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Probabilistic Simplex Component Analysis by
Importance Sampling

Nerya Granot, Tzvi Diskin, Nicolas Dobigeon and Ami Wiesel

Abstract—In this paper we consider the problem of linear
unmixing hidden random variables defined over the simplex with
additive Gaussian noise, also known as probabilistic simplex
component analysis (PRISM). Previous solutions to tackle this
challenging problem were based on geometrical approaches or
computationally intensive variational methods. In contrast, we
propose a conventional expectation maximization (EM) algorithm
which embeds importance sampling. For this purpose, the pro-
posal distribution is chosen as a simple surrogate distribution of
the target posterior that is guaranteed to lie in the simplex. It is
based on fitting the Dirichlet parameters to the linear minimum
mean squared error (LMMSE) approximation, which is accurate
at high signal-to-noise ratio. Numerical experiments in different
settings demonstrate the advantages of this adaptive surrogate
over state-of-the-art methods.

Index Terms—Expectation maximization, importance sam-
pling, simplex-structured matrix factorization

I. INTRODUCTION

This letter considers the problem of linear unmixing hidden
random variables lying on the simplex corrupted by an additive
Gaussian noise. The problem, recently coined as Probabilistic
Simplex Component Analysis (PRISM) [1], is a variant of
Non-negative Matrix Factorization (NMF) [2, 3] that assumes
an underlying Dirichlet prior distribution on the mixing coeffi-
cients. This leads to a well defined and identifiable parameter
estimation problem under the maximum likelihood paradigm.
The main challenge is then to design a numerical solution
to the underlying optimization that involves high dimensional
marginalization over the latent variables. In line with other
approaches already proposed in the literature, we propose
to solve this problem by resorting to a particular instance
of the popular Expectation Maximization (EM) algorithm. In
particular, the a E-step is approximated by a Monte Carlo
integrator based on importance sampling [4, 5] with a carefully
designed proposal distribution.

PRISM has a rich history in the signal processing, machine
learning, remote sensing, statistics or chemometrics literatures
where it is referred to under various names such as soft clas-
sification [6], unmixing [7], compositional data analysis [8]
or multivariate curve resolution [9]. Some geometry-inspired
approaches formulates this task as recovering the simplex with
the minimal volume that covers all of the samples [10–12].
Others propose to identify the “purest” observations associated
with the vertices of the simple [13, 14]. Methods have been
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derived for the noise-free case, for additive Gaussian noise and
for more challenging scenarios involving outliers [15]. There
is also a family of Bayesian solutions to this problem [16–18].
More advanced models also allow random mixing matrices to
be characterized by different types of distributions [19, 20].

Closest to our letter is the recent PRISM paper which
adopted a maximum likelihood formalism and derived its
properties [1]. PRISM suggested two numerical solutions. The
first ISA method based on importance sampling [21] was
shown to be highly accurate but non-scalable. The second
VIA method relied on variational inference using surrogate
Dirichlet distributions, performed well in terms of accuracy
and scalability, but was suboptimal at high signal-to-noise
ratios (SNRs). These two methods motivate the present letter
and are the building blocks to our proposed approach that
unifies their ideas.

The main contribution of this letter is a normalized im-
portance sampling approach to PRISM. First, we revisit ISA
and show that using a simple surrogate based on the prior
distribution, the resulting so-called SISA performs well even
in large problems. Second, following VIA, we develop LISA,
an adaptive importance sampling method. LISA uses Dirichlet
surrogates based on the closed-form Linear Minimum Mean
Squared Error (LMMSE) estimates. In a low SNR regime,
LISA is shown to behave as SISA which is near optimal. At
high SNR, LISA mimics the LMMSE estimate and provides
its samples around the estimate. Both SISA and LISA embed
sampling schemes and are therefore computationally intensive.
However, contrary to previous methods, their samples are
guaranteed to lie within the simplex and thus are never
rejected and ensure scalability. Numerical experiments us-
ing synthetic simulations demonstrate the advantages of the
proposed methods. Results show that SISA can serve as a
promising initialization to VIA and that LISA provides the
best performance (especially in high SNR where VIA is
theoretically suboptimal).

II. DIRICHLET PRELIMINARIES

This section provides basic properties related to the simplex
and the Dirichlet distribution that will be used throughout this
paper. The (k − 1)-dimensional simplex is defined as

Sk−1 =
{
z ∈ Rk : zi ≥ 0, 1T z = 1

}
, (1)

where 1 is a length-k vector of ones. A popular multivariate
distribution over this simplex is the Dirichlet distribution
whose probability density function (pdf) writes Dir(z;α) ∝∏k

n=1 z
αn−1
n (z ∈ Sk−1) where α > 0 is the concentration
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parameter (the inequalities are element-wise). The vector α
controls how “probability mass” is allocated over the compo-
nents by adjusting the mean and covariance given by

m =
α

1Tα
∈ Sk−1 and C =

diag(m)−mmT

1Tα+ 1
(2)

and satisfying

m = Pm− 1

k
1, C = PC, P = I− 11T

1T1
. (3)

Because of the linear dependence between the vector compo-
nents, the covariance C is singular.

III. PROBLEM FORMULATION

We consider linear mixing with random hidden variables,
also known as PRISM [1]

yi = Hzi +wi i = 1, · · · , N, (4)

where H is a deterministic unknown matrix of size d × k,
zi ∼ p(z) = Dir(z;α) are independent and identically
distributed (i.i.d.) hidden random vectors from a Dirichlet
distribution with a known1 deterministic parameter α, and wi

are i.i.d. noise vectors N (0, σ2I) with a known variance σ2.
We assume that zi and wi are independent. The goal is then to
estimate H given an observed set of measurements {yi}Ni=1.
MCEM algorithm – A standard approach consists in maxi-
mizing the log-likelihood with respect to (w.r.t.) the unknown
parameter [22]

Ĥ = argmax
H

1

N

N∑
i=1

log pH(yi). (5)

The distribution of y is defined through the hidden variable z
and requires marginalization

p(y) =

∫
p(y|z)p(z)dz. (6)

Computing this high dimensional integral or its gradient is of-
ten impossible. A popular alternative is the EM algorithm that
iteratively maximizes a lower bound [23]. The EM algorithm
can be cast as a minimization-majorization strategy [24] and,
under regular technical conditions, it is shown to converge
to a stationary point of the log-likelihood. Each iteration of
the overall algorithm consists of two steps. Given a current
estimate H′ of the parameter, the first E-step computes a
conditional expectation of the complete log-likelihood

(E) Q(H;H′) =

N∑
i=1

E[log p(yi|zi)+log p(zi)|yi;H
′], (7)

where E[·|y;H′] denotes the conditional expectation given y
and H′. In the context of PRISM, the quantity (7) can be
explicitly derived as

Q(H;H′) =

N∑
i=1

E[∥Hzi − yi∥2|yi;H
′]

−2σ2

=

N∑
i=1

Tr(HTHE[ziz
T
i |yi;H

′])− 2yT
i HE[zi|yi;H

′]

−2σ2
. (8)

1We assume that α is known, but EM can be used to estimate it too.

The second M-step searches for the parameter that maximizes
this quantity

(M) H← max
H

Q(H;H′). (9)

Combining the (E) and (M) steps, the EM iteration boils down
to the updating rule

H←
N∑
i=1

yiE
T [zi|yi;H

′]

(
N∑
i=1

E[ziz
T
i |yi;H

′]

)−1

. (10)

The main challenge with this strategy lies in the computation
of E[zi|yi;H

′] and E[ziz
T
i |yi;H

′] efficiently for each sample
at each iteration. One solution consists in resorting to a Monte
Carlo (MC) integration, resulting in a overall algorithm which
is an archetypal instance of Monte Carlo EM [21]. The MC
approximation adopted in this work is detailed in what follows.
Importance sampling – Performing the EM updates (10)
requires to compute expectations of the form

E[d(z,y)|y,H′] =

∫
d(z,y)p(z|y,H′)dz (11)

=
1

C(y,H′)

∫
d(z,y)p(y|z,H′)p(z)dz,

where C(y,H′) =
∫
p(y|z,H′)p(z)dz and d(·,y) specifies

the quantity of interest. To approximate such expectations, a
conventional MC integration technique is referred to as im-
portance sampling (IS) and relies on a surrogate (or proposal)
distribution q(·) it is easier to sample from. Under generic
assumptions about the proposal q(·), the expectation in (11)
can be rewritten as

E[d(z,y)|y,H′] =
1

C

∫
d(z,y)p(y|z,H′)p(z)

q(z|y,H′)

q(z|y,H′)
dz.

Then, for a given set of M i.i.d. samples zm drawn from
q(z|y,H′), IS proceeds with the Monte Carlo approximation

E[d(z,y)|y,H′] ≈ 1

C̃

M∑
m=1

w̃md(zm,y) (12)

with w̃m = p(y|zm,H′)p(zm)
q(zm|y,H′) and C̃ =

∑M
m=1 w̃m. The

quality of the approximation (12) is governed by the similarity
between the target distribution and its surrogate. The goal is
therefore to choose a surrogate distribution q(z|y,H′) which
is a good approximation to p(z|y,H′) and easy to sample
from. This point is the core of the next section.

IV. SURROGATE POSTERIOR DISTRIBUTIONS

This section discusses several choices of cheap surrogates
q(z|y) approximating p(z|y) for z ∈ Sk−1.

A. Dirichlet prior

The simplest surrogate distribution, denoted by Simple ISA
(SISA), ignores y and approximates the posterior by the prior

q(z|y) = p(z) = Dir(z;α). (13)

This approach should be optimal for low SNR where p(z|y) ≈
p(z). Otherwise, it seems wasteful as it ignores the information
brought by y. SISA can also be derived as a Sample Average
Approximation or naive Monte Carlo averaging [15].
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B. Gaussian posterior

The target posterior distribution p(z|y) is a multivariate
Gaussian distribution truncated on the simplex. One solution
to generate samples from this distribution consists in resorting
to rejection sampling. Such a strategy is shown to performed
poorly for large values of k due to a high rejection rate. In
particular, the authors of [1] stated, in settings identical to
those in our experiments, this method generated almost no
samples. One alternative would rely on more advanced Monte
Carlo techniques, e.g., Markov Chain Monte Carlo (MCMC)
algorithms [25]. However, such strategies are generally com-
putationally demanding and can be hardly embedded into the
iterative scheme of EM.

One alternative is the conditional Gaussian distribution [26,
Sec 10.6], denoted by N (z;m(y),C) with

m(y) = m+CHT (HCHT + σ2I)−1(y −Hm)

C = C−CHT (HCHT + σ2I)−1HC, (14)

where m and C are the prior Dirichlet moments. This ap-
proximation is near optimal in high SNR regimes where the
m(y) ≈ z is accurate and it makes sense to sample around
it. Unfortunately, with even small noise, samples from this
distribution do not necessarily lie in the simplex and this
approach leads to a high rejection rate. Recent contributions on
importance sampling from a truncated Gaussian were provided
in [27, 28].

Interestingly, m(y) can also be derived as the linear min-
imum mean squared error estimator (LMMSE) that holds for
any distribution. The matrix C is its corresponding mean
squared error (MSE) [26, Sec. 12.5].

C. Dirichlet posterior

A more promising approximation, denoted by LISA, relies
on the Dirichlet distribution but adjusts it according to the
LMMSE detailed above. We define

z ∼ q(z|y) = Dir(z;α(y)), (15)

which is guaranteed to lie in the simplex and choose α(y) to
fit the moments in (14), i.e.,

E[z] = m̃(y) (16)

Tr[cov[z]] = Tr[C], (17)

where m̃(y) is the (approximate) projection2 of m(y) onto
Sk−1. Indeed, the Dirichlet mean is always within the simplex
and since it has k− 1 degrees of freedom, imposing (16) and
(17) boils down to fit k parameters to k moments constraints
. The first moment constraint

E[z] =
α

1Tα
= m̃(y), (18)

leads to α = µm̃(y) with some µ > 0. The scaling factor µ
controls the variance. It is adjusted to enforce the covariance

Tr[cov[z]] = Tr

[
diag(m̃(y))− m̃(y)m̃T (y)

µ+ 1

]
= Tr(C),

2The approximation was done by zeroing negative terms and dividing by
the sum.

which yields

µ =
1− ∥m(y)∥2

Tr(C)
− 1. (19)

To summarize, the LISA proposal distribution is defined as

q(z|y) = Dir

(
z;

(
1− ∥m̃(y)∥2

Tr(C)
− 1

)
m̃(y)

)
. (20)

Capitalizing on the properties stated in Section II, one can
easily characterize the asymptotic behavior of this proposal
wrt to the noise level. In low SNR, LISA depends only on
the prior and we get m̃(y) ≈ m and C ≈ C. After some
algebraic manipulations this yields

q(z|y) low SNR→ Dir (z;α) , (21)

so that LISA converges to SISA in low SNR. Conversely, in
high SNR, LISA does not depend on the prior α. The moments
reduce to (see the Appendix for proof):

m̃(y)
high SNR→ (HP)†y + vH

C
high SNR→ σ2(PHTHP)†, (22)

where vH = 1
k

(
I− (HP)

†
H
)
1 and we get

q(z|y) high SNR→ Dir
(
z;

c

σ2
[(HP)†y + vH]

)
, (23)

where c > 0 is a constant. As expected, this yield samples
which are concentrated around the LMMSE estimate with a
small variance.

V. NUMERICAL EXPERIMENTS

This section compares the performance of the different
algorithms using numerical experiments. The simulations are
reproduction of the synthetic experiments in [1] with the exact
settings. The data were generated synthetically based on the
linear unmixing model in (4) with α = 1. The matrix H
of dimensions d = 50 and k = 20 was generated once per
experiment with i.i.d. elements uniformly distributed in [0, 1].
Performance was measured by mean squared error over the
best permutation:

MSE = min
π∈Π

∑
i

∥Hi − Ĥπi∥2, (24)

where Hi is the ithe column of H and Π is the set of all indices
permutations. Four competing algorithms are compared

• VCA: A simple and fast baseline [29].
• SISA: An EM method initialized by VCA and using stan-

dard importance sampling as detailed in Sec. IV-A. The
EM has 100 iterations and SISA is based on M = 500
samples.

• LISA: A similar EM method where the last 50 iterations
use an LMMSE surrogate as detailed in Sec. IV-C (The
first 50 are identical to SISA).

• VIA: A variational approach due to [1]. Following [30],
we implemented VIA using Torch with a line search for
the learning rate. In order to achieve good accuracy, we
initialized VIA with SISA.
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Fig. 1. MSE as a function of the number of samples in SNR = 10dB (left), the number of samples in SNR = 20dB (middle) and the SNR with N = 5000
(right). The SNR is given by Tr

(
HCHT

)
/σ2.

The first experiment considered performance as a function of
the number of samples in low SNR. The results are provided in
Fig. 1. As expected from the theory, SISA was near optimal in
low SNR. LISA behaved similarly and outperformed it when
the number of samples is large.

The second experiment repeated the experiment in higher
SNR. The results are provided in Fig. 1. This setting is
more challenging for SISA which is outperformed by VIA.
LISA was significantly better than the rest of the algorithms
throughout this graph.

The third experiment in Fig. 1 examined the performance
for a fixed number of samples 5000 as a function of the
SNR. Here too the advantages of LISA are apparent. It is
only to see the expected degradation in performance of VIA
in high SNR. In terms of computational complexity, VCA is
the fastest algorithm. SISA and LISA are significantly higher
because of the sampling. LISA is slightly more expensive than
SISA because of its data dependent concentration parameters.
Finally, VIA is more tricky. The original implementation in
[1] is quite complicated, but the Torch implementation of
[30] is very fast. However, in order to get the performance
detailed above, we had to initialize VIA with SISA and this
slowed it down considerably. Future work can consider the use
of adaptive importance sampling [31] for smoother transition
from SISA to LISA.

APPENDIX
DERIVATION OF LISA IN HIGH SNR (22)

First, we show that if H is full rank and d ≥ k, then

M = lim
σ2→0

CHT
(
HCHT + σ2I

)−1
= (HP)

†
. (25)

C is positive semi-definite and there exists a matrix B such
that BB = C:

M = lim
σ2→0

BBHT
(
HBBHT + σ2I

)−1
= B (HB)

†
. (26)

The null space of B is the same as C and P, and therefore
B†B = P. It remains to prove that M′† = HBB† is the
pseudo-inverse of M = B (HB)

† using the four Moore-
Penrose conditions [32]:

(I) Because H is full rank and n ≥ k, H†H = Ik×k and:

MM′† = B (HB)
†
HBB† = H†HB (HB)

†
HBB† = BB†,

(27)

which is clearly a symmetric orthogonal projection. (II) Sim-
ilarly,

M′†M = HBB†B (HB)
†
= HB (HB)

†
, (28)

which is again symmetric. (III) Using (27),

MM′†M = BB†B (HB)
†
= B (HB)

†
= M. (29)

(IV) Finally, using (28), we have

M′†MM′† = HB (HB)
†
HBB† = HBB† = M′†. (30)

Next, we show that the mean terms yield vH which is
independent of the prior α. Plugging (25) into (14) gives:

m(y) = (HP)
†
y +m− (HP)

†
Hm. (31)

Now using the fact that m satisfies (3), we get:

(HP)
†
Hm = (HP)

†
HPm+

1

k
(HP)

†
H1. (32)

We note that because H is full rank, the null space of HP
is the same as of P and thus (HP)

†
HP = P. Therefore,

(HP)
†
HPm = m− 1

k Plugging it into (32) and then to (31)
gives:

m(y) = (HP)
†
y +

1

k

(
I− (HP)

†
H
)
1. (33)

Finally, the covariance of the error is given by:

C = cov(ẑ− z) = cov
(
(HP)

†
(y −HvH))− z

)
=
(
(HP)

†
H− I

)
C
(
(HP)

†
H− I

)T
+ σ2 (HP)

†
(HP)

†T
. (34)

Now we note that
(
(HP)

†
H− I

)
C = 0 and thus:

C = σ2 (HP)
†
(HP)

†T
= σ2

(
PHTHP

)†
. (35)
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