
HAL Id: hal-04133969
https://hal.science/hal-04133969

Submitted on 28 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RF Neuromorphic Spiking Sensor for Smart IoT Devices
Zalfa Jouni, Thomas Soupizet, Siqi Wang, A. Benlarbi-Delai, Pietro M.

Ferreira

To cite this version:
Zalfa Jouni, Thomas Soupizet, Siqi Wang, A. Benlarbi-Delai, Pietro M. Ferreira. RF Neuromorphic
Spiking Sensor for Smart IoT Devices. Analog Integrated Circuits and Signal Processing, inPress,
�10.1007/s10470-023-02164-w�. �hal-04133969�

https://hal.science/hal-04133969
https://hal.archives-ouvertes.fr


Vol.:(0123456789)1 3

Analog Integrated Circuits and Signal Processing 
https://doi.org/10.1007/s10470-023-02164-w

RF neuromorphic spiking sensor for smart IoT devices

Zalfa Jouni1,2  · Thomas Soupizet1,2 · Siqi Wang1,2  · Aziz Benlarbi-Delai1,2  · Pietro M. Ferreira1,2 

Received: 21 November 2022 / Revised: 22 March 2023 / Accepted: 19 June 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
For a ubiquitous sensing in Internet of Things (IoT), a large number of low-cost devices with ultra-low power massive com-
munications are required. Heavy cloud computing pressure and low-intelligent traditional front-end hardware are major 
challenges for extending sensing in IoT applications. While state-of-the-art is focusing on the cloud-edge platform solutions 
and the optimization of the performed and transmitted data, this paper proposes an intelligent equipment hardware for smart 
IoT devices. A radiofrequency (RF) neuromorphic spiking sensor is implemented in BiCMOS 55 nm technology, compris-
ing a wake-up receiver with a spiking pre-processing neural system (artificial synapses and neurons). The proposed system 
can identify bit patterns of two signals modulated using On–Off Keying at a frequency of 2.4 GHz received from two IoT 
receivers. Moreover, the system can recognize the orientation of the mobile IoT transmitter. This can be achieved based on 
the output spiking frequency of the neuron responsiveness over the difference between the input powers. Post-layout simu-
lations demonstrate that the orientation of the source can be detected for various distances between the source and the two 
receivers. Significant performances are obtained with 1.1 nW of total power consumption and 0.7 fJ/conv of energy efficiency.

Keywords Neuromorphic computing · IoT · Sensory system · Spiking neural network · Artificial neuron · Energy 
efficiency · Ultra-low power

1 Introduction

The Internet of Things (IoT) is the vision of the world in 
which integrated circuits are embedded in everyday objects 
for collecting, processing, and exchanging useful informa-
tion. The founding pillar of the IoT concept is the avail-
ability of low-cost devices with ultra-low power wireless 

communications capabilities [1]. Many proprietary wireless 
technologies [2] and efficient radio hardware [3] have gained 
much interest in the last few years. For example, LoRaWAN 
is a promising IoT technology that extends the battery life-
time through a highly efficient use of the radio hardware 
[4, 5]. The power consumption reduction comes from an 
intermittent use of the receiver hardware. To meet this 
requirement, a front-end hardware composed of two receiv-
ers is often used [1]. One is the main receiver with high 
performance, and it is kept in a deep sleep until it is needed. 
The other is the permanently-on ultra-low-power receiver, 
a.k.a wake-up receiver. Whenever it detects a communica-
tion request, it wakes up the main receiver to execute data.

With the advancements in low-power and minia-
ture electronics, recent years have witnessed a dramatic 
increase of IoT applications covering a wide range of sen-
sory areas, such as smart home, consumer electronic and 
industrial monitoring [6]. However, ubiquitous sensing 
for the IoT requires many more IoT sensors and sensory 
systems. Thus, the IoT network should be able to cope 
with a large number of devices connecting to it, which 
gives the signal processing a progressively substantial role 
in analyzing, summarizing, and protecting complex data 
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exchanged by connected things [7]. Furthermore, since 
all the massive data is uploaded to the cloud platform, 
and with the gradual integration of information and com-
munication technology in IoT, the system suffers from 
baffling problems. One may cite some of them: network 
congestion, poor data quality, large data processing delay, 
intensive computing tasks, and heavy cloud computing 
pressure [8].

At the same time, traditional front-end sensing equipment 
is limited by the actual low intelligent and highly consum-
ing hardware. For example, in sensory systems, IoT devices 
often use protocols based on On–Off Keying (OOK) modu-
lation [9]. Thus, when a device receives a signal, it knows 
the identity of communication of other devices without any 
additional information about the incoming signal or the 
localization of the device with whom it wants to communi-
cate. Therefore, it sends electromagnetic waves in all space 
which lead to a high-power consumption. Facing all these 
problems, one solution could be achieved by the introduc-
tion of “smart” front-end hardware in IoT communications. 
Thus, the cloud platform will exchange less processed and 
analyzed information with an intelligent equipment, which 
saves power and achieves real-time performance.

To introduce the intelligence in electronic systems and 
by learning from the biological and physical characteristics 
of the neocortex system, researchers overcome the build-up 
of the Von Neuman bottleneck and the end of Moore’s law 
by the introduction of neuromorphic computing approach 
[10]. As the second generation of artificial intelligence neu-
ral networks (ANNs), deep neural networks (DNNs) are rap-
idly evolving and widely used in many fields [11]. However, 
due to the large number of operations and computations, 
DNN can lead to significant power consumption. There-
fore, spiking neural networks (SNNs), also known as the 
third generation of ANNs, greatly bridge the gap between 
ANNs and biological neural networks. Thanks to their capa-
bility to truly mimic the human brain, analog SNNs come 

to achieve high energy efficiency with low power hardware 
implementation.

To explore the sensory processing in the brain, neuro-
morphic engineers have focused on mimicking the retina 
and the cochlea (Fig. 1.). It is called neuromorphic sensory 
system [12]. However, IoT devices don’t hear or see like 
the human brain. In sensory applications, IoT devices com-
municate through electromagnetic waves (Fig. 1b). Thus, a 
smart vision or audition in IoT requires an RF neuromorphic 
sensory system, which may drive a new generation of bio-
inspired signal processing for IoT. The authors have imple-
mented a novel architecture using neuromorphic sensing for 
IoT communications, called neuromorphic enhanced wake-
up radio (NWR) [13]. The proposed system consists of a 
wake-up radio followed by a neuromorphic pre-processing 
system (comprising basic blocks of SNNs, a synapse and a 
spiking neuron). The system can detect and identify bit pat-
terns of a 2.4 GHz OOK-modulated signal. Moreover, the 
proposal can also observe the electromagnetic environment 
of IoT since it can recognize the RF input power based on 
the spiking frequency of the artificial neuron (eNeuron). The 
system consumes 1.2 nW and achieves an energy efficiency 
of 1.2 pJ/bit with a minimum detectable signal of  −  29 dBm.

This paper extends the work already presented in [13] 
by proposing: (a) A neuromorphic enhanced wake-up radio 
(NWR) with two different types of eNeurons, the Moris-
Lecar (ML) eNeuron (described in [13]) and the leaky inte-
grate-and-fire (LIF) eNeuron; and (b) A RF neuromorphic 
spiking sensor (NSS) system. The NSS uses two NWR in a 
two-layer spiking neural network (SNN). The proposed NSS 
paves an innovative way to explore new paradigms suitable 
for a transmitter localization problem in IoT. NSS can esti-
mate the relative position of two IoT receivers fixed at dif-
ferent distances from an IoT source. Thus, the proposal NSS 
can identify the orientation of the source based on the rela-
tion between the RF input power level ( PRF ) and the spiking 
frequency ( fspike ) of the eNeuron. Post-layout simulations 

Fig. 1  Exploring Sensor Processing in: a the human brain, and in b IoT communication
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(PLS) are carried out to highlight both eNeurons (ML and 
LIF) figure-of-merits, and NSS simulation results validate 
its functionality with significant performances in terms of 
power consumption (in nW) and energy efficiency (in fJ/
conv). The proposed NSS is designed in the BiCMOS SiGe 
55 nm technology.

This paper is organized as follows. Section 2 presents a 
literature review of wake-up receivers, analog spiking neural 
systems, and neuromorphic signal processing implementa-
tions. Proposed RF neuromorphic spiking sensor and each 
stage of it are presented in Sec. 3. In addition, it describes 
recent work of the NWR system [13] dealing with different 
types of eNeurons. Section 4 highlights PLS results of the 
NSS system. Finally, conclusions are drawn in Sect. 5.

2  State-of-the-art

This section can be divided in three main parts. Section 2.1 
presents an overview of wake-up receivers implemented in 
low power radio communication followed by a comparison 
of different solutions in hardware. Section 2.2 describes 
the neuromorphic computing approach. It is limited to the 
analog implementation of spiking neural networks. A short 
state-of-the-art review of basic building blocks of the SNNs, 
spiking neurons (Sect 2.2.1) and synapses (Sect. 2.2.2) is 
then explored. Finally, Sect. 2.3 reveals different neuromor-
phic signal processing architectures presented in literature.

2.1  Wake-up radios

IoT offers many opportunities in smart physical objects 
combining artificial intelligence and signal processing in 
low-cost context-aware devices. For smart communications, 
IoT devices require low power consumption. A promising 
approach to dramatically reduce the power consumption is 
to use an ultra-low-power receiver, a.k.a wake-up receiver 
(WuR) [1]. Since its power consumption is several orders of 
magnitude lower than that of a traditional low-power radio, 
the WuR can be kept always on. In this setting, the main 
radio is kept in a deep sleep until it is needed.

For the WuR to operate effectively as a part of the larger 
system in a multi-user environment, it should consider many 
design points such as power consumption ( Prms ), minimum 
detectable signal ( Pmds ), data rate ( DR ), and operating fre-
quency ( fRF ). Energy efficiency is defined as Eeff = Prms∕DR 
(in J/bit). Designers tend to simplify WuRs enabling faster 
prototyping. Nevertheless, this is dependent on the modu-
lation technique used and the choice of the operating fre-
quency. Most WuRs implemented in hardware for sensor 
networks use a 2.4 GHz carrier frequency and OOK modu-
lation [9].

Cheng et al. have proposed a wake-up receiver based 
on direct active RF detection [14]. At the operating fre-
quency of 2.4 GHz with DR = 200 kbps, their RF detector 
achieves a Pmds = − 50 dBm while consuming 2.4 μW. 
Besides, their receiver has an energy efficiency of 22.5 pJ/
bit. A wake-up receiver front-end is proposed in [9] with 
Eeff = 48 pJ/bit. The proposal leads to an intrinsic band-
pass characteristic that improves the signal-to-noise ratio. 
It is implemented for a 2.4 GHz band and a DR = 2.5 kbps 
and consumes 0.12 μW with a Pmds = −48.5 dBm. At 0.9 
GHz and for a DR = 1 kbps, Karami et al. have designed 
a WuR with a Pmds = −26 dBm and a low Prms = 5.7 nW 
[15]. Based on that, Eeff = 5.7 pJ/bit is obtained.

Recently, Mangal et  al. have designed a wake-up 
receiver with gate-biased self-mixers [16]. It consumes 
only 0.42 nW with an interesting Pmds = −79.1 dBm. It 
achieves an Eeff = 4.2 pJ/bit. However, it operates at 
fRF = 434 MHz with a DR = 0.1 kbps, which are consid-
ered as very low frequency and data rate for smart IoT 
communications. In similar environment, at  113.5 MHz 
and for a DR = 0.3 kbps, a fully integrated wake-up 
receiver is proposed in [17]. It is designed using an active 
rectifier for emerging event-driven low-average through-
put applications. The proposal achieves a Pmds = −69 dBm 
with a Prms = 4.5 nW.

Since the envelope detector is the part of the WuR operat-
ing in RF, it is usually the main contributor to power con-
sumption. A simple demodulator can be adopted for that 
purpose, especially when the RF input is an OOK-modulated 
signal [9]. However, the minimum detectable signal by the 
receiver is limited by the quadratic non-linearity of such 
detectors [14]. This paper proposes a simple envelope detec-
tor, described in Sec. 3.1.

2.2  Analog spiking neuromorphic

Neuromorphic computing appeared in 90s to refer to a vari-
ety of brain-inspired computers, devices, and models that 
contrast Von Neuman architectures [10]. Inherent parallel-
ism, real-time performance, speed in both operation and 
training, and small device footprint continue to be major 
motivations for the developments of neuromorphic hard-
ware implementations. Spiking neural networks (SNNs) 
become among the most researched, in either analog or 
digital domain. The most distinct property of SNNs is that 
the information is transmitted as discrete spike events, also 
referred to as action potential [18]. In contrast to digital neu-
romorphic systems, analog solutions save significant power, 
thanks to their capability to faithfully mimic the physical 
properties of biological systems [19]. The neuromorphic 
hardware approach consists of a large-scale integration of 
silicon artificial spiking neurons (eNeurons) and synapses.
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2.2.1  Spiking neurons

As the fundamental component of a neural network, the neu-
ron cell is vital to overall performance. Different models 
for spiking neurons represent their biological inspiration at 
different levels, which impacts the degrees of complexity, 
accuracy, and power consumption of hardware implemen-
tations. An overview of the types of neuron models imple-
mented in hardware is detailed in [10]. Spiking eNeuron is 
often compared in the state-of-the-art by its output spiking 
frequency fspike , its silicon area, and its power consumption 
Prms,N . The energy efficiency of the eNeuron expressed as 
Eeff ,N = Prms,N∕fspike (J/spike) is often used as a figure-of-
merit. In this paper, two models of eNeurons are explored: 
the Morris-Lecar (ML) eNeuron and the leaky-integrate-
and-fire (LIF) eNeuron.

A. ML eNeuron The ML model is one of the simplest 
models to produce action potential and neural activity 
among the biological-plausible models. The ML model is 
described by two coupled first order differential equations. 
The first one models the evolution of the membrane poten-
tial and the second one models the activation of potassium 
current [20, 21]. ML eNeurons have recently been used in 
many SNNs implementations, such as performing a spiking 
modulator for an audio signal processing [22].

Sourikopolous et al. [23] have innovated biomimetic 
and simplified versions of the eNeuron model based on ML 
implementation. They have demonstrated an Eeff ,N = 78.3 fJ/
spike and a relatively constant period by reaching a maxi-
mum fspike of 1.2 kHz for the biomimetic version of 200 μm2 
silicon area. The simplified version of 35 μm2 silicon area 
achieves an Eeff ,N = 4 fJ/spike and a fspike = 25 kHz. Thus, 
a simplified version is better in speed but in spent of power 
consumption. Both circuits are implemented using TSMC 65 
nm technology. A ML eNeuron of 98.61𝜇m2 silicon area is 
designed in [22] with a high-firing rate to highlight a better 
Eeff ,N trade-off. An Eeff ,N = 1.95 fJ/spike and a fspike = 400 
kHz are obtained. The proposed system is designed in BiC-
MOS 55 nm.

B. LIF eNeuron The LIF eNeuron is one of the most 
widely used in SNNs as powerful and efficient computa-
tional devices. Despite its abstraction of biological neuron 
into a small set of essential operations (delay, weighting, 
summation, temporal integration, and thresholding), the 
behavior of LIF model retains much of the richness found 
in biological neural systems [18]. Recently, LIF eNeurons 
have been used in hardware systems achieving tasks such 
as visual pattern recognition [24], ultra-fast optical imple-
mentation [25] and oriented edge spiking classification [26].

Danneville et al. have designed an ultra-low-power LIF 
eNeuron using Axon-Hillock topology [27]. Their LIF eNeu-
ron is implemented in 65 nm CMOS technology and in a 
small surface area (34 μm2) by using parasitic capacitors 

as the membrane capacitance. Its spiking frequency is 
fspike = 15.6 kHz and its energy efficiency is Eeff ,N = 2 fJ/
spike. Recently, Besrour et al. have proposed a low power 
LIF eNeuron in 28 nm CMOS technology [28]. This LIF 
eNeuron achieves a much higher fspike = 343 kHz in the 
same silicon area as [27], but in the cost of power. Its energy 
consumption per event can reach 1.2 fJ/spike. Chen et al. 
have proposed a LIF eNeuron using TSMC 65 nm stand-
ard CMOS technology [11]. This eNeuron generates time-
domain signals and achieves an Eeff ,N = 3.5 pJ/spike. The 
occupied area of the eNeuron is 126 μm2 and its spiking 
frequency is 0.23 kHz.

In the previous paper [13], the authors have redesigned 
a ML eNeuron from [22] to implement a neuromorphic 
enhanced wake-up radio (NWR) system. The system has a 
significant dynamic range due to the high-spiking frequency 
achieved by this eNeuron. In this paper, both ML and LIF 
eNeurons are implemented in the NWR system, where com-
promise in terms of performance is explored.

2.2.2  Synapses

Synapses are essential modules in SNNs, as they are used to 
connect neurons together. Event-based synaptic circuits typi-
cally translate pre-synaptic voltage pulses of a pre-neuron 
into post-synaptic currents. These currents excite or inhibit 
the membrane potential of a post-neuron with a gain that 
corresponds to the synaptic weight [29]. Indiveri et al. have 
been one of the first to propose a silicon synaptic circuit 
in a spiking neural network. They have designed complex 
synapse blocks as an array implementation of current mir-
rors [29], where current mirror gains represent the synap-
tic weight. One of the synapse implementations focuses on 
unsupervised learning for synaptic weight updates through 
the spike-timing-dependent plasticity rules [10]. To build 
plastic synapses, emerging technologies such as memristors 
are used [30]. However, issues such as process variation and 
reliability are presented for unconventional technologies.

Recently, a novel design of weight synapse module based 
on frequency signals is proposed in [11]. This synapse con-
sists mainly of a voltage-controlled ring oscillator operating 
under a leakage current, which is composed of a three-stage 
inverter. Danneville et al. have proposed two synapses [26]. 
The first design includes both excitatory and inhibitory syn-
apses. It uses inverters to produce a long-synaptic current 
pulse, along with a transimpedance amplifier and a biased 
transistor to generate the post-synaptic current. The second 
design consists of an ultra-low-power synapse. It is similar 
to the previous design but including two additional invert-
ers with an RC integrator. The latter is designed using an 
active load connected to a capacitor. In this paper, two types 
of synapses are proposed. First one is a transconductance 
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synapse and the second one is a synapse with dual function-
ality (excitatory and inhibitory).

2.3  Neuromorphic signal processing

Neuromorphic signal processing opens a wide range of 
applications such as motion control, image recognition, and 
sensory detection [12]. A neuromorphic hardware system 
for visual pattern recognition is designed in [24]. It consists 
of an artificial photoreceptor, which converts an image into 
voltage pulses, a memristor array for synaptic connections, 
and LIF eNeurons. Cassidy et al. have designed a wireless 
address event representation (AER) [31]. Cassidy’s neu-
romorphic impulse radio introduced a distributed wireless 
cortex capability using a digital neuromorphic system (i.e., 
FPGA) and discrete RF components. A novel digital hard-
ware of an efficient cochlea model is designed in [32]. It is 
based on non-linear dynamics of the asynchronous cellular 
automaton.

While state-of-the-art is focusing on digital-oriented solu-
tions, a neuromorphic analog spiking modulator is imple-
mented using artificial ML eNeurons with an 440 Hz input 
frequency for audio signal processing [22]. The proposed 
architecture aims at artificial cochlea applications coding an 
input-signal amplitude in fspike . Lately, a hardware architec-
ture for moving object detection is implemented on a Kintex 
7 FPGA device [33]. Its operating frequency is 250 MHz.

Recently, a neuromorphic integrated sensing and com-
munication with a dual-SNN architecture is proposed in 
[34]. In this paper, the same impulse radio signal is used for 
transmission of the data and radar detection of the presence 
target. This can be useful when a receiver that can operate 
using efficient analog hardware is implemented. Thus, in 
smart IoT communications, artificial sensing requires novel 
radio-frequency architectures for signal classification and 
real-time processing. However, RF architecture challenges 
in neuromorphic sensing hardware are not addressed in the 

state-of-the-art. In this paper, the work focuses on the feasi-
bility of RF neuromorphic system-based applications. Thus, 
a novel architecture operating at 2.4 GHz is proposed.

3  Proposed RF neuromorphic spiking sensor

Traditional approaches to transmitter localization involve 
multiple sensors and complex signal processing algorithms, 
which can be computationally power-hungry. This work 
proposes a system that offers a more-energy-efficient and 
computationally simple solution based on the neuromor-
phic approach. Moreover, it enables the real-time detection 
of RF sources with minimal power consumption. Figure 2 
illustrates the architecture of the proposed RF neuromorphic 
spiking sensor (NSS) system. The proposed system com-
poses a front-end hardware for two IoT receivers. These 
receivers are supposed to be fixed, spaced by a distance 
2 ∗ d0 , and at different distances d1 and d2 from a mobile 
IoT source.

Each IoT receiver collects a 2.4 GHz OOK-modulated 
signal. This signal on each IoT receiver is transferred to a 
neuromorphic enhanced wake-up radio (NWR) (Fig. 3b). 
At the output of the NWR, a frequency fspike is generated 
and it is dependent on the input power PRF of the received 
signal. Subsequently, fspike1 is converted for the first IoT 
receiver into an excitation current by an excitatory synapse 
(Fig. 5). Thus, it increases the fspike3 of the final neuron (LIF 
eNeuron3). However, fspike2 is converted for the second IoT 
receiver into an inhibition current by the inhibitory synapse 
(Fig. 5). Thus, it decreases the fspike3 of the final neuron.

Finally, the LIF eNeuron3 processes the sum of the two 
currents and generates an fspike3 that depends on the dif-
ference between the two received input powers at the two 
receivers ( ΔP = PRF2 − PRF1) . A relation between ΔP and 
the direction of the source is described in Sec. 3.4. Thus, 

Fig. 2  Proposed Neuromorphic Spiking Sensor (NSS) system level composed of two NWR systems, excitatory and inhibitory synapses and LIF 
eNeurons. Illustration of the two IoT receivers and the IoT source is added with the appropriate distances
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NSS will be able to detect the orientation of the source based 
on fspike3.

NSS is designed in the BiCMOS SiGe 55 nm technology 
from ST Microelectronics, where all transistors are operat-
ing in weak-inversion region. In this section, a transistor-
level description of each block of NSS is presented. Firstly, 
Sec. 3.1 describes the NWR system. The authors detail the 
blocks composing the NWR system in [13], but with an ML 
eNeuron. This paper presents the NWR with both ML and 
LIF eNeurons and a compromise between both systems is 
explored. Secondly, Sec. 3.2 describes the proposed synapse 
with the dual functionality in the NSS. Thirdly, Sec. 3.3 
recalls the design of both eNeurons. Finally, a description 
of NSS system in the electromagnetic environment (EM) is 
explored.

3.1  Neuromorphic enhanced wake-up radio

Two neuromorphic enhanced wake-up radio (NWR) are 
proposed in this section and described in the transistor-
level point of view. The first one is a NWR with a ML 
eNeuron, as illustrated in Fig. 3a. The second one is a 

NWR with a LIF eNeuron, as illustrated in Fig. 3b, and it 
is the one used to implement the NSS system, as shown 
in Fig. 2. The main difference between both NWR sys-
tem is the supply voltage. ML eNeuron operates within 
VSS = −100 mV and VDD = 100 mV. However, LIF eNeu-
ron operates between VSS = 0 V and VDD = 200 mV. For 
that, the operating voltage range for the NWR is adapted 
to correspond to each eNeuron.

The NWR system detects and identifies bit patterns of 
a 2.4 GHz OOK-modulated signal. It can also seize some 
information from the EM environment, since it generates 
an output spiking frequency ( fspike ) as a function of the RF 
input power PRF . As shown in both figures (Fig. 3a and b), 
the NWR consists of a wake-up system with a neuromor-
phic pre-processing system. It is composed of an envelope 
detector (with a matching network), a transconductance 
synapse and an eNeuron (ML, LIF). The NWR system, 
as presented in Fig. 2, detects the RF input signal ( VRF ), 
demodulates it (VED ), and converts it into a synaptic cur-
rent ( Itrans ) connected to the eNeuron. This latter generates 
action potential, also known as spikes at a frequency fspike.

A. Envelope detector To address the low-cost on-chip 
impedance matching challenge, a passive matching circuit is 

Fig. 3  Neuromorphic Enhanced Wake-Up Radio a NWR with an ML eNeuron ( VDD = 100 mV and VSS = −100 mV), and b NWR with an LIF 
eNeuron ( VDD = 200 mV and VSS = 0 V). NWR with LIF eNeuron is the one used in NSS system
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chosen. A metallic Rm = 50 Ω with low parasitic capacitance, 
at the expense of a higher input noise, is designed. Thus, a 
noisy envelope detector circuit leads to a high minimum 
detectable signal Pmds . However, eNeurons have proved to be 
robust against noisy signal [35]. In general, the RF envelope 
detector rectifies the incoming OOK-modulated signal VRF 
and provides a baseband output VED equivalent to the envelope 
of the original signal. OOK modulation is usually adopted 
with simple RF envelope detection to achieve low-power con-
sumption. Three popular forms of envelope detector configu-
rations are described in literature [14], the common drain, 
the common source, and the common gate. In this paper, the 
chosen envelope detector is a common gate transistor ( MCG ) 
since it can achieve a maximal conversion gain [9].

The conversion gain of the envelope detector CGED is 
obtained from the ratio between the demodulated output 
signal VED and the RF input signal VRF . In common gate 
small-signal analysis, the conversion gain of the envelope 
detector is expressed as:

where ro is the intrinsic output impedance, and io is the 
demodulated output current represented by the second-order 
term of Taylor expansion as:

and ID is the drain current expressed in the weak inversion 
region as:

where Is is the specific current; VT0 is the bias-independent 
threshold voltage for VS = 0 ; 𝜂 is the subthreshold slope fac-
tor ( 𝜂 ≈ 1.34 for the 55 nm BiCMOS technology); 𝜙T is the 
thermal voltage ( kT∕q ≈ 26 mV at 27 °C); and VG , VD , and 
VS are the voltages on the gate, the source and the drain of 
the transistor respectively.

An example of a common gate transistor is studied in 
Fig. 4 to observe the behavior of its conversion gain as a 
function of gm∕ID of the transistor. The objective behind 
that is to identify the behavior of the conversion gain in 
function of the operating region of the transistor. This gives 
an idea of the choice made to design the transistor. Figure 4 
shows two curves: the blue line presents the conversion gain 
calculated from (1) and the red line presents the conversion 
gain obtained from PSS simulation. CGED is maximized for 
a  gm∕ID ≈ 26 1/V. It corresponds to a transistor operating 
in the weak inversion region. Therefore, MCG is designed on 
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=
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e
−
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𝜙T − e
−
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𝜙T

)

this region using an external bias voltage Vbias = 300 mV, 
L = 60 nm and W = 130 nm.

A low-pass filter is then implemented at the output of the 
envelope detector to remove the high-frequency components. 
It is composed of a capacitance CLP,ED and a diode connected 
transistor MLP,ED . As shown in Fig. 3b, for an NWR with a LIF 
eNeuron, an additional diode connected transistor Mc is imple-
mented in cascode with M1 . The reason behind that is to main-
tain the stability of the demodulated voltage, since in the case 
of NWR with a LIF eNeuron, the supply voltage ( VDD = 200 
mV and VSS = 0 V  ) is not the same as in the case of NWR 
with ML eNeuron ( VDD = 100 mV and VSS = −100 mV ). To 
reduce the silicon area of the system, the chosen capacitance is 
the smallest varicap-based presented on the BiCMOS 55 nm 
technology. Dimensions are presented in Table 1.

B. Transconductance synapse In literature, the synapse 
is used in neural systems to translate pre-synaptic voltage 
spikes into post-synaptic currents to excite a following neu-
ron [26]. In this paper, two types of synapses are designed. 
The first one is a transconductance synapse implemented in 
the NWR and used for the RF part of the system (detailed 
in this part). The second one is the synapse with dual func-
tionality (excitation and inhibition), implemented in the NSS 
system (and used for the neural part (detailed in Sect. 3.2). 
The transconductance synapse is used to link between the 
RF part and the neural part of the system. This synapse con-
verts the demodulated voltage at the output of the envelope 
detector VED into an excitation current Itrans with higher out-
put impedance. This current excites the eNeuron according 
to the power levels PRF of the RF input signal. The transcon-
ductance synapse is the same for both NWR proposed sys-
tems. As shown in Fig. 3, this synapse consists of two cur-
rent mirrors NMOS and PMOS ( M1 to M4 ). Synapse sizing 
depends on the following eNeuron (ML or LIF), thus the 
corresponding sizes are presented in Table 1.

C. eNeurons In this paper, the NWR system is proposed 
with two different eNeurons, the ML eNeuron (Fig. 3a) and 

0 10 20 30
0

0.1

0.2

0.3

0.4

Fig. 4  Conversion gain of the envelope detector as a function of 
gm∕ID for a common gate transistor; the blue line is the calculated one 
and the red line is the simulated one
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the LIF eNeuron (Fig. 3b). Performance in terms of silicon 
area, power consumption, minimum detectable signal, and 
maximum spiking frequency depend on the implemented 
eNeuron in the NWR system. Both eNeurons design are pre-
sented in Sect. 3.3.

3.2  Synapses

It is well known that excitatory and inhibitory synapses are 
the brain’s most abundant synapse types. In this paper, a 

synapse with dual functionality (excitation and inhibition) 
is proposed. By definition, the synapse receives the spiking 
membrane voltage of a pre-neuron and delivers a current to 
a post-neuron. The proposed synapse can behave as a cur-
rent source by injecting a positive excitation current to the 
post-neuron. Thus, the spiking frequency of the post-neuron 
increases. In this case, the synapse is called an excitatory 
synapse. Otherwise, the proposed synapse can behave as a 
current sink by providing a negative inhibition current to the 
post-neuron. Thus, the spiking frequency of the post-neuron 
decreases. The synapse is then called an inhibitory synapse.

As shown in Fig. 2, the NSS system uses a small neu-
ral network, comprising two LIF eNeurons connected to a 
third LIF eNeuron through two synapses. The LIF eNeuron 
1 had on its output a synapse with an excitatory purpose, it 
can then raise up the spiking frequency of the LIF eNeuron 
3. However, the LIF eNeuron 2 had on its output a syn-
apse with an inhibitory purpose, it can then decrease the 
spiking frequency of the LIF eNeuron 3. For both synapses 
implemented in NSS, one part (excitatory or inhibitory) is 
not used, which can increase the power consumption of the 
system. However, such circuit with dual functionality may 
be useful for a larger neural network where an eNeuron is 
connected to more than one eNeuron through synapses per-
forming both tasks.

The proposed synapse is illustrated in Fig. 5. The synapse 
is composed of an RC filter followed by a transconductance 
and current mirrors. The filter is made up of a diode con-
nected transistor ( MLP,S ) and a capacitance ( CLP,S ), and it is 
used to import the information from the output voltage of the 
pre-neuron ( Vout ). The latter is then converted into a current 
through the transconductance transistor ( MT ,S ). Two cur-
rent mirrors ( MPS1, MPS2, MPS3 and MNS1, MNS2 ) are used 
to perform both excitation and inhibition purposes of the 
synapse. Thus, the proposed synapse delivers two synaptic 
currents, the excitation current ( Iex ) and the inhibition cur-
rent ( Iinh ). During the rest of paper, Isyn is considered as a 
synaptic current that can be either an Iex or an Iinh.

3.3  eNeurons

Morris-Lecar (ML) and leaky-integrate-and-fire (LIF) eNeu-
rons are two different models implemented in hardware. In 
this paper, the proposal NSS is implemented using LIF 
eNeurons. This choice is discussed in Sec. 4 where a trade-
off between performance of both eNeurons used in NWR 
subsystem is established.

3.3.1  ML eNeuron

The behavior behind the ML eNeuron is described by a ML 
model [23]. This model can be expressed by two first-order 

Table 1  Sizing of transistors in W × L (nm) and for capacitances in 
number of cells x unity capacitance (fF)

*Width of the transistor multiplied by 3 for NWR with LIF eNeuron

Envelope Detector and Transconductance Synapse

M
CG

135 × 60 M
c

135 × 60

CLP,ED 1 × 8.5 MLP,ED 135 × 60

M1 405 × 60 M2 135* × 60

M3 135* × 60 M4 135* × 60

Synapse

MLP,S 500 × 3000 CLP,S 1 × 11.9

MT ,S 135 × 60 MPS1 135 × 60

MPS2 135 × 60 MPS3 135 × 60

MNS1 135 × 60 MNS2 135 × 60

Morris-Lecar (ML) eNeuron

MP1                                    135 × 60 MN1 200 × 60

MP2 1200 × 60 MN2 135 × 60

MP3 200 × 60 MN3 135 × 60

MPNa 800 × 60 MNK 1500 × 60

Cm 1 × 9.83 CK 1 × 5.53

Leaky Integrate-and-Fire (LIF) eNeuron

MP1 135 × 65 MN1 135 × 65

MP2 135 × 65 MN2 135 × 65

MN3 135 × 65 Cf  1 × 5.038

Fig. 5  Proposed Synapse with dual functionality: excitation and inhi-
bition ( VDD = 200 mV and VSS = 0 V)
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differential equations. Thus, this model presents the dynamic 
nonlinear functions of ion channels that can produce the 
action potential (spikes) of the neuron. Three currents 
(sodium, potassium, and leakage) in a conductive structure 
can describe the functionality of these ions in a hardware 
implementation. The equations of ML model are given by:

where

where Vm is the membrane voltage of the eNeuron; Cm its 
membrane capacitance; Isyn the input synaptic current, 
GNa,K,L the sodium, potassium, and leakage conductances 
respectively; VNa,K,L the potential generated by the sodium, 
potassium, and leakage channels; nss and mss are the potas-
sium and the sodium gating variables; 𝜆 the constant rate of 
the potassium channel and V1,2,3,4 are adjustable parameters 
to tune steady state and time constant.

The transistor level of the ML eNeuron is shown in 
Fig. 3a. This biomimetic eNeuron has been redesigned 
from [22] with a high-firing rate to increase the RF system’s 
dynamic range. Briefly, when an input synaptic current is 
applied, the membrane capacitance Cm is charged through 
MPNa and discharged through MNK . This causes a large but 
brief change in membrane potential ( Vm ), which is referred 
to as action potentials (spikes) [23]. Indeed, transistors MPNa 
and MNK mimic the continuous exchange of Na and K ions 
through the cell membrane in brain activity. Two cascoded 
inverters MP2∕MN2 and MP3∕MN3 with MNK implement a 
negative feedback loop and inverter MP1∕MN1 with MPNa 
implement a positive feedback loop. eNeuron sizing is pre-
sented in Table 1.

3.3.2  LIF eNeuron

LIF model is a part of less biological realistic category, 
however it produces enough complexity in its behavior 
to be useful in SNNs. Thus, it becomes promising for the 

(4)
Cm
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dt
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(
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]
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(
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)
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(
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implementation of real-life applications [18]. A LIF eNeuron 
can be defined as a leaky integrator coupled with a trigger 
mechanism to elicit the typical response. It can be modeled 
by a simple behavior, such as charging and discharging of 
the membrane capacitance. When the input current inte-
grated in the capacitance reaches a certain threshold, the LIF 
eNeuron fires by generating the spikes. Thus, a mathematical 
model can describe its functionality as

where Vout is the output voltage generated by the eNeuron, 
Vm is the membrane voltage, Vth is a threshold voltage; Isyn 
the input synaptic current, VDD is the supply voltage, 𝜂 is the 
subthreshold slope and 𝜙T is the thermal voltage.

The transistor level of the LIF eNeuron is shown in 
Fig. 3b. The LIF eNeuron has been redesigned from [27] 
to achieve higher spiking frequency and better energy effi-
ciency. The main idea behind the design of this eNeuron is 
that the parasitic capacitances are used as the membrane 
capacitance. Besides, this eNeuron can achieve low power 
consumption with low silicon area. As shown in Fig. 3b, 
when an input synaptic current is applied, the feedback 
capacitance Cf  integrates this current (charging mechanism) 
which progressively increases the membrane voltage Vm of 
the eNeuron. When Vm increases until a threshold level, the 
inverters ( MN1, MP1 and MN2, MP2 ) are switched, and Vout 
rises to VDD . At the same time, a feedback occurs through Cf  
(discharging mechanism) which increases the current flow-
ing into MN3 . Thus, Vm decreases and the inverters switch 
again, forcing Vout to cross 0 V. Optimized eNeuron sizing 
is presented in Table 1.

3.4  Proposed NSS in EM environment

The NSS is a first-step solution for transmitter source 
localization problem in smart IoT communications. Fig-
ure 6 depicts the environment where NSS is implemented. 

(9)
Vout =

1

Cm

∫ isyn

(
e

VDD−Vm

𝜂𝜙t − e
−2Vm

𝜂𝜙t

)
dt for Vm > Vth

Vout = 0 for Vm < Vth

Fig. 6  Localization of the source S and the receivers R1 and R2 in the 
xy-plane
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This scenario is modeled by two direct paths channel 
model. A system of the coordinate plane (x,y) is defined, 
where x-axis is the horizontal number line and y-axis is 
the vertical number line, and O is the origin of the plane. 
At its input, NSS uses two IoT antennas for receivers ( R1 
and R2 ) at distances d1 and d2 away from an IoT source ( S ). 
The receivers R1 and R2 are fixed points placed in x-axis 
and spaced by the same distance d0 from the origin ( R1 in 
the positive part and R2 its symmetric). The source S is 
supposed to be a moving point in the positive plane. Thus, 
the angle 𝜃 formed by the source with x-axis can take dif-
ferent values between 0 and 𝜋 . The distance r between 
the source and the origin of the plane is also assumed 
to be variable. The proposal can estimate the orientation 
of the source S . This can be achieved based on the rela-
tion between the spiking frequency of the LIF eNeuron3 
( fspike3 ) and the difference between input powers received 
at R1 and R2 ( ΔP = PRF2 − PRF1).

Let it be assumed that the source transmits electromag-
netic waves that propagate in free space conditions, and 
the source and the receivers are co-polarized antennas. 
Based on Friis equation, the available power at the output 
terminal of a receiver antenna Ri can be written as:

where PT is the power delivered to the source antenna at 
its input terminal; GT is the gain of the source antenna in 
the direction of the receiver antenna; GRi is the gain of the 
receiver antenna in the direction of the source antenna S ;  di 
is the distance between the source and the receiver Ri; and 𝜆 
is the wavelength of the radiation given by 𝜆 = c∕fRF ( c the 
speed of light and fRF the frequency of the RF signal, in this 
paper fRF = 2.4 GHz). In the proposed NSS system, identi-
cal receivers R1 and R2 are considered. Thus, the receivers 
have the same gain GR1 = GR2 = GR.

Therefore, the relation between the angle 𝜃 and the 
input power difference ΔP(in dB) is given by:

If the source is a point in y-axis ( 𝜃 = 𝜋∕2) , both receivers 
are equally distant from the source and the power obtained 
at each receiver is the same. Besides, if the source is located 
at the positive part of x-axis, then ΔP is a negative value and 
R1 is closer to the source than R2 , thus R1 receives a higher 
input power than R2 , and vice versa.

Once the spiking frequency fspike3 of the LIF eNeuron3 is 
obtained and ΔP is derived (see Sec. 4.2), the angle 𝜃 is then 
calculated from (11). Thus, NSS can detect the orientation 
of the source. As the resolution of the system is achieved 

(10)PRFi = PTGTGRi.

(
𝜆

4𝜋di

)2

(11)

ΔP = PRF2 − PRF1 = 10 log10

(
r2 + d2

0
− 2rd0 cos 𝜃

r2 + d2
0
+ 2rd0 cos 𝜃

)

for a 1 kHz of spiking frequency, the minimal difference 
between input powers ΔP that can be detected by NSS is 1 
dB (detailed in Sec. 4.2). Thus, the constraint of the system 
is expressed as d1 > 1.12 d2.

4  Results and discussion

A layout of the proposed NSS is shown in Fig. 7a, while a 
layout of the proposed NWR with ML eNeuron and with LIF 
eNeuron are presented in Fig. 7b and c respectively. Physical 
implementation was designed in the BiCMOS SiGe 55 nm 
technology from ST Microelectronics. The image render-
ing tool described in [36] is used for a high-quality layout 
illustration. The proposed NSS occupies 18.3 × 20.24 𝜇m2 
of silicon area and consumes 1.1 nW of power from a sup-
ply voltage equal to 200 mV. The area of the NWR with 
ML eNeuron is 9.8 × 25.09𝜇m2 and with LIF eNeuron is 
9.03 × 10.52𝜇m2 . The NWR with ML eNeuron consumes 
1.2 nW while it consumes 0.25 nW with LIF eNeuron. In 
this work, transmission lines and RF connections are not 
included in the reported area. Post-layout simulations (PLS) 
results are carried out to present the performances of both 
NWR systems (with ML and LIF eNeurons) in Sect. 4.1 and 
to demonstrate the NSS characteristics in Sect. 4.2. Thus, 
the system performance is validated using PSS combined 
with PAC, PNOISE, and PSP Virtuoso Spectre simulations.

4.1  NWR simulation results

The analysis of the NWR system is shown for both combina-
tion, with ML eNeuron and with LIF eNeuron, and divided 
into three parts. (4.1.1) To validate the functionality of the 
system, VRF , VED , Itrans and fspike are shown from a PLS for 
the bit ‘1’ (4.1.2) The dependency of the system on the input 
power levels and bits ‘0’ and ‘1’ are then extracted from 
transient noise PLS. (4.1.3) The system performance is esti-
mated as: the dynamic range, the minimal detectable signal, 
and the energy efficiency.

4.1.1  System validation for bit ‘1’

To validate the functionality of the NWR system for the 
bit ‘1’, a 31-point PRF sweep is considered from −30 dBm 
to 0 dBm for a 2.4 GHz input sinusoidal signal. Figure 9 
illustrates the gain for the bit ‘1’ at each stage of the system 
with ML and LIF eNeurons: VED, Itrans, and fspike versus PRF.

A. Envelope detector In order to assess the performance 
of the envelope detector presented in Sect. 3.1-A, the mini-
mum detectable signal Pmds (i.e., the sensitivity of the enve-
lope detector) can be expressed as a function of the input 
power in dBm as:
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where NFtot is the overall noise figure of the circuit, B is 
the bandwidth of the envelope detector, and SNRmin is the 
minimum signal-to-noise required by the OOK modulation 
for reliable detection. In this case, SNRmin = −12 dB and 
B = 10 MHz are considered.

(12)Pmds = NFtot + 10logB − 174 + SNRmin

Figure 8 illustrates the Pmds of the NWR with ML eNeu-
ron ( Pmds,ML , blue line) and the NWR with LIF eNeuron 
Pmds,LIF , orange line). The sensitivity of the envelope detec-
tor is obtained from the intersection between the input power 
( PRF , black line) and the minimum detectable signal from 
(12) ( Pmds,ML andPmds,LIF ). For the NWR with ML eNeuron, 
the envelope detector presents a sensitivity of − 29 dBm. 
However, the envelope detector in the NWR with LIF eNeu-
ron presents a drop into − 25 dBm. Therefore, these values 
limit the gain of the overall system, as demonstrated later 
in Sect. 4.1.3.

Indeed, Fig. 9a represents the variation of the demod-
ulated voltage VED,ML in NWR with ML eNeuron and the 
demodulated voltage VED,LIF in NWR with LIF eNeuron for 
a PRF that varies from −30 dBm to 0 dBm. One may notice 
that the PRF sweep highlights the Pmds,ML = −29 dBm and 
the Pmds,LIF = −25 dBm.

B. Transconductance synapse The exponential relation 
of  VED with the input power PRF shown in Fig. 9a for the bit 
‘1’, in addition to the two current mirrors, lead to a decre-
ment dependency of the transconductance current Itrans on 
the power level as shown in Fig. 9b. When PRF increases 
from −30 dBm to 0 dBm, Itrans,ML decreases from 380 pA to 
8 pA while Itrans,LIF decreases from 86 pA to 15 pA.

(a)

(b) (c)

Fig. 7  Physical design of a NSS system having 18.3 × 20.24 𝜇m2 , b NWR with ML eNeuron having 9.8 × 25.09𝜇m
2, c NWR with LIF eNeu-

ron having 9.03 × 10.52𝜇m
2.
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Fig. 8  Sensitivity of the envelope detector for NWR systems with 
both eNeurons (ML and LIF): the black line is the RF input power 
PRF and its cross with the blue and orange lines are Pmds,ML and 
Pmds,LIF respectively
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C. ML and LIF eNeurons When an eNeuron is connected 
to the system and excited by Itrans , its fspike depends on the bit 
value and the input power. For the bit ‘1’, fspike varies expo-
nentially with the synaptic current Itrans . Figure 9c shows that 
fspike,ML decreases from 249 to 19 kHz when PRF increases 
from −29 dBm to 0 dBm. However, fspike,LIF decreases from 
65 to 0.12 kHz when PRF increases from −25 dBm to 0 dBm. 
The ML is always firing at fspike,ML = 250 kHz for PRF below 
−29 dBm, while LIF eNeuron remains with a fspike,ML = 67 
kHz below −25 dBm.

4.1.2  System validation for an OOK-signal

An OOK-modulated signal VRF with 1 kbps data rate and 2.4 
GHz frequency was connected to the NWR system in both 
cases (with ML and with LIF eNeurons). The output at each 
level of the system was observed for three bits [ 0, 1, 0 ] with 
different input powers ( PRF , in dBm). An average over eight 
transient noise simulations is considered to demonstrate the 
functionality of the system. An example of an OOK-mod-
ulated signal with PRF = −10 dBm is presented in Fig. 10. 
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(a) (b) (c)

Fig. 9  Post-layout Simulations obtained for the bit ‘1’ for the NWR system with ML eNeuron (blue line) and LIF eNeuron (orange line): a VED 
in mV, b Itrans in pA, and c fspike in kHz in function of the input power PRF

Fig. 10  Transient noise simulation that shows the response of NWR 
system for a OOK-modulated signal of three bits [0,1,0] with a 
PRF = −10 dBm at different stages of the system and for both eNeu-

rons. An inset is added for VRF , Vm,ML and Vout,LIF to clarify the sinu-
soidal and spiking behaviors
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This figure illustrates the behavior of the NWR system at 
different stages. Simulations are carried out for the three bits 
[ 0, 1, 0 ] in a window of 3 ms.

As shown in Fig. 10, the OOK-modulated signal VRF 
is implemented at the input of the NWR system in both 
cases. This signal presents a zero voltage for the bit ‘0’ and 
an RF sinusoidal signal with an amplitude VRF = −90 mV. 
This signal is then demodulated by the envelope detector. 
For an NWR system with ML eNeuron or with LIF eNeu-
ron, two voltage levels of the demodulated signal VED are 
shown in Fig. 10: one for the bit ‘0’ ( VED,ML = VED,LIF = 6𝜇 
V, near-zero and constant for any input power PRF ) 
and another for the bit ‘1’ data ( VED,ML = −44 m V and 
VED,LIF = −50 m V for PRF = −10 dBm, and varies with the 
input power as demonstrated in Fig. 9a). The higher level 
obtained for VED,LIF in comparison with VED,ML for the bit 
‘1’ comes from the additional transistor Mc implemented 
in the NWR with LIF eNeuron, which improves the gain 
of the demodulated voltage (see Sect. 3.1-A).

Therefore, as the demodulated voltage of the OOK-
modulated signal is constant for the bit ‘0’ for any input 
power, the synapse current Itrans , delivered by the transcon-
ductance synapse is constant in this case ( Itrans,ML = 382 
pA and Itrans,LIF = 86 pA). However, the synapse will 
excite the post-neuron differently for the bit ‘1’ since it 
presents an average value for the bit ‘1’ that differs with 
the input power (see Fig. 9b). In the case of the Fig. 10, 
for PRF = −10 dBm, Itrans,ML = 109 pA and Itrans,LIF = 56 
pA. The spiking behavior of the membrane voltage and 
the output voltage of the ML and LIF eNeurons respec-
tively, are shown on Fig. 10 and can be identified by fspike . 
Besides, the spiking frequency of the eNeuron is obtained 
from the number of spikes in respect to the time (in this 
case, time duration of a bit is 1 ms). For the bit ‘0’ and for 
any PRF , the ML and LIF eNeurons spike with a constant 
frequency as they are excited by a constant synapse cur-
rent, fspike,ML = 250 kHz and fspike,LIF = 65 kHz. For the 
bit ‘1’, the eNeuron fires with a fspike that differ with PRF , 
which is always lower than the spiking frequency for the 
bit ‘0’ since the highest excitation from the synapse is for 

the bit ‘0’. The reason behind that is to get the best energy 
efficiency of the eNeuron (in fJ/ spike) for the bit ‘0’ [22].

4.1.3  System performance

NWR system behaves differently depending on the eNeuron 
implemented in it. Thus, compromises between both NWR 
systems can be set in terms of performances. Here are some 
of them:

Dynamic Range: Assuming an uncertainty of 1 kHz spik-
ing frequency between the bit ‘0’ (where  fspike,ML = 250 
kHz, fspike,LIF = 65 kHz) and the bit ‘1’ in a window of 1 
ms, the functionality of the NWR system is validated until 
PRF = −29 dBm for the NWR with ML eNeuron and until 
PRF = −25 dBm for the NWR with LIF eNeuron. Thus, the 
NWR system with ML eNeuron can distinguish signals at 
2.4 GHz with input power levels between −29 dBm < PRF 
< 0 dBm. However, for the same resolution, NWR system 
with LIF eNeuron achieves lower dynamic range where 
input powers of the system can vary between −25 dBm < 
PRF < −5 dBm.

Minimum Detectable Signal: State-of-the-art of envelope 
detector circuits target narrowband matching for low-noise 
circuitry, which leads to a low Pmds ≈ −50 dBm for high DR 
[14]. Besides, a low Pmds is demonstrated but with a higher 
𝜇 W-range power consumption. Proposed NWR achieves a 
Pmds = −29 dBm when an ML eNeuron is implemented on it 
for 1.2 nW of total power consumption. However, it achieves 
a Pmds = −25 dBm when it is with a LIF eNeuron, but for 
only 0.25 nW of power consumption. A better Pmds could be 
obtained if a narrowband off-chip matching network was 
chosen. NWR system presents remarkable improvement in 
energy efficiency due to the neuromorphic enhancement 
( Eeff = 1.2 pJ/bit with ML eNeuron and Eeff = 0.25 pJ/bit 
with LIF eNeuron). Table 2 summarizes a literature com-
parison of envelope detectors.

It can be also noticed that the spiking detection was evalu-
ated for one bit in an observation window of 1 ms and for a 
DR = 1 kbps. If a higher DR is chosen, one may reduce the 
observation window to 0.1 ms ( DR = 10 kbps) or 0.01 ms 

Table 2  Literature Envelope 
Detector Performance 
Comparison

a NWR with ML eNeuron, bNWR with LIF eNeuron

Ref [17] [7] [6] [2] [8] This Work

Techn. (nm) 180 130 65 180 130 55

fRF(GHz) 0.113 0.9 0.434 2.4 2.4 2.4

Prms(nW) 4.5 5 0.42 2400 120 1.2a

0.25b

Pmds(dBm) − 69 − 26 − 79.2 − 50 − 48.5 −  29a

−  25b

Eeff (pJ/bit) 15 5 4.2 22.5 48 1.2a

0.25b
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( DR = 100 kbps) with no power consumption drawbacks. It 
is not the case in the state-of-the-art where a low Prms and an 
interesting Pmds are achieved but only for a low DR [16, 17].

Energy Efficiency of eNeuron: The power consumption 
of an eNeuron is divided by its spiking frequency to pro-
duce the energy consumption per spike (the energy effi-
ciency Eeff ,N in J/spike). eNeurons are usually positioned 
in state-of-the-art by their Eeff ,N . ML and LIF eNeurons are 
redesigned from previous work [22, 27] and their positions 
are compared with the state-of-the-art in Table 3. ML eNeu-
ron presents an Eeff ,N = 1.95 fJ/spike while LIF eNeuron 
achieves an Eeff ,N = 1.7 fJ/spike. Recently, a LIF eNeuron 
is proposed in [28] and presents comparable performances 
but in a smaller area, using a 28 nm technology.

Temperature Variation: The variation of the spiking fre-
quency of ML eNeuron and LIF eNeuron in NWR systems 

are plotted in function of the temperature in Fig. 11a and b 
respectively. This figure shows that for a temperature vary-
ing between 0 and 60°C, fspike for bit ‘0’ is always the same 
for any input power, however it changes for bit ‘1’ with dif-
ferent input power signals. The important fact is that, for 
this range of temperature, NWR system maintains the same 
Pmds in both cases (ML and LIF eNeurons) since it keeps a 
difference between fspike for bit ‘0’ and fspike for the bit ‘1’ 
when PRF = Pmds.

Monte Carlo Simulations: The distribution of the fspike of 
ML eNeuron and LIF eNeuron in NWR systems are plot-
ted in Fig. 12a and b respectively. These figures depict the 
results of 500 iterations of transient PLS for an RF input 
signal with bit ‘1’ at PRF = Pmds ( PRF = −29 dBm for 
NWR with ML eNeuron and PRF = −25 dBm for NWR 
with LIF eNeuron). For these input powers, fspike,ML = 249 

Table 3  Literature eNeurons 
Performance Comparison

c simplified ML eNeuron, dbiomimetic ML eNeuron

Ref [13] [4] [9] This Work

Model LIF MLc MLd LIF ML LIF

Techn. (nm) 28 65 65 65 55 55

Area ( 𝜇  m2) 34 35 200 31 98.61 31.2

fspike(kHz) 343 25 1.2 15.6 400 65

Eeff ,N(fJ/spike) 1.2 4 78.3 2 1.95 1.7

Fig. 11  The variation of the 
spiking frequency in function 
of the temperature for an OOK-
modulated signal with bit ‘0’ 
and with bit ‘1’ and with differ-
ent input powers a for an NWR 
with ML eNeuron annd b for an 
NWR with LIF eNeuron
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Fig. 12  The distribution of 
the spiking frequency for an 
OOK-modulated signal with bit 
‘1’ and with PRF = Pmds a for an 
NWR with ML eNeuron annd b 
for an NWR with LIF eNeuron. 
Results are obtained for 500 
iterations of transient PLS

AUTHOR VERSION



Analog Integrated Circuits and Signal Processing 

1 3

kHz and fspike,LIF = 64 kHz should be obtained as described 
in Sect. 4.1.1. The distribution of the fspike appears to fol-
low Poisson distribution in both cases, where the highest 
probabilities correspond to the right range of the spiking 
frequency.

4.2  NSS simulation results

4.2.1  System validation

As shown in Fig. 2, NSS is composed from two NWR sys-
tems, two synapses (one excitatory and one inhibitory) and a 
LIF eNeuron3. Both NWR systems implemented in NSS are 
designed with LIF eNeurons (LIF eNeuron1 and LIF eNeu-
ron2). The reason behind that is that LIF eNeuron consumes 
much less power and has lower area in comparison with the 
ML eNeuron as demonstrated in Sec. 4.1. The objective of 
the proposed NSS system is to estimate the relative position 
of two IoT receivers R1 and R2 , implemented at its input, 
from the source S , and then identify the orientation of the 
source. This comes from the fact that NSS system can relate 
fspike3 of LIF eNeuron3 with the difference between input 
powers received at R1 and R2 ( ΔP = PRF2 − PRF1).

To validate the functionality of the NSS system, 41-
point of ΔP are simulated. Thus, NSS system receives at 
its input two powers PRF1 and PRF2 from two receivers R1 
and R2 . NWR systems get these input powers and deliver 
two spiking frequencies fspike1 and fspike2 from LIF eNeurons 
( Δf = fspike1 − fspike2 ). The synapses convert both fspike1 and 
fspike2 from previous eNeurons into excitation and inhibition 
currents. These currents Iex and Iinh are both transmitted to 
the LIF eNeuron3 ( ΔI = Iex − Iinh ) with a bias current equal 
to 100 pA to maintain a certain stability in the NSS system. 
This latter will be excited or inhibited depending on the sum 
of the incoming currents from the synapses. Thus, the spik-
ing frequency fspike3 of the LIF eNeuron3 can be provided 
in function of the difference between the input powers ΔP.

The energy efficiency of the proposed NSS system can be 
estimated using Walden’s figure-of-merit as [22]

where PRMS is the total power consumption of the system and 
N is the full-scale dynamic range.

Figure 13 shows the post-layout simulations of the NSS 
system for the 41-point sweep of ΔP. The difference Δf  
between the spiking frequencies of LIF eNeuron1 and LIF 
eNeuron2 and the difference ΔI between the excitation and 
inhibition currents are illustrated in Fig. 13a. The depend-
ency of the spiking frequency fspike3 of the LIF eNeuron3 
and its energy efficiency Eeff  on ΔP are presented in Fig. 13b 
and Fig. 13c respectively. A ΔP = 0 means that PRF2 = PRF1 
and the receivers are at the same distance from the source. 
In this case, the difference Δf  is zero which gives a ΔI 
approximately equal to zero. Therefore, fspike3 = 105 kHz 
and Eeff = 0.7 fJ/conv. If fspike3 is lower than 105 kHz, that 
means that the LIF eNeuron is more inhibited than excited 
(Fig. 13a). In this case, NSS receives a ΔP < 0 and thus 
the receiver R1 is closer to the source than the receiver R2 . 
If fspike3 is higher than 105 kHz, that means a higher effect 
of excitation, thus ΔP > 0 and the receiver R2 is closer to 
the source than the receiver R1 . For both cases ( ΔP < 0 or 
ΔP > 0 ), Eeff  decreases from 0.7 fJ/conv until a minimum 
of 0.2 fJ/conv.

4.2.2  System behavior in EM environment

The transmitter source S is supposed to be a mobile object 
in the positive part of (x,y) plane. Thus, the angle 𝜃 formed 
by the source with x-axis can take different values between 
0 and 𝜋 . As demonstrated in (11), the variation of the angle 
𝜃 in function of the difference between the input powers 
ΔP depends on the distance r between the source S and the 

(13)FoM =
PRMS

fspike3 ⋅ 2N
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Fig. 13  Post-layout simulation results of NSS: a Δf = f spike1 − fspike2  in kHz and ΔI = Iex − Iinh in pA, b fspike3 in kHz, and c Eeff  in fJ/conv in 
function of ΔP = PRF2 − PRF1 in dB
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origin O , and the distance between the receivers R1 and R2 . 
In this paper, both receivers are equally distant from the ori-
gin. A distance d0 = 7 cm is considered in the simulations.

Figure 14 shows the variation of the angle 𝜃 in func-
tion of the spiking frequency fspike3 of the LIF eNeuron3 
for different values of r . The orientation of the source is 
then deduced based on the output fspike3  of the NSS sys-
tem, which is extracted from ΔP between both receivers 
(Fig. 13b). As shown in Fig. 14, when the distance r (in 
m) decreases, fspike3 can have a larger band of values. If the 
source is close to both receivers (for example, r = 0.1 m), 
fspike3 varies between 92 and 119 kHz. As the resolution of 
the NSS system is obtained for 1 kHz, this range of values 
gives then a precise orientation of the source. However, if 
the source is far from both receivers (for example, r = 1 m), 
the spiking frequency can take a value between 100 and 108 
kHz, which is a very small band in comparison with the 
resolution of the system. One may increase the observation 
window of the spiking behavior to get a higher resolution. 
Thus, assuming a free space scenario, the system will still be 
capable of detecting different angles whatever is the distance 
of the source from the origin. It is clear that multipath may 
disturb the functionality of such system, but as in biological 
field, e-Neuron has the capacity of filtering such effects, seen 
as a stochastic process or noise [35], and future works will 
explore further these issues.

5  Conclusion

With the advancements in low-power and miniature electron-
ics, recent years have witnessed a dramatic increase of IoT 
applications. For a ubiquitous sensing in IoT, large number 
of low-cost devices and low-power wireless communications 
capabilities are required. Challenges such as heavy cloud 
computing pressure and low-intelligent front-end limits the 

extend of sensing in IoT. While state-of-the-art is focusing 
on the cloud-edge platform solutions and the optimization 
of the performed and transmitted data, this paper proposes 
an intelligent equipment hardware for smart IoT devices. An 
RF neuromorphic spiking sensor is designed in BiCMOS 55 
nm technology, achieving significant performances such as a 
low power consumption ( 1.1 nW) and high energy efficiency 
( 0.7 fJ/conv) are obtained from post-layout simulations. The 
system is composed of wake-up receivers and spiking pre-
processing neural system. The proposal can identify bit pat-
terns of two 2.4 GHz received signals from a mobile source 
and recognize the orientation of this source. This is achieved 
based on the relation between the output spiking frequency 
of the neuron and the input power difference.
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