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Model of wall pressure fluctuations for space launchers using ZDES-based CNNs his model is calibrated on measurements on compressible flows over aircrafts. Ffowcs-Williams [START_REF] Ffowcs-Williams | Boundary-layer pressure and the Corcos model: a development to incorporate low-wavenumber contraints[END_REF] and Chase [START_REF] Chase | Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[END_REF][START_REF] Chase | The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model[END_REF] complexified Corcos formulation to describe more accurately the low wavenumber region, while Caiazzo et al. [START_REF] Caiazzo | A Generalized Corcos model for modelling turbulent boundary layer wall pressure fluctuations[END_REF] proposed a general formulation preserving the initial mathematical simplicity. According to several authors [START_REF] Lee | Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows[END_REF][START_REF] Miller | Review of turbulent boundary-layer models for acoustic analysis[END_REF] , the empirical model that best performs on predicting the turbulent boundary layer wall-pressure spectrum is the one proposed by Goody [START_REF] Goody | Empirical spectral model of surface pressure fluctuations[END_REF] . The latter has been recently generalised to adverse-pressure gradient and various flow conditions by Catlett et al. [START_REF] Catlett | Empirical modeling of pressure spectra in adverse pressure gradient turbulent boundary layers[END_REF] , Rozenberg, Robert, and Moreau 26 , Hu [START_REF] Hu | Empirical spectral model of wall pressure fluctuations including adverse pressure gradient effects[END_REF] and Lee [START_REF] Lee | Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows[END_REF] . Finally, Robertson [START_REF] Robertson | Prediction of in-flight fluctuating pressure environments including protuberance induced flow[END_REF] developed empirical correlations for axisymmetric bodies in the transonic regime, considering attached and separated flows and shock-wave oscillations. The drawback of such empirical models is their reliability and their relatively short scope, as they are built from limited data obtained from a few experimental configurations and conditions.

Conversely, analytical models are based on the derivation of a solution of the Poisson equation governing the pressure fluctuations:

1 ρ ∇ 2 p ′ = -2 ∂ u ′ j ∂ x i ∂U i ∂ x j - ∂ 2 ∂ x i ∂ x j u ′ i u ′ j -u ′ i u ′ j (1) 
with p ′ the fluctuating component of pressure, ρ the density, U i and u ′ i , i ∈ [1, 3] the mean and fluctuating velocities, respectively.

Two approaches are classically used: the first one solves the equation directly in the space-time domain, whereas the second one derives a spectral solution through the wavenumber-frequency spectrum. The former was followed by Peltier and Hambric [START_REF] Peltier | Estimating turbulent-boundary-layer wall-pressure spectra from CFD RANS solutions[END_REF] and Slama et al. [START_REF] Slama | A Kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum[END_REF] . However, the space-domain approach is challenging from the numerical point of view, since a six-dimensional integration has to be performed to compute the cross-correlation of wall-pressure fluctuations, followed by the a 3D Fourier transform to compute the wavenumber-frequency spectrum [START_REF] Grasso | Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient[END_REF] . The accurate computation of these models along the entire wall of a launcher would thus require huge computational time and resources. The second approach was first proposed by Kraichnan 32 , followed by Panton and Linebarger [START_REF] Panton | Wall pressure spectra calculations for equilibrium boundary layers[END_REF] and Remmler et al. [START_REF] Remmler | Computation of wall-pressure spectra from steady flow data for noise prediction[END_REF] . The resolution of the Poisson equation in the spectral domain involves the modelling of the two-point statistics of the turbulent velocity. Finally, following Blake 35 , some authors provided an approximate solution of the Poisson equation, calibrated for attached flows around airfoil trailing edges (see Bertagnolio et al. [START_REF] Bertagnolio | Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling[END_REF] , Kamruzzaman et al. [START_REF] Kamruzzaman | Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data[END_REF] and Stalnov et al. [START_REF] Stalnov | Towards a non-empirical trailing edge noise prediction model[END_REF] ). Finally, a very comprehensive analytical model for the prediction of the unsteady wall-pressure field was published by Grasso et al. [START_REF] Grasso | Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient[END_REF] 

, including adverse
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Model of wall pressure fluctuations for space launchers using ZDES-based CNNs pressure gradient effects and both rapid and slow terms involved in the Poisson equation.

However, these analytical models are only valid for incompressible attached flows and have been calibrated for turbulent boundary layers and airfoil trailing edges and cannot be applied straightforwardly to complex separated flows around space launchers. These flows are characterised by the development of a shear layer that impinges the wall, leading to high-level pressure fluctuations. The reattachment zone is followed by a wake composed of vortical structures which are shed downstream (analogous to the vortex shedding phenomenon [START_REF] Driver | Time-dependent behavior of a reattaching shear layer[END_REF] ).

From a different perspective and the availability of detailed databases due to the upsurge of computational power, Machine Learning (ML) has rapidly been becoming an appealing approach for scientific computing offering numerous opportunities to tackle non-laminar flow problems as those described previously. Hence in this work, we propose a data-driven approach to build a surrogate model for predicting the fluctuating wall-pressure field for such flow configurations and conditions, taking advantage of the large amount of data produced by advanced numerical simulations.

Among machine learning techniques, artificial neural networks have proved to be powerful tools in the fields of computer vision [START_REF] He | Model of wall pressure fluctuations for space launchers using ZDES-based CNNs performance on imagenet classification[END_REF] or natural language processing [START_REF] Goldberg | Neural network methods for natural language processing[END_REF] . Due to their ability to learn highly nonlinear relationships between inputs and outputs, they have drawn researchers' interest in the field of fluid dynamics. They have already been used to address aerodynamic problems [START_REF] Hu | Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review[END_REF][START_REF] Kutz | Deep learning in fluid dynamics[END_REF] such as flow control [START_REF] Rabault | Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[END_REF] , improvement of RANS models [START_REF] Yin | Feature selection and processing of turbulence modeling based on an artificial neural network[END_REF][START_REF] Ling | Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty[END_REF][START_REF] Ling | Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[END_REF][START_REF] Zhao | RANS turbulence model development using CFD-driven machine learning[END_REF] , flow field reconstruction [START_REF] Jin | Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[END_REF][START_REF] Guo | Convolutional neural networks for steady flow approximation[END_REF] , aerodynamic response prediction [START_REF] Sekar | Fast flow field prediction over airfoils using deep learning approach[END_REF][52][START_REF] Bhatnagar | Prediction of aerodynamic flow fields using convolutional neural networks[END_REF][START_REF] Fukami | Super-resolution reconstruction of turbulent flows with machine learning[END_REF][START_REF] Zhang | Application of convolutional neural network to predict airfoil lift coefficient[END_REF][START_REF] Li | Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[END_REF][START_REF] Guastoni | Convolutional-network models to predict wall-bounded turbulence from wall quantities[END_REF] and features identification and extraction [START_REF] Ströfer | Data-driven, physics-based feature extraction from fluid flow fields[END_REF] . Table I gathers some recent studies that used artificial neural networks to predict flow fields and aerodynamic quantities. One can note that most of these studies aim at predicting mean flow quantities for airfoils or simple geometry shapes. However, some authors focused on predicting fluctuating quantities for attached flows or aircraft wings using DNS or experimental data. In particular, Levinski [START_REF] Levinski | Prediction of Buffet Loads Using Artificial Neural Networks[END_REF] used a Radial Basis Functions (RBF, a neural network with a single hidden layer using radial basis functions as activation functions) network to predict the RMS pressure and the spectra on an aircraft wing from experimental data. Ling et al. [START_REF] Ling | Development of machine learning models for turbulent wall pressure fluctuations[END_REF] 

employed a Multilayer

Perceptron (MLP, a basic feedforward neural network) trained on DNS data to predict the power spectral density of pressure fluctuations at the wall from the knowledge of the same quantity at points above the wall. More recently, Dominique et al. [START_REF] Dominique | Artificial neural networks modeling of wall pressure spectra beneath turbulent boundary layers[END_REF] used a MLP to predict the dimensionless power spectral density of pressure fluctuations for a turbulent boundary layer knowing a set of boundary layer parameters.

None of these works deal with separating/reattaching flows. Moreover, acquiring experimen-4 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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Mean flow field Cprms

Pressure spectra ZDES tal or DNS data is a time-consuming and costly process. In this study, our objective is to build models for the prediction of unsteady quantities from mean flow data that can be obtained from RANS or hybrid RANS-LES simulations. The models identify spatial features in the flow field and infer the corresponding pressure fluctuation magnitudes or pressure spectra. Initially used in computer vision [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF][START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Fukushima | Neocognitron: A Neural Network Model for a Mechanism of Visual Pattern Recognition[END_REF] , convolutional neural network (CNNs) have become increasingly popular due to their ability to capture spatial information and extract important features in the input data. As an example, Guastoni et al. [START_REF] Guastoni | Convolutional-network models to predict wall-bounded turbulence from wall quantities[END_REF] used a convolutional neural network to predict the two-dimensional velocity fluctuations field at different wall-normal locations in a channel flow using wall-shearstress components and wall-pressure as inputs. Jagodinski et al. [START_REF] Jagodinski | Uncovering dynamically critical regions in near-wall 50 This is the author's peer reviewed[END_REF] showed that CNNs are capable of predicting dynamical phenomena in turbulent flows without requiring any a-priori knowledge of the underlying dynamics, proving that CNNs are powerful tools for learning nonlinear spatial correlations in turbulent flows.

for wall pressure fluctuations prediction. Levinski 59 used a Radial Basis Functions (RBF) network to predict the RMS pressure and the spectra on an aircraft wing from experimental data.

Ling et al. [START_REF] Ling | Development of machine learning models for turbulent wall pressure fluctuations[END_REF] This work is focused on the transonic flow regime at a free stream Mach number M ∞ = 0.7. The geometry, the sizes of the computational domain and the mesh are show in Fig. 1. The Reynolds number based on the forebody diameter is Re D = 1.2 × 10 6 , the boundary layer thickness at the edge of the largest cylinder is δ 0 D = 0.2, and the free stream dynamic pressure is q ∞ = γ 2 M 2 ∞ P ∞ ≈ 24 815 Pa. The multiblock structured mesh is composed of 12 × 10 6 hexahedral cells, with 240 cells in the azimuthal direction. The time step of the simulation is ∆t CFD = 2 µs.

To compute the RMS pressure and the power spectral density (PSD) at the wall, 41 040 numerical sensors are placed on the skin of the afterbody at 170 longitudinal positions and 240 azimuthal coordinates. The acquisition time is T acq = 0.2 s of physical time, with a sampling frequency of 250 kHz.

Main features of the mean and instantaneous flow

The salient features of the flow are displayed in Fig. 2 (see Pain et al. [START_REF] Pain | Large scale dynamics of a high Reynolds number axisymmetric separating/reattaching flow[END_REF] for further details).

To begin with, an overview of the instantaneous turbulent field of the flow is provided in Fig. 2a with the visualisation of an isosurface of the normalised Q-criterion ( QD of spurious numerical waves. Its length and diameter are 246D and 320D, respectively. The sting holding the afterbody has been extended up to the end of the domain.

The mesh includes 24 × 10 6 hexahedral cells. It should be noted that the whole axisymmetric computational domain is computed in the azimuthal direction, and not only a slice of the azimuthal domain. This permits the simulation of all azimuthal modes of the flow, especially the antisymmetric mode m = 1 responsible for the buffets loads [START_REF] Deck | Unsteadiness of an axisymmetric separating-reattaching flow: Numerical investigation[END_REF] . Besides, the domain is discretised with 240 points in this direction, as for the S3Ch generic afterbody presented in section II A 1. The grid is built using an O-H topology to avoid any singularity problem near the axis. In the wall-normal direction, the dimensionless first cell size is ∆y + = 1 in the attached flow regions. In the LES domain, the mesh resolution complies with the recommended criteria [START_REF] Sagaut | Multiscale and multiresolution approaches in turbulence[END_REF] : ∆x ≈ δ ω /2, ∆y ≈ δ ω /2 and ∆z ≈ δ ω /20, with δ ω = ∆U max( ∂U ∂ y )

the vorticity thickness of the shear layer. This is evidenced in Fig. 4, showing the evolution of ∆x/δ ω , ∆y/δ ω and ∆z/δ ω along a streamline in the shear layer.

In addition, the early stages of the vorticity thickness development are modelled with 15 points, as advised by Simon et al. number based on the maximum acoustic velocity U + a, (defined as (U+a)∆t min(∆x,∆y,∆z) , with a the speed of sound and U the velocity magnitude) below 13 at any point of the domain. Note that the convective CFL number (CFL = U∆t min(∆x,∆y,∆z) ) is lower than 1 in the LES domain. Besides, sampling is performed every 10 time steps, corresponding to a sampling frequency of 500 kHz.

Table II compares the salient features of our simulation with the ones of other studies published in the literature. The present computation has the best temporal resolution. In addition, any modelled stress depletion issue is avoided due to the use of the ZDES approach [START_REF] Deck | Towards an enhanced protection of attached boundary layers in hybrid RANS/LES methods[END_REF] .

C. Turbulence modelling with RANS and Zonal Detached Eddy Simulation (ZDES)

In this study, three computations of the NASA Model 11 configuration presented in section II B have been performed: two RANS simulations using the original Spalart-Allmaras [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] computation aims at providing both input data for our models and reference output data to evaluate the models on this configuration. The RANS simulations only provide input data. In section V B, results obtained by applying our data-driven models on both ZDES and RANS mean flow fields will be compared to the reference ZDES output data (namely Cp rms and wall-pressure spectra).

12 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146358
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Basics of ZDES

The approach used to model the flow is the Zonal Detached Eddy Simulation (ZDES) [START_REF] Deck | Towards an enhanced protection of attached boundary layers in hybrid RANS/LES methods[END_REF][START_REF] Deck | Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation[END_REF] , a hybrid RANS/LES method developed by ONERA. ZDES has been proven to be efficient in high Reynolds number configurations to simulate complex turbulent phenomena [START_REF] Weiss | On the coupling of a zonal body-fitted/immersed boundary method with ZDES: Application to the interactions on a realistic space launcher afterbody flow[END_REF][START_REF] Weiss | ZDES of an Ariane 6 PPH configuration with incidence angle using zonal immersed boundary conditions[END_REF][START_REF] Deck | Numerical investigation of the flow dynamics past a three-element aerofoil[END_REF][START_REF] Deck | Zonal Detached Eddy Simulation (ZDES) of the flow around the AVT-183 diamond wing configuration[END_REF] . It aims at treating in a single model all classes of flow problems illustrated in Fig. 6. ZDES is initially based on the Spalart-Allmaras (SA) model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] . Its formulation involves three hybrid length scales (see Eq.

2), also called modes, adapted to the three typical flow field topologies displayed in Fig. 6. The distance to the wall d w in the SA model is replaced by dZDES : The simulation of the NASA Model 11 configuration was made using ZDES mode 2 (2020) [START_REF] Deck | Towards an enhanced protection of attached boundary layers in hybrid RANS/LES methods[END_REF] , where the switch between RANS and LES resolution is set automatically by the model itself.

dZDES = dmode ∆, d w ,U i, j , ν, ν, ∂ ν ∂ n , ∂ ||ω|| ∂ n (2 
ZDES mode 2 (2020) is currently the only published RANS/LES formulation that provides a successful RANS shielding of attached boundary layers on arbitrarily refined grids. It should be reminded that ZDES mode 2 (2020) is, to the authors' best knowledge, the only method published 13 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. The in-house research solver FLU3M [START_REF] Guillen | Design of a 3D multidomain Euler code[END_REF] developed at ONERA was used to compute the flow.
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This code solves the Navier-Stokes equations on structured multiblock grids and is second-order accurate both in time and space. The RANS simulations presented in this paper were conducted using a Roe scheme with the Harten correction and a minmod limiter. This combination was chosen to ensure a good convergence of the computations. The ZDES simulation was performed using a modified low-dissipation AUSM+(P) scheme [START_REF] Liou | A sequel to AUSM: AUSM+[END_REF][START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF] for the convective fluxes. A MUSCL reconstruction method is used without limiter to increase the spatial accuracy of this scheme. The gradients for the diffusion fluxes are computed using the Green-Gauss method. Finally, the time discretisation is done using the implicit and second-order accurate Gear scheme with a Newtontype iterative algorithm (see Pechier, Guillen, and Cayzac 89 and Deck et al. [START_REF] Deck | Development and application of Spalart-Allmaras one equation turbulence model to three-dimensional supersonic complex configurations[END_REF] for further details on the numerical implementation of turbulence models).

Salient features of the reference ZDES computation

The results of the ZDES computation of the NASA Model 11 configuration are presented in this section. The objective of this computation is not to describe and analyse in deep details the physics of the flow, but to provide input mean flow data and reference output data to the proposed models. As a consequence, only the most salient mean and unsteady characteristics of the flow are presented in this section.

The acoustic CFL is defined as (u+a)∆t min(∆x,∆y,∆z) , with a the local speed of sound. The high levels of eddy viscosity along the payload fairing evidence that the attached boundary layer is treated in URANS mode, while downstream of the separation point the ZDES switched in LES mode, as shown by the lower eddy viscosity levels. The field of acoustic CFL ensures that the time-step was carefully chosen such that this number is not greater than 13 

U ∞ G p ′ ( f ) Dq 2 ∞
) are plotted in Fig. 9 tude is slightly overpredicted by the simulation in the reattachment region (by nearly 10%), which is consistent with the plot of figure 11.

Salient features of the RANS computations

The main characteristics of the mean flow fields provided by the two RANS computations are presented in this section. The mean organisation of the flow obtained using the SA and SA-R turbulence models is shown in Fig. 13. The computed lengths of the recirculation zone L r are also reported. Both RANS computations predict a larger recirculation bubble compared to the experiment of Schuster et al. [START_REF] Schuster | Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments[END_REF] (L r /D| exp = 1.01) and to the ZDES computation ((∆L r /D) SA/exp = 4% and (∆L r /D) SAR/exp = 16%) while (∆L r /D) ZDES/exp = 7%)). A similar behaviour is often observed for axisymmetric base flows (e.g. Simon et al. [START_REF] Simon | Zonal-Detached-Eddy Simulation of projectiles in the subsonic and transonic regimes[END_REF] , where the SA model predicts a smaller recirculation by 6% compared to the one predicted with the SAR correction).

The mean pressure coefficients predicted by the two RANS simulations are compared to ex-18 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 
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III. CNN BASED PREDICTION: METHODOLOGY

In this section, the CNN based methodology employed to predict the fluctuating pressure coefficient and the spectra from the mean flow field is detailed. First, the overall approach is presented.

Then, the dataset construction process is described. Finally, the CNN architecture as well as the hyperparameters for training are given.

A. Overview of the prediction strategy

This work aims to reconstruct the fluctuating wall-pressure coefficient Cp rms and the associated dimensionless pressure spectrum 10log 10 diameter D. For a given streamwise location x/D, the two prediction processes f 1 and f 2 can be described mathematically by the following mappings:

U ∞ G p ′ Dq 2 ∞ (St D )
f 1 : Π(x/D) -→ Cp rms (3) 
f 2 : Π(x/D) -→ 10log 10 U ∞ G p ′ Dq 2 ∞ (St D1 , ..., St DN ) (4) 
where Π denotes the input matrix whose columns correspond to the mean flow profiles of the chosen input variables (see section III B 1) and St D1 , ..., St DN denote the Strouhal numbers for which the CNN outputs the corresponding PSD (see section III B 2).

The overall schematic of the prediction process is shown in Fig. 15. A preliminary CFD computation gives the mean flow field used to build the input dataset from mean flow profiles (step I). A data preprocessing step (step II) consists in standardising input and output attributes to have 0 mean and unit standard deviation. Standardising the data causes each input feature to contribute approximately equally to the training [START_REF] Aksoy | Feature normalization and likelihood-based similarity measures for image retrieval[END_REF] . This results also in a faster convergence of the network and has been proven to yield better results in terms of mean squared errors (MSEs) [START_REF] Shanker | Effect of Data Standardization on Neural Network Training[END_REF] . The same operation is applied to the training output data. The Python library scikit-learn 100 is used to perform this standardisation. Two CNNs, referred to as CNN1 and CNN2, are developed to approximate the 21 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 
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Input datasets

For a given streamwise position along the wall, the input matrix consists of the concatenated wall-normal flow profiles of 8 normalised input variables reported in Table III. The choice of these 22 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 
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Details on convolution neural networks

CNNs were first proposed by LeCun et al. [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] to overcome the limitations of classical Multi-Layer Perceptrons (MLP) to treat grid-like data. Indeed, the use of MLPs to treat high-dimensional input data involves too many trainable parameters. CNNs are more efficient as they require fewer parameters, and are known for their ability to extract spatial features from input data [START_REF] Yin | Feature selection and processing of turbulence modeling based on an artificial neural network[END_REF][START_REF] Ströfer | Data-driven, physics-based feature extraction from fluid flow fields[END_REF]104 .

Therefore, this study aims to exploit these characteristics to map the relationship between the spatial evolution of mean flow variables and the fluctuating pressure at the wall.

CNNs consist of three types of layers: convolutional layers, pooling layers and fully connected layers. In 1D-CNNs, the convolutional layer, usually followed by a nonlinear activation function f , computes a so-called output feature map from an input layer as:

24
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y c i = f (k i * x c + b c i ) , i = 1, ..., K (5) 
where x c is the input feature map with size H × D (heigth H and depth D), k i is the i th convolution kernel with dimensions F × D, b c i is the i th bias (scalar) and y c i the i th output feature map, namely a vector of size P = H-F S + 1 with S the stride. Finally,* denotes the convolution operator. A total of K output vectors are computed, with K the number of kernels. The convolution process is illustrated in Fig. 16. To perform the convolution operation between the kernel k i and the input x c , each element of the output vector y i is computed by dot product of k i and a subset of the input matrix of size F × D. By sliding the kernel window along x with stride S, the whole output feature map y c i is obtained. The pooling layer follows a convolutional layer and aims to reduce the dimension of data while preserving the detected features. In this study, max-pooling is employed. As illustrated in Fig. 16 Finally, in most of CNNs, one or several fully connected layers precede the output (see Fig. 18 for the present case). Each artificial neuron in a fully connected layer (also called dense layer) is connected to all the neurons of the previous layer, as illustrated in Fig. Model of wall pressure fluctuations for space launchers using ZDES-based CNNs computes a weighted sum of the components of the input vector x f , adding a bias b f and applying an activation function f . Thus, the output y f i of the i th neuron in a fully connected layer is a scalar given by:

y f i = f ( N ∑ k=1 w k x k + b f ) (6)
with N the number of neurons in the preceding layer and w = [w 1 , ..w N ] the weight vector.

FIG. 17: Fully-connected layer along with the description of an artificial neuron.

The kernel values, the biases and the weights are the learnable parameters, optimised during the training process.

Architectures of the CNNs and hyperparameters setting

In this study, two CNNs were designed for the prediction of Cp rms (CNN1) and the associated pressure spectra (CNN2), respectively. The chosen architecture for each CNN is detailed in Fig. 18. The input layer is a 2D matrix whose columns are the profiles of each input feature after applying standardisation, e i referring to the i th standardised input feature. Following this input layer, both CNNs share a common succession of three convolutional/max-pooling layers.

The choice of the number of convolutional layers and kernels, as well as the sizes of the kernels and pooling windows, was inspired by a literature review of previous studies using CNNs for regression problems in aerodynamics. [START_REF] Jin | Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[END_REF][START_REF] Sekar | Fast flow field prediction over airfoils using deep learning approach[END_REF][START_REF] Bhatnagar | Prediction of aerodynamic flow fields using convolutional neural networks[END_REF]105 These parameters are reported in Table IV Model of wall pressure fluctuations for space launchers using ZDES-based CNNs squared error was selected as loss function J:

J(s, s) = 1 n n ∑ i=1 |s i -s i | 2 + λ ||w|| 2 (7)
with n the size of the output layer, s and s the predicted and true n-dimensional vectors, respectively, and λ a regularisation parameter to avoid overfitting. L 2 regularisation penalises largest weights using the L 2 norm. The regularisation parameter is set to λ = 0.01.

The dataset was split into 80% for training and 20% for validation, and early stopping was used to prevent overfitting 108 . Early stopping allows to interrupt the training process when the validation loss reaches a steady state.

IV. PHYSICAL INTERPRETABILITY OF THE CNNS

This section aims to bring insights to understand how the present CNNs process the data in their hidden layers and build a mapping between the input mean flow profiles and the output quantities characterising pressure fluctuations. This exercise is rarely addressed in the fluid mechanics literature involving CNNs 109 .

A. Flow features identification

A feature maps analysis of the intermediate outputs from the hidden layers allows to show that the CNNs identify characteristic patterns in the flow field. First, plots of the 8 input variables for both training and testing cases are displayed in Fig. 19. One can observe that the physics of the flow is similar in both cases: the input flow field presents similar characteristics identified in these plots such as a shear layer, a recirculation zone and a reattachment region characterised by high pressure levels. Let us be reminded that the ability of CNNs to extract spatial features from an input is precisely the salient asset of the method we are looking for. Model of wall pressure fluctuations for space launchers using ZDES-based CNNs recirculation or reattachment zones are detected and their location identified in both cases (see red squares in the figures). In addition, it is observed that the same features are detected in the three convolutional layers, suggesting that the same information is propagated from one layer to another. The features that are evidenced clearly correspond to those visible on the input datasets in Fig. 19. It shows that the trained CNN is able to identify and locate the typical topological features of separating/reattaching flows.

Quantitative comparisons between feature maps of training and testing cases can also be provided. Following Lee and You 109 , we define the size of information I for a given feature map as:

I = n x ,n y ∑ i, j F 2 i j (8) 
with i, j the pixel indices, n x , n y the number of pixels in each direction and F i j ∈ [0; 1] the value of the corresponding pixel (ranging between 0 (black cell) and 1 (white cell)). In the following we use the relative size of information I rel in a feature map on a given layer:

I rel = I/I max (9) 
with I max the maximum size of information among all feature maps in the layer.

The relative size of information in each feature map calculated for both cases (i.e. S3Ch and Model 11) and for the three convolutional layers are plotted in Fig. 23a, 23b and 23c. Each point corresponds to a specific feature map identified by its index. For all layers, the relative size of information in all feature maps for training and application cases are very close. This suggests that similar features are detected through the convolution process in both cases and supports the qualitative analysis of figures 20, 21 and 22.

B. Relative contribution of input variables

This section aims to analyse the contribution of each input variable to the feature maps introduced in section IV A. Following the work by Lee and You 109 , the contribution of an input variable is identified by feeding the CNN with only one variable, the other components of the input matrix being set to zero.

Let I i be the size of information (see Eq. 8) in a given feature map calculated with the variable i only. The contribution factor CF of this variable i is defined as:
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CF i = I i ∑ n var k=1 I k
The contribution factor of a variable represents the relative contribution of this variable to the 30 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. importance regarding the computation cost of the whole prediction process: for a given test case, one only needs a single RANS simulation to get a fair estimate of the evolution of the fluctuating wall-pressure. This represents an outstanding gain in terms of computational resources in the global prediction process, provided that the studied configuration features a separating/reattaching flow and that an adapted scaling procedure is used.
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Pressure spectra prediction

For the same reason mentioned in section V B 1 (scaling of data using the training configuration), the predicted dimensionless power spectral density of pressure fluctuations obtained by applying CNN2 on the ZDES time-averaged flow field of the testing configuration are underpredicted (see Fig. 31). Following the same approach as in section V B 1, a scaling procedure has been proposed for the PSD predicted by the corresponding trained CNN. The analogous scaling is:

U ∞ G p ′ ( f ) Dq 2 ∞ rescaled M11 = U ∞ G p ′ ( f ) Dq 2 ∞ predict M11 × q 2 ∞ D U ∞ M11 q 2 ∞ D U ∞ S3Ch (13) 
As the power spectral density unit is Pa 2 /Hz, the proposed scaling for the dimensionless PSD 39 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. As it was shown in figures 31 and 32, levels of dimensionless PSD are overestimated for low Strouhal numbers by CNN2. This leads to a characteristic pattern of larger width compared to L for the reference ZDES computation, and related to high-energy low frequencies. This spatial extent of high pressure fluctuations is caused by the oscillation of the reattachement point around its mean position [START_REF] Liu | .0146358 Model of wall pressure fluctuations for space launchers using ZDES-based CNNs hammerhead payload fairing[END_REF] . However, this region is accurately located and centered around X/D ≃ 0.85 by the current CNN. At the end of the domain, the CNN still predicts overestimated high pressure fluctuations levels at low frequencies. As stated previously, such an observation could be explained by the fact that the CNN was not trained for this region of the flow.
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Regarding the frequency distribution of the energy of pressure fluctuations, similar characteristic frequency bands are predicted by the CNN (domains 1, 2 and 3 in Fig. 33). At low frequencies, high level pressure fluctuations originate from the impact of turbulent structures on the wall and from the flapping motion of the shear layer [START_REF] Liu | .0146358 Model of wall pressure fluctuations for space launchers using ZDES-based CNNs hammerhead payload fairing[END_REF][START_REF] Hudy | Wall-pressure-array measurements beneath a separating/reattaching flow region[END_REF] . At higher frequencies, one can suggest that the PSD map reveals the wall signature of the high frequency fluctuations originating from the growing vortices in the shear layer [START_REF] Pain | Large scale dynamics of a high Reynolds number axisymmetric separating/reattaching flow[END_REF][START_REF] Hudy | Wall-pressure-array measurements beneath a separating/reattaching flow region[END_REF] . This study shows that the spatial evolution of the fluctuating pressure field can be predicted from a simple mean flow field.

VI. CONCLUSION

In this work, we developed two Convolutional Neural Networks to predict the evolution of the fluctuating wall-pressure coefficient and associated pressure spectra for separating/reattaching transonic flows. The models were trained using a ZDES simulation of a generic axisymmetric evolution of the predicted quantities and to accurately locate the zone of highest pressure fluctuations, using only mean flow data as inputs. In section IV, we gave some insights to understand how the CNNs process the data in their hidden layers by providing feature maps resulting from the convolution operations and analyzing the information contained in it. We demonstrated that the CNN identifies patterns corresponding to physical regions of the flow (recirculation zone, reattachment region, shear layer) and relates the location and size of these patterns to output quantities thanks to the fully connected layer.

In addition, the application of the trained models on input data obtained using RANS SA and RANS SA-R simulations showed that the results marginally depend on the turbulence model used to get the input mean flow field. This result is of particular interest as it suggests that costly unsteady simulations such as ZDES are not always mandatory to provide the input mean flow fields, as similar results are obtained using RANS simulations that are less expensive. This paves the way for an efficient and time-saving method for predicting the fluctuating wall quantities of turbulent flows, especially during the design phase. 

  figuration) and the testing case (NASA model 11 hammerhead launcher) are described and the simulation process of both configurations is detailed. In Sec. III, methods associated with the prediction strategy are explained, including the construction of the dataset and the design of the CNNs architectures. An analysis of the working principle of the CNNs is presenting in Sec. IV, providing physical interpretability of the results and demonstrating the ability of the present CNNs to identify mean flow characteristics in the input data using all of the input variables in the prediction process. Results related to the training and application of the models are presented in Sec.V. The main results of this study are summarised in Sec. VI together with a discussion about the limits and possible perspectives of this work.
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 22250 FIG. 1: Sizes of the computational domain and close-up view of the mesh in the separated zone of interest (taken from Pain et al. 71 ).

76 .

 76 FIG.4: Vorticity thickness δ ω in a streamwise cut-off plane along with the evolution of ∆x/δ ω , ∆y/δ ω and ∆z/δ ω along a streamline (white line) in the shear layer.

  FIG. 5: Sizes of the computational domain and close-up view of the mesh in the separated zone of interest.

  FIG. 6: Classification of typical flow problems. I: separation fixed by the geometry, II: pressure gradient induced separation on a curved surface, III: wall-modelled LES, when the separation is strongly influenced by the dynamics of the incoming boundary layer. Adapted from Deck 83 .

  DOI: 10.1063/5.0146358 Accepted to Phys. Fluids 10.1063/5.0146358 Model of wall pressure fluctuations for space launchers using ZDES-based CNNs in the open literature which solves the issue of possible Modelled Stress Depletion (MSD) on arbitrarily refined meshes, thus preventing any possible Grid Induced Separation (GIS).
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 2 FIG. 7: Instantaneous schlieren-type visualisation in a longitudinal section (top) and isosurface of the normalised Q-criterion ( QD 2 U 2 ∞ = 0.5) coloured by the dimensionless streamwise velocity.

FIG. 10 :

 10 FIG. 9: Visualisation of the fluctuating quantities of interest: RMS pressure coefficient (top) and spectral map of the dimensionless power spectral density U ∞ G p ′ ( f )/q 2 ∞ D (bottom) in the domain of interest defined by the interval X/D = [0.37, 1.42], along with a cut-off plane of the dimensionless mean streamwise velocity and Cp rms at the wall. St D = f D/U ∞ denotes the Strouhal number based on the payload diameter D. The reattachment location normalised by the reference diameter L r /D is highlighted by a white dotted line.

  FIG. 12: Comparison between iso-contours of wall-pressure fluctuations from experimental measurements reported by Panda et al. 96 (a) and computed with ZDES (b). Iso-contours of the instantaneous mean pressure coefficient along the wall measured at 4 ms interval (c), (d) and equivalent snapshots from the present ZDES computation (f),(g). The reattachment location normalised by the reference diameter L r /D is highlighted by a white dotted line.

  FIG. 14: Comparison of measured and computed Cp values with RANS simulations. The grey area represents 10% difference with respect to the Kulites measurements of Coe and Nute 73 .

FIG. 15 :

 15 FIG. 15: Schematic diagram of the prediction process. CNN1 and CNN2 denote the convolutional neural networks that predict Cp rms and the PSD, respectively.

2 .

 2 DOI: 10.1063/5.0146358 Accepted to Phys. Fluids 10.1063/5.0146358Model of wall pressure fluctuations for space launchers using ZDES-based CNNs mean flow variables is based on a literature review of the most advanced analytical models[START_REF] Grasso | Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient[END_REF][START_REF] Bertagnolio | Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling[END_REF]103 used to predict wall-pressure fluctuations from mean flow data by approximating the solution of the Poisson equation that governs pressure fluctuations. These analytical models perform the mappings of Eqns. (3) and (4) for boundary layer attached flows. Thus, this study aims to use CNNs instead of analytical expressions to predict wall-pressure from similar input data. The studied flows being compressible, conservative variables ρU and ρV are considered instead of U and V , with ρ the density, U and V the mean streamwise and wall-normal velocity components, respectively. TABLE III: Flow variables used as input for the neural networks. profiles (mesh points in a line in the wall-normal direction) are collected along the emerging cylinder from the S3Ch ZDES computation to build the training dataset (see section III A). For each simulation of the NASA model 11 configuration (namely ZDES, RANS SA and RANS SAR), the corresponding testing set is made of 39 flow profiles located in the separating/reattaching flow region, interpolated at the same y/h positions as in the training case, with h = Dd the height of the step. Each flow profile is made of 105 values. The sensitivity of the model to the number of points in the input flow profiles has not been studied, but the chosen number of points should not significantly influence the prediction provided that there are enough points to capture the physics of the flow in the feature maps. Conversely, too much points would unnecessarily complexify the model, involving more training parameters. The present study aims at being a proof of concept to demonstrate the potential of such an approach to predict wall-pressure fluctuations. The optimisation of the model's performance through the determination of the optimal 23 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146358 Accepted to Phys. Fluids 10.1063/5.0146358 Model of wall pressure fluctuations for space launchers using ZDES-based CNNs number of points in the input profiles are a further step of this work. Training output dataset For each of the 170 streamwise numerical sensors distributed along the S3Ch afterbody, the corresponding Cp rms values and pressure spectra form the output training set for CNN1 and CNN2, respectively. The PSD was computed with a classical average periodogram from the pressure signals using 60 overlapping blocks, resulting in a frequency resolution of 152 Hz (i.e. St D = 0.087). The frequency resolution has been chosen low enough (in average over 60 blocks) in order to obtain a relatively smooth spectrum in the training process. Each spectrum in the training database was uniformly sampled in a log-scaled frequency range, resulting in an output vector with 67 values of the normalised PSD. C. CNNs architectures and training In this work, two 1D convolutional neural networks are developed for the prediction of wallpressure fluctuations in separating/reattaching flows. The developed CNNs learn a mapping between the input mean flow profiles (see Table.

  III) and Cp rms (CNN1) and the wall-pressure spectrum (CNN2) for a given streamwise location. Before describing the architecture of the present CNNs, let us briefly recall the principle of CNNs.

  FIG. 16: Sketch of the convolution and max-pooling process used in the architecture detailed in Fig. 18 with a single kernel. In this example, D = 3, H = 5, F = 2, L = 2, S = 1, P = H-F S + 1.
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  FIG.18: Architectures of the two convolutional neural networks (CNN1 and CNN2 as introduced in Fig.15) used for the prediction of Cp rms and pressure spectra. y ci denotes the output of the i th convolutional layer, and y f denotes the output of the fully-connected layer.

Figures 20 ,

 20 Figures 20, 21 and 22 show examples of concatenated outputs of the three convolutional layers of network CNN1 for both training and testing cases. These intermediate outputs are the so-called feature maps. Each one corresponds to a specific kernel and highlights the flow features detected through the convolution process. Figures 20a, 21a and 22a display feature maps obtained for the S3Ch test case and figures 20b, 21b and 22b show the corresponding feature maps for the NASA model 11 test case. One can note that for a given kernel, similar features such as the shear layer, 28

FIG. 19 :

 19 FIG. 19: Mean fields of input variables.

FIG. 20 :FIG. 21 :FIG. 22 :(c) Layer 3 FIG. 23 :FIG. 25 : 1 .FIG. 27 :FIG. 28 :

 2021223232512728 FIG. 20: Feature maps obtained after the first convolutional layer. (a) Training case (S3Ch). (b) Testing case (NASA Model 11). Similar patterns in both cases corresponding respectively to the recirculation, the shear layer and the reattachment regions are detected by the convolution process (red rectangles).

  FIG. 30: Predicted evolution of the fluctuating pressure coefficient along the wall using ZDES (-), RANS SA (-) and RANS SAR (-) flow fields as input and applying the proposed scaling factor. Predicted Cp rms are compared to the reference ZDES results (-). The grey area represents 10% difference with respect to the reference ZDES data.

Figure 32 2 ∞

 322 Figure 32 shows the scaled pressure spectra predicted by CNN2 based on ZDES, RANS SA and RANS-SAR data, compared to the pressure spectra computed with ZDES at several streamwise positions. The same trend is observed: the predicted spectra are marginally influenced by the input turbulence model and they fit quite well the reference spectra in the medium Strouhal range (0.7 < St D < 20). The dimensionless PSD U ∞ G p ′ ( f ) Dq 2 ∞ is overestimated in the low frequency range (St D < 0.7) and underestimated in the high frequency band (St D > 20). However, the contribution of PSD values beyond St D = 50 to the RMS pressure is negligible. Finally one can note that the quality of the predictions is decreased at the beginning (Fig 32a) and at the end (Fig 32i) of the domain. Indeed, the flow field for both streamwise positions is quite different from the 41

FIG. 32 :FIG. 33 :

 3233 FIG. 32: Rescaled predicted wall-pressure spectra at different streamwise positions with CNN2 using ZDES (-), RANS SA (-) and RANS SA-R (-) flow fields as input compared to reference ZDES results (-).

A

  current limitation of our model lies in the potential lack of universality of the definition of 44 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146358 Accepted to Phys. Fluids 10.1063/5.0146358 Model of wall pressure fluctuations for space launchers using ZDES-based CNNs the scaling applied to the output to retrieve accurate levels of pressure fluctuations. To achieve a proper training, input and output data are standardised. However, this prevents the CNN to generalise to configurations with very different magnitudes of input mean variables and output fluctuating quantities, although we showed that it does not impact the identification of flow features and the prediction of the relative evolution of output quantities. To account for the differences in pressure fluctuation magnitudes, scaling factors for Cp rms and the PSD have been proposed based on relevant physical quantities and a literature review. They allow to retrieve magnitudes close to the reference ZDES data. These results and their limitations open different perspectives for future works. First, the relevance of the proposed scaling factors must be assessed using other configurations. Then, the generality of our models could be improved by training the CNNs on multiple configurations with different Mach and Reynolds numbers. Finally, this work could be extended to other flow types causing high pressure fluctuations such as shock-wave oscillations or flow downstream reattachment exhibiting large-scale vortex shedding.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE I :

 I Studies using artificial neural networks for aerodynamics prediction

	Authors	Case	Re	Model input	Model output	Data origin
	Sekar et al. 51	Airfoil	100 -2500	Airfoil geometry, angle of attack,	Mean flow field	RANS
				Reynolds number	(pressure, velocity)	
	Thuerey et al. 52	Airfoil	0.5 -5 × 10 6	2D velocity fields	2D pressure field	RANS
	Bhatnagar et al. 53	Airfoil	0.5 -3 × 10 6	Airfoil shape + free stream conditions 2D velocity and pressure fields	RANS
	Jin et al. 49	Cylinder	60 -1100	Wall pressure coefficient	2D velocity field	-
	Guo et al. 50	Car / 2D geometry shapes	20	Geometry (signed distance function)	2D velocity field	LBM
	Guastoni et al. 57 Turbulent channel flow Reτ = 180 -550	Wall shear-stress/pressure fields	Velocity fluctuations	DNS
					field	
	Ling et al. 60	Turbulent boundary	Reθ = 1075 -1310	Pressure spectra	Pressure spectra	DNS
		layer		above the wall		
	Levinski 59	Fighter aircraft	12.3 × 10 6	Angles of attack	Cprms	Expt
		wings		/sideslip	Pressure spectra	
	Dominique et al. 61	Turbulent boundary layer	1 -1.5 × 10 5	Boundary layer parameters	Pressure spectra	Expt/DNS/LES
	Present	Axisymmetric separating/	2.4 × 10 6			
		reattaching flow				

TABLE II :

 II 

	Authors	Re D	N xrθ	N 5	5	DDES/SA
	Liu et al. 12 (2019)	3.36 × 10 6 6, 2 × 10 6 100	-		19-23	DDES/SA
	Wang et al. 80 (2021)	3.36 × 10 6 18.5 × 10 6 140	-	-	-	RSM-IDDES
	Present	2.4 × 10 6 24 × 10 6 240 2 × 10 -7 0.3	500	ZDES mode 2 (2020)

Studies performing numerical simulations of the NASA Model 11 hammerhead configuration. Re D : Reynolds number based on the reference diameter D, N xrθ : total number of cells in the grid, N θ : number of cells in the azimuthal direction, ∆t CFD : time step of the simulation, T acq : acquisition time, f samp : sampling frequency. θ ∆t CFD (s) T acq (s) f samp (kHz) Model Murman and Diosady 78 (2016) 2.4 × 10 6 100 × 10 6 -2 × 10 -5 0.5 5 DDES/SA Murman et al. 79 (2017) 2.4 × 10 6 100 × 10 6 -4 × 10 -6

TABLE IV :

 IV Parameters of the convolutional and pooling layersThis is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE

	Layer	Kernel size (K) Number of kernels (L) Size of pooling window (P) Output shape
	1st convolution / pooling	64	5	-	64 × 101
	1st pooling	-	-	5	64 × 20
	2nd convolution	32	3	-	32 × 18
	2nd pooling	-	-	3	32 × 6
	3rd convolution	16	3	-	16 × 4
	3rd pooling	-	-	3	16 × 1
	The training was performed using Adam optimiser 107 (stochastic gradient descent). The mean-
		27			
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Model of wall pressure fluctuations for space launchers using ZDES-based CNNs pressure coefficient, namely the ratio of the RMS pressure with respect to the free stream dynamic pressure: Cp rms = P rms q ∞ . Because of the standardisation procedure, the predicted and the training fluctuating pressure coefficient magnitudes are approximately equal:

To account for the testing case flow conditions and rescale the CNN's output consequently, we propose the following scaling procedure, adapted from the work of Panda et al. 110 :

These authors compared two wind tunnel tests of the NASA Model 11 configuration using a scaling factor. Such a treatment permits to account for the difference in the dynamic pressure between the two experiments, assuming that the magnitude of pressure fluctuations is proportional to the free-stream dynamic pressure and that the power spectral density is proportional to q 2 ∞ . Figure 29 shows the Cp rms curves obtained after applying the proposed scaling factor on the CNN's output (red dotted line in figures 28 and 29). The resulting Cp rms levels (blue curve in Fig. 29) are slightly overestimated with respect to the reference ZDES and experimental data, with average deviations of 25% and 29% compared to the ZDES results and the experimental data, respectively, but represent a significant improvement compared to the original raw output.

As the trained CNNs only need mean flow profiles to predict fluctuating quantities, it would be beneficial in terms of computational cost to build the input dataset for a given application case using RANS simulations instead of ZDES. As a consequence, the influence of the turbulence model used to produce the input mean flow field is investigated in the following. In Fig. 30,predicted Cp rms curves using ZDES, RANS Spalart-Allmaras model (SA) and RANS Spalart-Allmaras with rotation correction (SA-R) to provide the input flow field are plotted and compared to available experimental data by Schuster et al. [START_REF] Schuster | Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments[END_REF] and the reference ZDES results. These predictions are obtained using the same CNN trained with the ZDES time-averaged flow field of the S3Ch configuration. The scaling based on expression ( 12) is used.

In Fig. 30, one can see that the three curves obtained using ZDES, RANS SA and RANS SA-R data are quite close. The average errors are ∆Cp rms | CNN1/ZDES = 31% and ∆Cp rms | CNN1/Exp = 27% using the SA input data versus ∆Cp rms | CNN1/ZDES = 30% and ∆Cp rms | CNN1/Exp = 31% with the SAR input data, respectively. This demonstrates that the prediction is not very sensitive to the turbulence model used to generate the input flow field of an untried configuration. This is of major