, J., & Bullard, J. (2015). Software in the scientific literature: Problems with

seeing, finding, and using software mentioned in the biology literature. Journal of the

Association for Information Science and Technology, 67(9), 2137–2155.

https://doi.org/10.1002/asi.23538

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &

Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Jones, M. B., Boettiger, C., Mayes, A. C., Arfon Smith, Slaughter, P., Niemeyer, K., Gil,

Y., Fenner, M., Nowak, K., Hahnel, M., Coy, L., Allen, A., Crosas, M., Sands, A., Hong, N.

C., Cruse, P., Katz, D., & Goble, C. (2016). CodeMeta: An exchange schema for software

metadata. KNB Data Repository [Application/ld+json]. KNB Data Repository.

https://doi.org/10.5063/SCHEMA/CODEMETA-1.0

Scholarly Infrastructures for Research Software

 74

Katz, D. S., & Clark, T. (2019). Comparing and analyzing the implementation of data

citation and software citation. https://doi.org/10.5281/ZENODO.3497122

Katz, D. S., Hong, N. P. C., Clark, T., Muench, A., Stall, S., Bouquin, D., Cannon, M.,

Edmunds, S., Faez, T., Feeney, P., Fenner, M., Friedman, M., Grenier, G., Harrison, M.,

Heber, J., Leary, A., MacCallum, C., Murray, H., Pastrana, E., … Yeston, J. (2020). The

importance of software citation. F1000Research, 9, 1257.

https://doi.org/10.12688/f1000research.26932.1

Katz, D. S., Niemeyer, K. E., Smith, A. M., Anderson, W. L., Boettiger, C., Hinsen, K.,

Hooft, R., Hucka, M., Lee, A., Löffler, F., Pollard, T., & Rios, F. (2016). Software vs. Data

in the context of citation. https://doi.org/10.7287/peerj.preprints.2630v1

Knoth, P. (n.d.). CORE. https://core.ac.uk/

Krishnamurthi, S. (2011). Artifact evaluation for software conferences.

https://www.artifact-eval.org/

Krishnamurthi, S., & Vitek, J. (2015). The Real Software Crisis: Repeatability As a Core

Value. Commun. ACM, 58(3), 34–36. https://doi.org/10.1145/2658987

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E.,

Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton, P.,

Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll., Chue Hong, N., Goble, C., &

Capella-Gutierrez, S. (2020). Towards FAIR principles for research software. Data

Science, 3(1), 37–59. https://doi.org/10.3233/DS-190026

Liang, W., & Kai Yong, Z. (2013). Translate gene sequence into gene ontology terms

based on statistical machine translation. F1000Research, 2, 231.

https://doi.org/10.12688/f1000research.2-231.v1

Liang, W., & KaiYong, Z. (2013). Protein Sequence To Gene Ontology Translation

System. Zenodo. https://doi.org/10.5281/ZENODO.7506

Making Your Code Citable · GitHub Guides. (n.d.). Retrieved October 7, 2020, from

https://guides.github.com/activities/citable-code/

Manghi, P., & Bardi, A. (2019). The OpenAIRE Research Graph—Opportunities and

challenges for science. https://doi.org/10.5281/ZENODO.2600275

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore, M., Miller,

P. L., Shepherd, G. M., & Hines, M. L. (2016). Twenty years of ModelDB and beyond:

Building essential modeling tools for the future of neuroscience. Journal of Computational

Neuroscience, 42(1), 1–10. https://doi.org/10.1007/s10827-016-0623-7

Meeting, E. G. (2019). Paris Call: Software Source Code as Heritage for Sustainable

Development. https://unesdoc.unesco.org/ark:/48223/pf0000366715

Moher, D., Bouter, L., Kleinert, S., Glasziou, P., Sham, M. H., Barbour, V., Coriat, A.-M.,

Foeger, N., & Dirnagl, U. (2020). The hong kong principles for assessing researchers:

Fostering research integrity. PLOS Biology, 18(7), e3000737.

https://doi.org/10.1371/journal.pbio.3000737

Muench, A., Accomazzi, A., & Holm Nielsen, L. (2017). Asclepias: Enabling Software

Citation & Discovery Workflows. https://doi.org/10.5281/ZENODO.803473

Scholarly Infrastructures for Research Software

 75

Pan, X., Yan, E., Cui, M., & Hua, W. (2019). How important is software to library and

information science research? A content analysis of full-text publications. Journal of

Informetrics, 13(1), 397–406. https://doi.org/10.1016/j.joi.2019.02.002

Paskin, N. (2010). Digital object identifier (DOI) system. Encyclopedia of Library and

Information Sciences, 3, 1586–1592.

Peroni, S., & Shotton, D. (2020). OpenCitations, an infrastructure organization for open

scholarship. Quantitative Science Studies, 1(1), 428–444.

https://doi.org/10.1162/qss_a_00023

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1986). Numerical

recipes: The art of scientific computing. Cambridge University Press.

Ritz, R., Kotaleski, J. H., Strandberg, P., Larsson, A., Lillberg, Y., Chatzopoulou, E., Holm,

P., Naeslund, M., Wang, H., & Bjaalie, J. G. (2008). A new software center for the

neuroinformatics community. BMC Neuroscience, 9(Suppl 1), P89.

https://doi.org/10.1186/1471-2202-9-s1-p89

Roberts, K. V. (1969). The publication of scientific fortran programs. Computer Physics

Communications, 1(1), 1–9. https://doi.org/10.1016/0010-4655(69)90011-3

Rosenthal, D., Baxter, R., & Field, L. (2014). Towards a shared vision of sustainability for

research and e-infrastructures. https://www.eudat.eu/news/towards-shared-vision-

sustainability-research-and-e-infrastructures

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F. C. Y.,

Brown, C. T., de Buyl, P., Caglayan, O., Davison, A. P., Delsuc, M.-A., Detorakis, G.,

Diem, A. K., Drix, D., Enel, P., Girard, B., Guest, O., Hall, M. G., Henriques, R. N., … Zito,

T. (2017). Sustainable computational science: The ReScience initiative. PeerJ Computer

Science, 3, e142. https://doi.org/10.7717/peerj-cs.142

Rousseau, G., Di Cosmo, R., & Stefano Zacchiroli. (2020). Software provenance tracking

at the scale of public source code. Empirical Software Engineering, 1–30.

https://doi.org/10.1007/s10664-020-09828-5

San Francisco Declaration on Research Assessment (DORA). (2013). https://sfdora.org/

Seinstra, F., Wallom, D., & Keahey, K. (2015). Editorial. SoftwareX, 1–2, 1–2.

https://doi.org/10.1016/j.softx.2015.08.001

Shustek, L. J. (2006). What Should We Collect to Preserve the History of Software? IEEE

Annals of the History of Computing, 28(4), 110–112.

https://doi.org/10.1109/MAHC.2006.78

Smith, A. M., Katz, D. S., Niemeyer, K. E., & FORCE11 Software Citation Working Group.

(2016). Software citation principles. PeerJ Computer Science, 2, e86.

https://doi.org/10.7717/peerj-cs.86

Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A., Githinji, G., Gymrek, M., Huff, K.

D., Madan, C. R., Mayes, A. C., Moerman, K. M., Prins, P., Ram, K., Rokem, A., Teal, T.

K., Guimera, R. V., & Vanderplas, J. T. (2018). Journal of Open Source Software (JOSS):

Design and first-year review. PeerJ Computer Science, 4, e147.

https://doi.org/10.7717/peerj-cs.147

Scholarly Infrastructures for Research Software

 76

Spagnuolo, M., & Veltkamp, R. (2013). Special issue on executable papers for 3D object

retrieval. Computers & Graphics, 37(5), A7–A8.

https://doi.org/10.1016/j.cag.2013.04.006

Spinellis, D. (2003). The decay and failures of web references. Communications of the

ACM, 46(1), 71–77. https://doi.org/10.1145/602421.602422

Stodden, V., LeVeque, R. J., & Mitchell, I. (2012). Reproducible Research for Scientific

Computing: Tools and Strategies for Changing the Culture. Computing in Science and

Engineering, 14(4), 13–17. https://doi.org/10.1109/MCSE.2012.38

Stojnic, R., Taylor, R., Karadas, M., Kerkez, V., & Viaud, L. (2019). Papers With Code.

https://paperswithcode.com/about

Sun, S., Lannom, L., & Boesch, B. (2003). Handle System Overview (RFC No. 3650). RFC

Editor. https://tools.ietf.org/html/rfc3650

The Plume Team. (2013). The Plume project. https://projet-plume.org/types-de-

fiches#logiciel_valide

UNESCO, D. G. (2020). Preliminary report on the first draft of the Recommendation on

Open Science (CL/4333). UNESCO.

https://unesdoc.unesco.org/ark:/48223/pf0000374409

UNESCO Expert group meeting. (2019). Paris Call: Software Source Code as Heritage for

Sustainable Development. https://unesdoc.unesco.org/ark:/48223/pf0000366715

Van Noorden, R., Maher, B., & Nuzzo, R. (2014). The top 100 papers. Nature, 550–553.

https://doi.org/10.1038/514550a

Wagner, M. (2017). Hitting the Bull’S eye with darts: Artifact evaluation in computer

science. https://doi.org/10.5281/ZENODO.583007

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A.,

Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., & others. (2016). The

FAIR Guiding Principles for scientific data management and stewardship. Scientific Data,

3. https://doi.org/10.1038/sdata.2016.18

Yates, T. (2019). Source-code access for the long haul. LWN.Net.

https://lwn.net/Articles/781246/

Zhao, R., & Wei, M. (2017). Impact evaluation of open source software: An Altmetrics

perspective. Scientometrics, 110(2), 1017–1033. https://doi.org/10.1007/s11192-016-

2204-y

6.3 Task Force Participants

6.3.1 Roberto Di Cosmo (Chair TF SIRS)

Organization(s)

Software Heritage is an open non-profit initiative, launched by Inria in partnership with

Unesco, and supported by a variety of stakeholders, including major IT players,

government bodies and academic entities. Its stated goal is to collect, preserve and share

the source code of all software ever written, with its full development history, building a

universal source code software knowledge base. Software Heritage addresses a variety of

needs: preserving our scientific and technological knowledge, enabling better software

Scholarly Infrastructures for Research Software

 77

development and reuse for society and industry, fostering better science, and building an

essential infrastructure for large scale, reproducible software studies. With over 9 billion

unique source files from over 140 million repositories, it is the largest archive of source

code ever built. More info at: https://www.softwareheritage.org.

Biography

An alumnus of the Scuola Normale Superiore di Pisa, Roberto Di Cosmo was associate

professor at Ecole Normale Supérieure in Paris, then full professor of Computer Science at

University of Paris and is currently on leave at Inria, publishing over 20 international

journals articles and 50 international conference articles in theoretical computing,

functional and parallel programming, and software engineering.

After creating the Free Software thematic group of Systematic, and IRILL, a research

structure dedicated to Open Source Software, he got support from Inria to create Software

Heritage, with the mission to build the universal archive of all the source code publicly

available, in partnership with UNESCO.

Role in Software Heritage: Founder and Director

More info at: https://www.dicosmo.org/bio.html

Interest in the SIRS TF

As an old time open access and open source advocate, Roberto strongly believes that

research should be open, transparent and reproducible. He has felt the lack of common

infrastructures to support this vision, and in particular he feels that software has been

ignored for too long as a key pillar of research and Open Science, but there is a positive

side to it: we may still be in time to advocate a lean, efficient, open, shared, mutualised,

collaborative architecture for scholarly infrastructures for (research) software, and avoid

the balkanization and dispersion of efforts that has been seen for decades in other areas.

Roberto believes that the SIRS TF is a great opportunity to contribute to this goal.
6.3.2 Jose Benito Gonzalez Lopez (Co-Chair TF SIRS)

Organization(s)

Zenodo is a general-purpose repository that enables researchers, scientists, projects and

institutions to share, preserve and showcase multidisciplinary research results (data,

software, publications, etc). It is founded in the trustworthy CERN data centre, and it is

managed, developed and maintained by CERN, although funding comes also from other

sources like: EC through OpenAIRE (main partner), SLOAN foundation, and Arcadia.

Zenodo hosts more that 1.5 million records in total, around 100,000 software records

(including all versions) and around 350 TBs of files.

Biography

Currently, Jose leads the Digital Repositories Section at CERN that is composed of various

teams in charge of developing (Open Source Software) and providing services related to

Scholarly Repositories and Open Science Infrastructure. These are the main projects:

● CERN Document Server (CDS), CERN institutional repositories:

○ https://cds.cern.ch

○ https://videos.cern.ch

● Digital Memory (DM) project, which is charge of:

○ Digitalisation

https://protect-eu.mimecast.com/s/LeVrCBn99h7ZROF1vzM2?domain=softwareheritage.org
https://protect-eu.mimecast.com/s/LeVrCBn99h7ZROF1vzM2?domain=softwareheritage.org
https://protect-eu.mimecast.com/s/-Hg9CD0WWI56JkFRkFql?domain=dicosmo.org
https://protect-eu.mimecast.com/s/-Hg9CD0WWI56JkFRkFql?domain=dicosmo.org
https://protect-eu.mimecast.com/s/FhbRCoOXXhroVlUzhrRk?domain=cds.cern.ch/
https://protect-eu.mimecast.com/s/lK-RCpzLLcnl0QfYZXE9?domain=videos.cern.ch/

Scholarly Infrastructures for Research Software

 78

○ Long-term preservation

○ See: http://digital-memory-project.web.cern.ch

● Invenio Software:

○ http://inveniosoftware.org

● Open and Reproducible Research (ORR), which is in charge of:

○ https://opendata.cern.ch

○ https://reana.io

● Zenodo, which is in charge of:

○ https://zenodo.org

Jose is a Software Engineer by education with a lot of experience on open source software

development and project management. Previously to his current position, Jose contributed

to the development and later management of the Open Source project Indico75.

Interest in SIRS TF

Jose is a strong advocate of Open Science and Open Source Software, as one can derive

from his bio. He would like to see Europe moving towards a real Open Science factory

which will make research more efficient, fair and accessible to everybody regardless of the

affiliation they belong to. It is required to succeed in quite a few areas to achieve such a

dream, and one of the fundamental pillars is Software. It is time for Software to be seen

as a first-class citizen when it comes to research publications and Jose believes this Task

Force is a great opportunity to set the bases on how to achieve just that.

6.3.3 Jean-François Abramatic (Chair WG Architecture)

Organization(s)

The European Open Science Cloud (EOSC) Executive Board advises the European

Commission and provides recommendations to develop the EOSC.

Biography

Jean-François is Emeritus Senior Scientist at Inria, the French Research Institute in

Computer Science and Applied Mathematics. He is a member of the EOSC Executive Board

for the 2019-2020 period and is Chair of the EOSC WG Architecture.

Interest in SIRS TF

In order to evolve research towards the Open Science paradigm, it is essential that

publications, data and software are findable, accessible, and reusable. While special

attention has been devoted to publications (Open Access), data (FAIR guidelines & Open

Data), the efforts towards making research software available to scientists are still in their

infancy. It is therefore important to assess the current status of these efforts and plan for

deploying initiatives that will give research software its first-class position next to

publications and data.

75 https://getindico.io/

https://protect-eu.mimecast.com/s/I35fCq2LLs84yLsEiVVN?domain=digital-memory-project.web.cern.ch/
https://protect-eu.mimecast.com/s/jS81CrYVVH8NRwsj5Ast?domain=inveniosoftware.org/
https://protect-eu.mimecast.com/s/dCLrCvjLLu7BnOT5i7Vj?domain=opendata.cern.ch/
https://protect-eu.mimecast.com/s/kMMdCwk77TGOE0cx7yKs?domain=reana.io/
https://protect-eu.mimecast.com/s/VjxWCxlLLT1G5mFgjWPc?domain=zenodo.org/
https://getindico.io/

Scholarly Infrastructures for Research Software

 79

6.3.4 Kay Graf

Organization(s)

ESCAPE76 (European Science Cluster of Astronomy & Particle physics ESFRI research

infrastructures)) is a EOSC cluster project. Its mission is to establish a single collaborative

cluster of next generation European Strategy Forum on Research Infrastructures (ESFRI)

facilities in the area of astronomy- and accelerator-based particle physics in order to

implement a functional link between the concerned ESFRI projects and European Open

Science Cloud (EOSC).

Biography

Kay is senior researcher at the Erlangen Centre for Astroparticle Physics (ECAP) at the

University of Erlangen77, Germany (FAU) and the general manager there. His research is

in the field of astroparticle physics spanning the high-energy physics and astrophysics

communities. In addition, he has a long history in software development, coordination and

maintenance as the computing and software coordinator for the KM3NeT78 neutrino

experiment, an ESFRI.

Kay is a member of EAWG, primarily in regards to his work within the EOSC cluster project

ESCAPE - where he coordinates the work package on an open science software and service

repository (OSSR). OSSR will be a sustainable open-access repository to share scientific

software and services to the science community and enable open science. It will house

astro-particle-physics-related scientific software and services for data processing and

analysis, as well as test data sets, user-support documentation, tutorials, presentations

and training activities.

Interest in SIRS TF

Coming from a community where - mostly community-specific - software and data

naturally go hand in hand to form the basis of all science products, the handling of complete

software lifecycles, the sharing of best practices and the cross-fertilisation via co-

developments and re-use of software algorithms and software platforms is his main

interest. All those topics are part of the SIRS taskforce - so Kay was eager to work together

forming software strategies as one of the pillars of the EOSC.

6.3.5 Miguel Colom

Organization(s)

Miguel Colom represents Image Processing On Line (IPOL), a journal that was founded in

2009 after an ERC advanced grant was obtained by Prof. Jean-Michel Morel at École

Normale Supérieure de Cachan (now ENS Paris-saclay). IPOL publishes peer-reviewed

articles on signal (mainly image and video) processing, with a special focus on complete

mathematical descriptions of the algorithms. The number of publications per year of IPOL

is modest, with about 25 papers per year. It's indexed by SCOPUS, DOAJ, and others. An

official Impact Factor hasn't been yet obtained, but it's in the Thomson Reuters Emerging

Citation Index (a preliminary step before the Impact Factor). Each publication in IPOL

includes not only the PDF of the article, but also the source code, both under a free licence.

76 https://projectescape.eu/

77 https://protect-eu.mimecast.com/s/DnK5CLPWWIRomNTqGFmY?domain=ecap.nat.fau.de

78 https://protect-eu.mimecast.com/s/mC8jCM9WWhqoRxIJ9XQR?domain=km3net.org

https://projectescape.eu/
https://protect-eu.mimecast.com/s/DnK5CLPWWIRomNTqGFmY?domain=ecap.nat.fau.de
https://protect-eu.mimecast.com/s/mC8jCM9WWhqoRxIJ9XQR?domain=km3net.org

Scholarly Infrastructures for Research Software

 80

The large majority of articles have also an online demo where the users can test the

algorithms with their own data.

IPOL website: https://www.ipol.im

Biography

Miguel is a researcher in image processing at Centre Borelli (ENS Paris-Saclay, France),

supervising three PhD candidates on different subjects: detection of falsifications in images

based on JPEG artifacts, detection of falsifications based on noise analysis, and design of

a new concept of satellite based on irregular interferometric sampling. Before, he worked

in noise estimation and denoising of natural and hyperspectral images. His academic

background is in applied math and computer science. http://mcolom.info

At IPOL, Miguel is a section editor and the designer of the current demo system, a

distributed architecture of microservices. He manages the team of engineers that develops

and maintains it.

Interest in SIRS TF

Since the beginning of IPOL Miguel has had a strong interest in the quality and long-term

durability of the system. This has led to re-implementing several parts until they were

considered fully correct. He is really interested in knowing about other platforms like the

ones participating in this TF, and to discover what others consider as good practices and

great pitfalls.

Also, to know about solutions to common problems that many of the platforms in this task

force share: how to archive efficiently, how to ensure reproducibility, how to manage

different kinds of granularity when archiving, etc. IPOL has found solutions that IPOL

believes are good, but Miguel is interested in knowing different solutions to the same

problems by different platforms.

And finally, he thinks this initiative is absolutely needed to gather information on working

platforms to arrive at conclusions about good practices that can be useful to others in

terms of recommendations. Some kind of "design patterns", but understood as good

practices at platform level and for particular tasks (execution of algorithms, archiving,

referencing, etc.).

6.3.6 Paolo Manghi

Organization(s)

OpenAIRE is a non-profit legal entity offering networking services and technical services to

favour the implementation and adoption of Open Science practices in Europe and beyond.

One of the core technical services we offer is the OpenAIRE Research Graph79 an open,

transparent, metadata collection bringing in all scholarly communication sources

worldwide. We collect metadata from around 12,000 sources (Crossref, DataCite,

Unpaywall, MAG, ORCID, GRID/ROR, preprints, institutional repositories from OpenDOAR,

etc.), organise scientific results in publications, datasets, and software, and interlink them

with funders, projects, organizations (and the data sources from which we collect them).

The Graph80 counts 110 Pubs, 7 Mi datasets, 200K software, 30 funders, 3.5 million

79 https://protect-eu.mimecast.com/s/0nt0CG9WWh1jN1tKCSuT?domain=openaire.eu

80 https://protect-eu.mimecast.com/s/nWXnCJPWWIq0WqfGV4Ca?domain=beta.explore.openaire.eu/

https://www.ipol.im/
https://protect-eu.mimecast.com/s/OQE_COZ66FpPz8uv-SdH?domain=mcolom.info
https://protect-eu.mimecast.com/s/0nt0CG9WWh1jN1tKCSuT?domain=openaire.eu
https://protect-eu.mimecast.com/s/nWXnCJPWWIq0WqfGV4Ca?domain=beta.explore.openaire.eu/

Scholarly Infrastructures for Research Software

 81

projects, and around 1Bi relationships between such objects. OpenAIRE is one of the pillars

of the European Open Science Cloud81.

Biography

Paolo Manghi is a (PhD) Researcher in computer science at Istituto di Scienza e Tecnologie

dell'Informazione (ISTI) of Consiglio Nazionale delle Ricerche (CNR), in Pisa, Italy. His

research areas of interest are today data e-infrastructures for science and scholarly

communication infrastructures, with a focus on technologies supporting open science

publishing within and across different disciplines, i.e. computational reproducibility and

transparent evaluation of science. He is the CTO of the OpenAIRE infrastructure, involved

in coordination and research in the H2020 projects OpenAIRE-Connect, OpenAIRE-

Advance, OpenAIRE2020. Paolo is also involved in the research infrastructure projects

SoBigDataPlus82, PARTHENOS, AriadnePlus, RISIS2 and in the European Open Science

Cloud projects EOSCpilot, eInfraCentral, EOSC Secretariat, EOSC-Enhance. He is an active

member of Research Data Alliance WGs, member of EC projects advisory boards, of the

ResearchObject.org83, GreyNet, RD-Switchboard initiative, Open Science Monitor WG for

the European Commission, EOSC Architecture WG, GO FAIR GO Inter WG, and World Data

System ITO Technical Advisory Committee.

Interest in SIRS TF

Paolo’s main research interests are on solutions to Open Science publishing workflows, in

order to enable sharing, tracking, monitoring, reproducing, evaluating, rewarding the full

scientific process. Recent history on this domain has been tackling these issues starting

from Open Access to publications, moving to Open Access to data, FAIR Data, and now for

the first time glancing at software as a first class citizen of scholarly communication. He is

convinced that this step is necessary and key to move towards an overarching view of

science, which is far from being implemented today. When looking at the Open Science

roadmap, software should not be intended to be the only missing piece of the puzzle, as

services, workflows, facilities are as important as overlooked by scholarly communication,

but rather the so far ignored “elephant in the room”.

6.3.7 Melissa Harrison

Organization(s)

eLife is a non-profit organisation created by funders and led by researchers. Its mission is

to accelerate discovery by operating a platform for research communication that

encourages and recognises the most responsible behaviours.

eLife works across three major areas:

 Publishing – eLife aims to publish work of the highest standards and importance in all

areas of biology and medicine, while exploring creative new ways to improve how

research is assessed and published.

 Technology – eLife invests in open-source technology innovation to modernise the

infrastructure for science publishing and improve online tools for sharing, using and

interacting with new results.

81 https://protect-eu.mimecast.com/s/K0urCK699T23y2t3zxer?domain=eosc-portal.eu/

82 https://protect-eu.mimecast.com/s/IG6aCLPWWIREDRTmZv3-?domain=sobigdata.eu/

83 https://protect-eu.mimecast.com/s/q8-jCM9WWhqEyqfQ--o5?domain=researchobject.org/

https://protect-eu.mimecast.com/s/IG6aCLPWWIREDRTmZv3-?domain=sobigdata.eu/
https://protect-eu.mimecast.com/s/IG6aCLPWWIREDRTmZv3-?domain=sobigdata.eu/
https://protect-eu.mimecast.com/s/K0urCK699T23y2t3zxer?domain=eosc-portal.eu/
https://protect-eu.mimecast.com/s/IG6aCLPWWIREDRTmZv3-?domain=sobigdata.eu/
https://protect-eu.mimecast.com/s/q8-jCM9WWhqEyqfQ--o5?domain=researchobject.org/

Scholarly Infrastructures for Research Software

 82

 Research culture – eLife is committed to working with the worldwide research

community to promote responsible behaviours in research.

eLife receives financial support and strategic guidance from the Howard Hughes Medical

Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome.

eLife Sciences Publications Ltd is publisher of the open-access eLife journal.

Biography

Melissa Harrison manages the production department, ensuring the production process,

managing content from acceptance to publication and downstream deliveries, is efficient

and innovative. Having had editorial and production roles in journals and books at various

publishing houses she cemented her preference for workflow, process, and XML within the

journal production stage. Melissa chairs JATS4R and contributes regularly to the Force11,

Metadata2020, Crossref and JATS communities, campaigning for standardization of data

modelling to facilitate the flow of information between users in order to maximize the

dissemination and reuse of knowledge. She promotes the machine readability of outputs

of open science, including the use of PIDs to link people, institutions, resources, and

outputs.

Interest in SIRS TF

As eLife has implemented best practice, open science, and reproducibility standards and

led the effort with other publishers, the use and re-use of software as well as giving credit

to software "authors" has been very difficult to implement and navigate. Melissa hopes to

give the perspective of a publisher trying to do the "right thing" and the issues this involves,

and why there is a need to simplify this in order to increase uptake at other journals.

6.3.8 Yannick Barborini

Organization(s)

HAL is the national multidisciplinary open archives platform chosen by French universities,

top-ranking universities and research establishments as part of an inter-establishment

agreement (2013), to allow their researchers to deposit their scientific production. HAL is

operated by Centre for Direct Scientific Communication (CCSD), a joint service unit (UMS

3668) whose supervisory authorities are the CNRS, Inria, INRAE and the University of

Lyon, with the financial backing of the Ministry of Higher Education, Research and

Innovation (MESRI). HAL is part of the infrastructures included in the "National Plan for

Research Infrastructures 2018-2020".

HAL collects and disseminates, via open access, documents produced through research

(articles published in peer-reviewed journals, unpublished articles, communications, etc.)

pertaining to all scientific fields. To date, HAL contains nearly 730,000 scientific documents

and 2,300,000 bibliographic records. Document deposits (94,246 in 2019) are growing by

around 20% per year.

The HAL platform also hosts 140 portals of higher education and research institutions. More

than one-half of the French universities, research organisations and top-ranking

universities. These portals constitute the institutional open archives of these organisations

and allow them to implement their Open Access policy and manage their production.

Biography

Yannick Barborini is a software Engineer and has been working at the CNRS since 2005.

He has participated in the development of different services offered to the entire scientific

community: HAL of course, but also Sciencesconf (conference management platform),

Scholarly Infrastructures for Research Software

 83

Episciences (overlay journals) and Isidore (search engine in Humanities and Social

Sciences). Currently, he leads the team in charge of developing and providing new services

to the open archive HAL.

Interest in SIRS TF

Yannick is convinced that research should be open and accessible. Scientific outputs are

no longer limited to documents (articles, communications, etc.). HAL has opened software

deposits in 2018 thanks to a collaboration between CCSD, HAL Inria and Software Heritage,

but they have seen that the management of software items in the archive needs

improvement.

Software should be seen as a first-class citizen like other scientific productions and Yannick

believes this task force is a great opportunity to share experiences with other partners and

to contribute to this goal.

6.3.9 Ville Tenhunen

Organization(s)

Ville Tenhunen is a Finnish member state representative in the EOSC WG Architecture

nominated by the ministry of education and culture of Finland. According to Finnish

administrative practises this means that he is not representing any official organisation,

but represents himself, specifically his own expertise, instead. Ville has worked for the

University of Helsinki and now, since the beginning of March this year working for EGI

Foundation in Amsterdam as a Data Solutions Architect. He has a temporary contract with

the EGI Foundation.

Biography

Ville has worked as a team leader and project manager in the University of Helsinki for

more than 12 years. Last major project has dealt with research data and its storages. He

has also been active in Finnish national open science and research Initiatives. Additionally,

Ville has been co-chair of the Research Data Architectures in Research Institutions IG of

the Research Data Alliance (RDA) and is now a member of the Architecture Working Group

of the EOSC. Beginning in March 2020 he has worked in the EGI Foundation as Data

Solutions Architect. He has also acted as a data manager in the APIKS project where he

codes some solutions for an international research project (22 country teams).

In the University of Helsinki and now in the EGI Foundation he has also worked with

scientific software in a service provider and service developer roles.

Interest in SIRS TF

Ville is interested in software preservation, discoverability services and PID systems in the

context of the research reproducibility and openness. Catalogue services are one point in

this manner. Other interests are new forms of the services and software where for example

containers, virtual appliances, and functions as a service are discussed.

6.3.10 Michael Wagner

Organization(s)

Schloss Dagstuhl - Leibniz-Zentrum für Informatik (English: Leibniz Centre for

Informatics). Schloss Dagstuhl’s very general mission is to promote basic and application-

oriented research in the field of informatics, to support advanced, scientific vocational

training and to further education in the field of informatics, to promote the transfer of

Scholarly Infrastructures for Research Software

 84

knowledge between research into informatics and application of informatics, and to operate

an international forum and research institute for informatics.

Dagstuhl has pursued its mission mainly by facilitating communication and interaction

between researchers. Since the very first days of Dagstuhl in 1990, the seminar and

workshop meeting program has always been the focus of its programmatic work. In recent

years, LZI Schloss Dagstuhl has expanded its operation and also has significant efforts

underway in bibliographic services (the dblp computer science bibliography) and in open

access publishing.

dblp84: The dblp computer science bibliography provides open bibliographic information on

major computer science journals and proceedings. Listing more than 5.1 million

publications, dblp is the world’s most comprehensive open data collection of computer

science research articles.

Publishing: Since its beginnings, Dagstuhl has been publishing reports of its seminars and

workshops which have been available free of charge, be it on paper or electronically. In

reaction to the slow start of the open access idea in computer science and after receiving

repeated requests from the community, Dagstuhl started in 2008 an open access

publication platform for computer science research. The goal is not so much to become a

large publishing house but to establish affordable open access publishing as a viable mode

of publication in computer science.

The flagship product of Dagstuhl Publishing is the LIPIcs series85, which publishes

proceedings of outstanding computer science conferences.

Biography

Michael Wagner has been a member of the scientific staff at Schloss Dagstuhl since 2012.

He started there as part of the dblp team, but quickly took on his first task in the growing

publishing department at the end of 2012. Since the end of 2017, Michael is now leading

the publishing department full time. In addition to the operational publishing business, he

is responsible for the development of their software systems together with a colleague.

Interest in SIRS TF

Michael has a strong opinion that science should be open. All contributions - whether text,

data, or software - should be freely available to the public. He also thinks that research

results should not be in the hands of commercial service providers whose primary intention

is to maximize profits. Even if this seems to change slowly in the publishing business (at

least the open-access part is slowly increasing; the point affordable publication cost is

unfortunately another tough topic), he now sees a great chance not to run into a similar

dependency on commercial providers for the publication of data and software but to take

an open path with fair and affordable conditions from the beginning. Therefore, Michael is

happy to be part of this TF, to learn from the experiences of other members and hopefully

to create an open path.

6.3.11 Wolfgang Dalitz

Organization(s)

Zuse Institute Berlin (ZIB): ZIB is an interdisciplinary research institute for applied

mathematics and data-intensive high-performance computing. Its research focuses on

84 https://dblp.org/

85 https://www.dagstuhl.de/dagpub

https://dblp.org/
https://www.dagstuhl.de/dagpub

Scholarly Infrastructures for Research Software

 85

modelling, simulation and optimisation with scientific cooperation partners from academia

and industry.

Biography

Wolfgang Dalitz is a scientist at Zuse Institut Berlin (ZIB) working in the field of scientific

information systems. He has been involved in building mathematical software libraries

since the late 1980s. Within the division "Mathematical Algorithmic Intelligence" he leads

the Working Group "Open Science and Research Data".

Interest in SIRS TF

Open access to data, codes, methods, and results of scientific research only unfolds its full

potential, once it is possible to relate and interconnect them. Based on this, tools can be

developed, which are of scientific and social relevance. A prerequisite for this is the

existence of suitable scientific infrastructures based on the FAIR principles (Findable,

Accessible, Interoperable, Reusable). The partners in this TF support these principles. A

common strategy to establish this infrastructure must be the TF’s goal.

6.3.12 Jason Maassen

Organization(s)

The Netherlands eScience Centre is the Dutch national centre for the development and

application of research software. It is a non-profit organization funded by NWO (the Dutch

Research Council) and SURF (the organization for ICT in Dutch education and research).

Its main goal is to boost the use of digital methods and research software in Dutch

academic research, across all disciplines. To do so, the eScience Centre provides both

funding and expertise (in the form of RSEs) to research projects. In addition, it contributes

to many topics surrounding research software, such as FAIR software recommendations

(fair-software.eu), the research software directory (research-software.nl), software quality

guides (the-turing-way.netlify.app), software carpentry courses, etc.

Biography

Jason Maassen is a Technology Lead and involved in many of the projects at the

Netherlands eScience Centre that apply parallel and distributed programming to scientific

applications. In addition, he guides internal software development at the centre of software

sustainability efforts of the eScience Centre, such as the Research Software Directory and

fair-software.nl.

Interest in SIRS TF

Jason’s main interest is to align the efforts of the Netherlands eScience Centre in the area

of FAIR software, software directories, software archiving, software quality guidelines, etc.,

with those of (potential) European partners and EOSC. So far, the eScience Centre has

mostly been active on a national level, with some ad-hoc international cooperation here

and there. Jason sees this initiative as an opportunity to widen the scope of these efforts.

6.3.13 Carlos Martinez-Ortiz

Organization(s)

The Netherlands eScience Centre is the Dutch national centre for the development and

application of research software. It is a non-profit organization funded by NWO (the Dutch

Research Council) and SURF (the organization for ICT in Dutch education and research).

Its main goal is to boost the use of digital methods and research software in Dutch

Scholarly Infrastructures for Research Software

 86

academic research, across all disciplines. To do so, the eScience Centre provides both

funding and expertise (in the form of RSEs) to research projects. In addition, it contributes

to many topics surrounding research software, such as FAIR software recommendations

(fair-software.eu), the research software directory (research-software.nl), software quality

guides (the-turing-way.netlify.app), software carpentry courses, etc.

Biography

Carlos Martinez-Ortiz has worked in a wide range of research projects, ranging from digital

humanities, life sciences, automatic detection of abnormal energy consumption in

buildings, video tracking of dairy cows, modelling high performance storage systems, to

segmentation of medical images. In his current role as community manager, he is involved

in many of the software sustainability and FAIR software efforts of the eScience Centre.

Interest in SIRS TF

Carlos’ main interest is to align the efforts of the Netherlands eScience Centre in the area

of FAIR software, software directories, software archiving, software quality guidelines, etc.,

with those of (potential) European partners and EOSC. So far, the eScience Centre has

mostly been active on a national level, with some ad-hoc international cooperation here

and there. Carlos sees this initiative as an opportunity to widen the scope of these efforts.

6.3.14 Elisabetta Ronchieri

Organization(s)

The Italian National Institute for Nuclear Physics (INFN), founded in 1951, is a

governmental research organization with 20 divisions, spread throughout Italy, 4 national

laboratories (Laboratori Nazionali di Frascati, Laboratori Nazionali del Gran Sasso,

Laboratori Nazionali di Legnaro and Laboratori Nazionali del Sud), the National Centre for

Research and Development in Information Technology (CNAF), based in Bologna, and 2

other national centres (TIPFA, based in Trento, and Lasa, based in Milano). Its mission is

to promote, coordinate and fund nuclear, particle and high-energy physics research in

Italy. Since its inception, INFN has been developing open ICT innovative solutions for its

own advanced needs of distributed computing and software applications. It has a

remarkable excellence expertise on Grid and Cloud technologies, having fostered and

participated, with leadership roles, to many of the large Projects financed by the EC that

eventually led to the realization of the European Grid Infrastructure (EGI). INFN has well

established collaborations with the main international Research.

Centres involved in the development of ICT solutions for the scientific world and has been

a primary partner of many projects funded by the EC through the FP7 program, in particular

EGI_InSPIRE and EGI_Engage. INFN is currently leading the Italian JRU (which involves

INAF and INGV) for the participation to EGI_Engage. INFN has been leading one of the

three pillars of the EOSC-Hub project, the INDIGO- DataCloud project, under Horizon2020

EU Framework Program for Research and Innovation. The INDIGO-DataCloud has

developed a data and computing platform targeting scientific communities, deployable on

multiple hardware and provisioned over hybrid (private or public) e-infrastructures.

Biography

Elisabetta Ronchieri is a (PhD) computer science engineer. She has been working at the

INFN CNAF since 2001, participating in designing and developing solutions for software

maintenance and software quality in various EU projects, such as DataGrid, EGEE, ETICS

and EMI. At CNAF Elisabetta is a technologist and member of the software development

team, involved in the operations and R&D of the computing infrastructure. She collaborates

in the organization of international conferences, such as IEEE NSS/MIC.

Scholarly Infrastructures for Research Software

 87

Recently, her main research consists of investigating the role of Machine Learning

techniques in software engineering issues and in data centre management, collaborating

in other EU projects, such as DEEP-Hybrid-DataClouda and IOTwins. Furthermore, she is

interested in combining knowledge and data-driven methods for addressing complex

problems, like the identification of clinical narrative. Elisabetta collaborates with the

secondary schools of Bologna for the technology transfer project and the University of

Bologna for data analysis framework.

Interest in SIRS TF

Elisabetta’s institute is a supporter of Open Science and Open Source Software. Personally,

she is in favour of a reproducible research so that others may verify the findings and build

upon them. For this both data and code must be available to researchers and easily

executable to obtain the same results. The higher the quality of data and code is, the

higher the reliability of the research is. This TF can confer software the proper role inside

a research analysis.

6.3.15 Sam Yates

Organization(s)

Swiss National Supercomputing Centre86 (CSCS). CSCS manages and provides access to

high performance computing systems for Swiss and European researchers and for partner

organisations including CERN and MeteoSwiss. In addition to hardware management and

user support, CSCS is also engaged in the development of a number of software tools and

simulators for HPC environments, and collaborates with many software and infrastructure

development projects, both within Europe and around the world.

Biography

Sam Yates is a software engineer at CSCS, primarily engaged in the development of Arbor,

a neuron simulation library for HPC systems, as part of the Human Brain Project. His

academic background is mainly in pure mathematics, but he has been involved in scientific

software development for most of his career, both in industry and academia, with

applications in geophysics, telecommunications, and most recently in computational

neuroscience.

Interest in SIRS TF

Sam has encountered first hand issues that affect academic projects with a scientific

computing component that stem from poor data curation and software engineering. These

in turn often arise from mismatches between the systems that recognize and enable

researchers, and the practice of software development in a research context. A mature

infrastructure for supporting the software component of modern science will, he hopes,

help ameliorate these problems, and Sam is very interested in supporting its development.

6.3.16 Moritz Schubotz

Organization(s)

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure researches, develops and

operates methods, processes and services for a sustainable information infrastructure. The

organization offers data, information and knowledge, software and services via open and

legally compliant platforms and makes them searchable, accessible, interoperable and

86 http://cscs.ch/about

http://cscs.ch/about

Scholarly Infrastructures for Research Software

 88

reusable. FIZ Karlsruhe supports the value creation process in science and innovation at

all levels and enables research questions to be answered and new ones to be posed. In

doing so, the organization follows its guiding principle “Advancing Science“. To do this a

variety of platforms and services are developed. swMATH87, in particular, is a joint effort

with Zuse-Institute Berlin. swMATH is a freely accessible, innovative information service

for mathematical software. swMATH not only provides access to an extensive database of

information on mathematical software, but also includes a systematic linking of software

packages with relevant mathematical publications. The intention is to offer a list of all

publications that refer to a software recorded in swMATH. In particular, all articles are

given, which are included in Zentralblatt MATH (zbMATH). It can be both articles that

describe the background and technical details of a program, as well as those publications

in which a piece of software is applied or used for research.

Biography

Moritz Schubotz is a senior researcher at the Department for Mathematics at FIZ Karlsruhe

- Leibniz-Institute for Information Infrastructure, Germany. As a theoretical physicist and

computer scientist he follows his passion for mathematical information retrieval. He applies

a bouquet of state-of-the-art computer science technology to academic literature from

science, technology, engineering and mathematics. André Greiner-Petter, Philipp Scharpf

and Felix Petersen share this special interest and research methods and tools to make

mathematical expressions more useful for humans and computers. As a Wikimedia Open

Science Mentor Moritz is committed to the FAIR principles and advocates for Open Science

in general. Together with the Ph.D. students Cornelius Ihle and Dennis Trautwein he

investigates the potential of Blockchain Technology to advance the Open Science

movement. He has been an offsite collaborator at NIST (National Institute of Standards

and Technology, U.S.A.) since 2014 and was a fellow at the NII (National Institute of

Informatics, Japan) from 2017 to 2018. Earlier, he received a Ph.D. in Computer Science

from TU Berlin, Germany.

Interest in SIRS TF

Moritz expects that the partners in the SIRS TF are the critical mass to become a nucleus

for a fundamental change in research culture, in mathematics and beyond. FAIR software

contributes to more effective collaboration in science. The TF describes the foundations for

the organization of FAIR software. From there, an infrastructure will evolve so that

researchers can focus on their domain-specific problems, and the frameworks to organize

archive, reference, describe and credit software artifacts will seamlessly function in the

background, like running tap-water.

6.3.17 Leonardo Candela

Organization(s)

The National Research Council of Italy (Cnr) is the largest public research institution in

Italy, the only one under the Research Ministry performing multidisciplinary activities.

Founded as legal person on 18 November 1923, Cnr’s mission is to perform research in its

own Institutes, to promote innovation and competitiveness of the national industrial

system, to promote the internationalization of the national research system, to provide

technologies and solutions to emerging public and private needs, to advice Government

and other public bodies, and to contribute to the qualification of human resources. In the

Cnr's research world, the main resource is the available knowledge which means people,

with their skills, commitment and ideas. This capital comprises more than 8.000

employees, of whom more than half are researchers and technologists. Some 4.000 young

87 https://swmath.org/

https://swmath.org/

Scholarly Infrastructures for Research Software

 89

researchers are engaged in postgraduate studies and research training at Cnr within the

organization’s top-priority areas of interest. A significant contribution also comes from

research associates: researchers, from Universities or private firms, who take part in Cnr’s

research activities.

Biography

Leonardo Candela is computer science researcher at the National Research Council of Italy,

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”. His research interests are

driven by the development of systems and services supporting research infrastructures for

science. In particular, he is intertwining virtual research environments, data

infrastructures, collaborative working environments, reference models for complex

systems, information retrieval, data analytics, data publishing and innovative scholarly

communication practices. His research activity is developed by closely connecting research

and development. In fact, he has been involved in several EU-funded projects called to

develop Digital Libraries & Data Infrastructures and he is the Strategy and Portfolio

Manager of the D4Science.org infrastructure.

Interest in SIRS TF

Leonardo is fascinated by open science and he is investing energies and efforts to promote

it and implement it. He strongly believes that “publishing” (making public) is the key

functionality characterising the open science movement and he is contributing to the

development of such a concept. He also believes that systems and solutions for open

science must be built according to the “system of systems” paradigm. This leads him to

study the approaches for “data publishing” by considering the complementary perspectives

and offerings of journals and repositories. Research software represents another important

research artifact capturing his “publishing”-related interest. The SIRS task force is a unique

opportunity to discuss his understanding on the matter and bring the ideas on research

software management according to open science practices forward.

6.3.18 Martin Fenner

Organization(s)

DataCite is a leading global non-profit organization that provides persistent identifiers

(DOIs) for research data, research software and other research outputs. Organizations

within the research community join DataCite as members to be able to assign DOIs to all

their research outputs.

Biography

Martin Fenner has been the DataCite Technical Director since 2015. From 2012 to 2015 he

was the technical lead for the PLOS Article-Level Metrics project. Martin has a medical

degree from the Free University of Berlin and is a Board-certified medical oncologist. He

co-chairs the Force11 Software Citation Implementation WG and the RDA/FORCE11

Software Source Code Identification WG, and is a member of the EOSC Architecture WG.

Interest in SIRS TF

Martin is particularly interested in addressing the needs for persistent identification and

standardized metadata for research software, and the interlinking of research software,

publications, research data, researchers, research organizations and funding.

Scholarly Infrastructures for Research Software

 90

6.3.19 Eric Jeangirard

Organization(s)

scanR is a service offered by the French Ministry of Higher Education, Research and

Innovation. scanR is a tool for exploring the research and innovation landscape in France.

It aims to help understand who the actors of research and innovation in France are, to

promote their work. scanR is intended for the entire French society in a logic of

transparency of work largely supported by public funds. It also aims to promote access for

all to the latest research and innovation developments in order to stimulate public debate.

Finally, scanR intends to contribute to the intensification of links between different actors

(belonging to different fields of research or status), which are an important vector for

boosting this activity.

Biography

Eric Jeangirard is a Data Scientist working for the French Ministry of Higher Education,

Research and Innovation since 2018. In particular, besides scanR, he has been involved in

the design and implementation of the French Open Science Monitor. In the team, Eric uses

recent techniques in machine learning and software application deployments to build

efficient and inexpensive tools for the world of higher education and research.

Interest in SIRS TF

The development of Open Science to make the results of scientific research open to all,

without hindrance, without delay, without payment is one of the commitments of the

French Ministry through the National Plan for Open Science. The implementation of the

French Open Science Monitor and scanR are part of the action points for its development.

The establishment of scholarly infrastructure to enable the identification and management

of standard metadata for research software, enabling them to be located in the research

ecosystem through links with researchers, entities, publications and funding is a major

challenge for research software.

Getting in touch with the EU

IN PERSON
All over the European Union there are hundreds of Europe Direct information centres.

You can find the address of the centre nearest you at: https://europa.eu/european-union/contact_en

ON THE PHONE OR BY EMAIL
Europe Direct is a service that answers your questions about the European Union.

You can contact this service:
– by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),

– at the following standard number: +32 22999696, or

– by email via: https://europa.eu/european-union/contact_en

Finding information about the EU

ONLINE
Information about the European Union in all the official languages of the EU is available on the Europa

website at: https://europa.eu/european-union/index_en

EU PUBLICATIONS
You can download or order free and priced EU publications from:

https://op.europa.eu/en/publications. Multiple copies of free publications may be obtained by

contacting Europe Direct or your local information centre (see https://europa.eu/european-

union/contact_en)

EU LAW AND RELATED DOCUMENTS
For access to legal information from the EU, including all EU law since 1952 in all the official language

versions, go to EUR-Lex at: http://eur-lex.europa.eu

OPEN DATA FROM THE EU
The EU Open Data Portal (http://data.europa.eu/euodp/en) provides access to datasets from the EU.

Data can be downloaded and reused for free, for both commercial and non-commercial purposes.

https://op.europa.eu/en/publications
http://eur-lex.europa.eu/
http://data.europa.eu/euodp/en

The Task Force on Scholarly Infrastructures of Research Software,

as part of the Architecture WG of the European Open Science

Cloud (EOSC) Executive Board, has established a set of

recommendations to allow EOSC to include software, next to other

research outputs like publications and data, in the realm of its

research artifacts. This work is built upon a survey and

documentation of a representative panel of current operational

infrastructures across Europe, comparing their scopes and

approaches.

This report summarises the state of the art, identifies best

practices, as well as open problems, and paves the way for

federating the different approaches in view of supporting the

software pillar of EOSC.

Research and Innovation policy

