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Abstract: Intelligent transportation systems (ITS) enhance safety, comfort, transport efficiency, and
environmental conservation by allowing vehicles to communicate wirelessly with other vehicles and
road infrastructure. Cooperative awareness messages (CAMs) contain information about vehicles
status, which can reveal road anomalies. Knowing the location, time, and frequency of these anoma-
lies is valuable to road users and road authorities, and timely detection is critical for emergency
response teams, resulting in improved efficiency in rescue operations. An enhanced locally selective
combination in parallel outlier ensembles (ELSCP) technique is proposed for data stream anomaly
detection. A data-driven approach is considered with the objective of detecting anomalies on the fly
from CAMs using unsupervised detection approaches. Based on the experiments carried out, we
note that ELSCP outperforms other techniques, with 3.64 % and 9.83 % better performance than the
second-best technique, LSCP, on AUC-ROC and AUCPR, respectively. Based on our findings, ELSCP
can effectively detect anomalies in CAMs.

Keywords: anomaly detection; data streams; intelligent transportation systems; traffic incident detection

1. Introduction

The advancement of sensor monitoring technologies and low-cost solutions, together
with the introduction of the Internet of Things (IoT) in everyday life, has resulted in the
capture of huge volumes of data [1]. Data streams are huge, continuous, unbounded
sequences of data that are generated at a rapid rate and have a dynamic distribution.
Data stream mining is an ongoing study subject that recently emerged in order to extract
knowledge from enormous amounts of continuously created data. Cooperative intelligent
transport systems (C-ITSs) with networked vehicles are poised to transform mobility’s
future. The flow of messages between vehicles via vehicle-to-vehicle communication
(V2V) and between vehicles and transportation infrastructure via vehicle-to-infrastructure
communication (V2I) facilitates this transformation. Cooperative awareness messages
(CAMs) provide real-time information about individual vehicles. Nonetheless, due to the
novelty of the idea, the impact of C-ITS services on road networks has yet to be fully felt
and analysed [2].

Anomalies are “patterns in data that do not conform to a well-defined notion of normal
behaviour” [3]. They are classified into three types: point anomalies, contextual anomalies,
and collective anomalies [3]. Point anomalies, or “outliers”, are individual data components
that are inconsistent or anomalous in relation to all other data elements [4]. Contextual
anomalies are data elements that are considered unusual in a certain context. Collective
anomalies are groups or sequences of connected data components that are out of sync with
the rest of the dataset. For example, excessive traffic on a highway during business hours
is usual, yet it is contextually anomalous traffic behaviour after midnight [1]. Contextual
attributes (such as time of day, season, and location) and behaviour attributes define each
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data piece when seen in context. The early identification of anomalies can decrease event
risks, such as accidents and traffic jams. The majority of these occurrences may be attributed
to driver error or poor road conditions. Road users and authorities benefit from identifying
the location, time, and frequency of these road abnormalities.

Traffic incidents are non-recurring events that may cause traffic congestion and travel
time delays. An incident is “an unexpected event that temporarily disrupts the flow of
traffic on a segment of a roadway” [5]. To lessen the impact and duration of incidents, it is
critical to understand the frequency of occurrences by spotting variations from usual traffic
patterns. Road occurrences/anomalies include car wrecks, vehicle breakdowns, debris on
the road, and vehicle(s) stalled in the middle of the road. Two forms of traffic irregularities
include traffic jams and road management [6]. Short-term traffic disturbances may persist
for a span of minutes or several hours, inducing a decline in traffic velocity or an upsurge in
traffic density. Resolving long-term traffic management anomalies is a challenging task that
may require considerable time and effort. The examination of deviations in traffic can be
conducted by examining either local traffic anomalies or group traffic anomalies. The road
network is divided into separate segments for local traffic anomalies, and each segment
is analysed for individual abnormalities. For group traffic anomalies, any irregularity
detected in one portion of a road network will influence and be assessed by analysing the
causal connections between adjacent segments.

The detection of incidents in [5] relies on actual Global Positioning System (GPS) data
collected from vehicle tracks. The road network is segmented by road type, date, time, and
the predominant weather conditions. Segments that exhibit a significantly lower average
speed than the designated normal speed are regarded as abnormal and are extracted. The
problem with this technique is that the segmentation process is impacted by the precision of
polygonal line coordinates, and the accuracy range of GPS influences the differentiation of
incidence from typical traffic congestion. To identify long-term abnormal traffic zones in big
centres, ref. [7] proposes long-term traffic anomaly detection (LoTAD). The method divides
the road network into sections by utilising bus line data and an actual bus trajectory dataset,
which results in temporal and spatial segments known as TS segments. Anomalies in bus
lines are detected through the computation of an anomaly index, utilising the average
velocity and average stop time as trajectory features. Utilising the data obtained from the
atypical areas can provide valuable input for future urban traffic planning. These kinds of
anomalies can be detected with the tool proposed in [8].

The filter–discovery–match (FDM) method [9] is a suggestion for determining accident
locations. It involves dividing a roadway network into sections and creating speed vectors
using the average speed. Actual incident records are used to determine the specific sections
of road where the incident took place. Subsequently, the speed vectors of vehicles passing
through those sections during the incident time are extracted. The regular velocity direction
of the road sections is determined by computing the average velocity of the automobiles
that crossed those sections within a specific time period and were not impacted by any
traffic disruptions. The velocity disparities between the incident speed vectors and regular
speed vectors for each segment are utilised to determine the candidate speed patterns.
Through thorough experimentation using both real taxi data and simulated data, it was
discovered that FDM resulted in a lower mean time-to-detect (MTTD) when compared to
other existing techniques.

A comprehensive body of research was conducted to create diverse anomaly detection
algorithms that encompass several categories, namely classification, nearest neighbour,
clustering, statistical, information theoretic, spectral, and graph-based approaches [3,10].
Histogram-based outlier score (HBOS) [11] operates on the premise of feature independence
and computes outlier scores via the construction of histograms for individual features.
Swift computation time is facilitated without the need for data labelling. Time is essential
in computing, especially in C-ITS, where an enormous volume of data must be analysed to
identify irregularities. Deviances from typical road traffic data are perceived by analysing
the intricate attributes of constructed histograms to spot anomalies [12]. Two categories of
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histograms are possible to construct: static bin-width and dynamic bin-width histograms.
To achieve the uniform weighting of every feature, the bin’s maximum height is standard-
ised to one by normalising the histograms and flipping the quantified results, resulting
in abnormal occurrences receiving a higher score and normal instances receiving a lower
score. This action aims to minimise the impact of floating-point precision errors that can
lead to imbalanced distributions and elevated scores. For each instance x, the HBOS is
determined by the height of the bin in which the instance is placed:

HBOS(x) =
d

∑
i=0

log
(

1
histi(x)

)
(1)

where d denotes the number of features, x is the vector of features, and histi(x) is the density
estimation of each feature instance.

HBOS scoring produces numerical values that indicate the degree of “outlierness” of
each data point in relation to the rest of the dataset. The last stage involves thresholding,
where a decision label is assigned to each element, indicating whether it is a regular instance
or an anomaly, depending on the threshold parameter Th. Different statistical deviation
measures, such as standard deviation, median absolute deviation (MAD), quantiles, and
streaming analysis with a defined window can be utilised to establish the value of the
Th parameter. If a score exceeds three times the standard deviation, it can be deemed an
anomaly. Another method is to order the scores so that a top_k algorithm provides the k
most anomalous observations.

Anomalies can be identified by assuming that the data follow a specific probability
distribution and categorising data points with a low probability density as anomalous. In
an elliptical distribution, the Mahalanobis distance between each point and the mean is
calculated, with points exceeding a predetermined threshold being categorised as anoma-
lies. Due to its ability to resist outlier observations, the minimum covariance determinant
(MCD) [13] serves as a highly dependable means for identifying anomalies in multivariate
contexts. Given a dataset presented as an n × p matrix, where n refers to the number
of occurrences and p relates to the number of features. The initial stage in obtaining the
MCD estimator involves calculating the covariance matrix’s determinant. A smaller set
of observations (consisting of h data points, wherein n/2 ≤ h ≤ n) is selected from a larger
sample of n data points. This selection is made in a way that minimises the generalised
variance of the subset h. The MCD estimator defines the following location and scatter
estimates [14]:

1. μ̂0, the mean of the h observations with the least possible determinant of the sample
covariance matrix.

2. Σ̂0 is the associated covariance matrix multiplied by a consistency factor c0.

The mean and the covariance matrix are used to calculate the robust distance for a
point x defined as [14]

RD(x) = d(x, μ̂MCD, Σ̂MCD) (2)

where μ̂MCD is the MCD estimate of location, and Σ̂MCD is the MCD covariance estimate.
MCD selects the section of the data with the closest distribution to eliminate anomalies, as
they tend to be far from the bulk of the data. This minimises the masking effect caused by
atypical observations [15].

The isolation forest (IForest) [16] algorithm is utilised to uncover anomalies in data
that have a high number of dimensions.It is a non-parametric method that demonstrates
favourable results when applied to normally distributed, unbiased data that contain mini-
mal noise [4]. Its suitability for anomaly detection in C-ITS data lies in the fact that the data
lack prior distribution and remain unlabeled. The IForest model is composed of a collec-
tion of unique, random isolation trees itrees that are divided into nodes through recursive
partitioning. IForest’s scoring stage computes an anomaly score for each data observation
within the dataset. The outlier score is calculated based on the distance between the leaf
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and the root. The ultimate outcome is obtained by taking the mean of the distances from the
individual data points to the different itrees within the isolation forest. Given an instance x,
the anomaly score is defined as

c(n) = 2H(n – 1) – (2(n – 1)/n) (3)

E(h(x)) =
t

∑
i=1

hi(x) (4)

s(x, n) = 2– E(h(x))
c(n) (5)

where E(h(x)) is the average path length of sample x over t itrees, c(n) is the average path
length of the unsuccessful search in the binary search tree, and H(i)= ln(i) + γ (γ is Euler’s
constant). Based on the anomaly score s, the following conclusions can be made [17]:

1. If instances return s(x, n) extremely close to 1, then they are anomalies;
2. If instances have an s(x, n) less than 0.5, then they are deemed normal instances;
3. If all the instances return an s(x, n) of 0.5, then there is no differentiation between

normal and anomalous instances.

Robust random cut forest (RRCF) [18], a variation of isolation forest designed for
streaming data, incorporates concept drift and tree evolution to generate a measure of
the isolation score. The tree structure is impacted by the degree to which a new point
alters the anomaly score. Consequently, the sensitivity of RRCF is reduced when the
sample size is decreased. A robust random cut data structure is utilised as a summary
or representation of the input stream. While detecting anomalies, RRCF maintains the
original distances between all pairs of data points. The LSCP (locally selective combination
in parallel outlier ensembles) [19] detector builds a small area surrounding a test instance,
utilising the consensus of its nearest neighbours in randomly selected feature subspaces. It
employs an average of maximum technique, in which a homogenous set of base detectors
is fitted to the training data before generating a pseudo ground truth for each occurrence
by picking the maximum outlier score. It locates and combines the best detectors in the
area and investigates both global and local data linkages. Its strength is that it can quantify
the magnitude of local outliers.

The local outlier factor (LOF) [20] measures how much a sample’s density deviates
from its neighbours on a localised level. The score for the anomaly is determined based on
the object’s isolation from its surroundings, giving it a localised significance. The distance
between the k-nearest neighbours determines the locality, which is used to estimate the
local density. The initial step is to compute the k-distance between a point p and its k-th
neighbour. Measurement of the distance can be accomplished by various methods, though
the Euclidean distance is frequently utilised (Equation (6)):

d(p, o) =

√
n

∑
i=1

(pi – oi)2 (6)

Given a dataset D and a positive integer k, the k-nearest neighbours of p is any data
point q, whose distance to p is not greater than k-distance (p) (Equation (7)):

Nk-distance(p)(p) = {q ∈ D \ {p}| d(p, q) ≤ k-distance(p)} (7)

The reachability distance of data point p with respect to data point o is defined using
Equation (8):

reach-distk(p, o) = max {k-distance(o), d(p, o)} (8)
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The next step is the estimation of the local reachability density (lrd), which is in-
versely proportional to the average reachability distance of p to its nearest k neighbours
(Equation (9)):

lrdMinPts(p) = 1

/ [
∑o∈NMinPts(p) reach-distMinPts(p, o)∣∣NMinPts(p)

∣∣
]

(9)

The LOF is then calculated, which is the mean ratio of the lrd of point p to the lrds of its
neighbouring points (Equation (10)). If a point is considerably distant from its surrounding
points in relation to their proximity to one another, it is deemed an anomalous point:

LOFMinPts(p) =
∑o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)∣∣NMinPts(p)
∣∣ (10)

LOF primarily excels at identifying outliers within a local context. If a point is proximal
to a cluster with an extremely high density, it is classified as an anomaly. The interpretation
of LOF is challenging, as it is presented in the form of a ratio. There is no specific threshold
at which a point is considered an outlier. The identification of an anomaly is influenced
by both the issue at hand and the individual analysing it. Streaming data refers to an
ongoing influx of information that has the potential to be unending and can be regarded as
a time series featuring multiple variables. The limitless influx of incoming data generates
circumstances in which the data can transform over time, culminating in a scenario where
modelling behaviour with more recent data holds greater relevance than using older
data [21]. The stream data model may be described as follows:

Z ≡ {z(1), z(2), . . . , z(t), z(t + 1), . . .} (11)

where z(t) ∈ RN for t ≥ 1
Algorithms specifically created for handling data streams are capable of managing

enormous volumes of data. The fundamental concept of processing data streams is that
instances are assessed just once upon arrival and eliminated to make room for succeeding
instances. The algorithm analysing the stream lacks the ability to dictate the order of
encountered instances, thereby necessitating that its model be adjusted in a stepwise
fashion for each inspection. The “anytime property” is another desirable characteristic
that entails the model being readily available for usage at any given time interval during
training. There are three primary challenges to identifying anomalies in data streams:
limited memory capacity, imbalanced datasets, and concept drift [22]. Adapting streaming
anomaly detection techniques to real-world applications is a straightforward task, owing
to their high speed and limited memory constraints [23]. However, cutting-edge stream
detection techniques are frequently geared towards detecting a certain sort of anomaly.

To prioritise fast processing and efficient storage in streaming situations, anomaly
detection algorithms must possess the capability to swiftly and adeptly detect anomalies.
In ref. [21], the stream outlier miner (STORM) algorithm was proposed for detecting outliers
based on distance. Two versions of STORM, namely exact-STORM and approx-STORM,
have been suggested to address outlier queries in accordance with the sliding window
model. If the memory can hold the complete window, then the outliers are determined
by utilising exact-STORM. If memory is scarce and the window cannot be accommodated,
approx-STORM is employed to estimate the anomalies using efficient approximations
that offer statistical assurance. STORM considers the time-based characteristics of an
individual data point in a data stream. Every datum remains within the sliding window
for a specific duration.

Detecting outliers is a subjective task that heavily relies on the problem domain, data
traits, and the kinds of anomalies present; hence, the effectiveness of detection algorithms
varies widely [1,24]. There is a chance that particular subspaces may be successfully iden-
tified by certain anomaly detection algorithms, whereas some may exhibit low detection
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capabilities [25]. To minimise errors comprehensively, merging the knowledge domains of
every algorithm is crucial [26]. Data points that fall outside the usual range for the whole
dataset are known as global outliers, whereas local outliers can exist within the normal
range of the entire dataset but exceed the normal range for nearby data points [27].

The idea of data locality was initially introduced by the authors of [28], and subse-
quently improved in [29] to facilitate dynamic classifier selection in local spaces of the
training points. Dynamic strategies for selecting and merging base classifiers have yielded
superior outcomes as opposed to static approaches that merely aggregate base classifier
outputs through voting. The ensemble methods for learning involve combining the fore-
casts of multiple fundamental models to produce results that are more stable and reliable.
For a reliable anomaly detection ensemble that produces consistent and impartial over-
all accuracy, it is preferable to incorporate a variety of base detectors and methodically
integrate their results to create a robust detector.

Anomaly detection ensembles use parallel or sequential combination structures to
improve accuracy by combining outcomes from multiple detectors. Parallel combination
structures aim to minimise variance, while serial combination structures aim to mitigate
bias [30]. Including all base detector outcomes in an ensemble may diminish its effective-
ness, as different detectors may not identify specific anomalies, especially in unsupervised
learning scenarios. Unsupervised algorithms for detecting anomalies aim to identify devia-
tions in unlabelled datasets automatically, based on certain assumptions. The performance
of a model can be evaluated based on the various features that exist within a dataset, and
detection rates differ due to specialised models accommodating diverse observational
characteristics. Using a collection of unique skills within an ensemble yields a stronger
outcome than solely relying on one detector [31]. Some other studies have been considered
to detect anomalies as in [32–34].

This study is focused on contextual anomalies. The notion of context originates from
the structure of datasets, wherein two distinct sets of attributes characterise each data
instance [3]:

• Contextual attributes: These are utilised for establishing the context (or neighbourhood)
of a particular instance. Contextual features of a location in spatial datasets include its
longitude and latitude. In time series data, time serves as a contextual characteristic
that determines the position of an instance within the entirety of the sequence.

• Behavioural/indicator attributes: These attributes have a direct correlation with the
anomaly detection process, as they establish the anomalous behaviour. Within a spatial
data collection outlining the mean precipitation levels within a specific nation, the
proportion of rainfall observed at a given site shall be deemed a behavioural attribute.

Our approach involves utilising data to actively detect anomalies through unsuper-
vised methods that target local contextual anomalies. We propose an enhancement of an
ensemble anomaly detector called enhanced locally selective combination in parallel outlier
ensembles (ELSCP). ELSCP is tailored for streaming scenarios by leveraging a pipeline
framework that transforms data into a stream and passes it to ELSCP using a reference
window model that implements a sliding window approach. The updated version facili-
tates the handling of information in a continuous flow, thereby allowing us to assess how
effective our algorithm is in a streaming environment. Our approach involves the use
of hypothesis testing to identify any unusual patterns in vehicle movement on the road.
The primary assumption of our analysis is that “normal instances are far more frequent than
anomalies”. The central hypothesis is that “If vehicles change their speed abruptly at a specific
point, then it implies an incident has occurred”. We seek to investigate the following questions:

(a) What is the significance of data associations in anomaly detection, especially in a
constrained road network?

(b) How can a balance between variance and bias be achieved in ensemble learning?
(c) How can we improve the detection rate of anomalies in CAM data streams?
(d) Can enhancing the LSCP algorithm improve the identification of anomalies in CAM

data streams?
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(e) How can the adapted technique be applied to real-world problems?

We propose the following contributions:

1. We define and investigate the issue of completely unsupervised anomaly ensem-
ble construction;

2. We propose a robust ensemble-based methodology for the detection of anomalies
from data streams in the C-ITS context;

3. We evaluate the proposed technique using a dataset of CAM messages generated in
the C-ITS environment and compare its performance with state-of-the-art techniques
in the streaming context.

This paper is structured as follows: Section 2 presents the data generation and pre-
processing steps. They correspond to the used materials. It also introduces our anomaly-
detection approach, called enhanced LSCP (ELSCP), and the performance indicators that
we used. Section 3 presents the experimental results. Section 4 is dedicated to discussion
and limitations, with Section 5 giving the conclusion and future work.

2. Materials and Methods

The study concentrates on unsupervised contextual anomaly detection on C-ITS CAMs.

2.1. Data Generation, Pre-Processing and Transformation

A real-world dataset of CAMs that was collected from 80 cars in France between
September 2018 and August 2019 as part of a C-ITS project was used as seed data to
generate simulated data for CAMs. Simulation of vehicular ad hoc network (VANET)
applications requires simulating both vehicle-to-vehicle wireless data transmission and
vehicle mobility. Simulations were carried out using the objective modular network testbed
(OMNET++) network simulator [35], and simulation of urban mobility (SUMO) road traffic
simulator [36]. The artery vehicle-to-everything (V2X) simulation framework [37] was used
to combine the network simulator with the road traffic simulator, allowing for efficient
communication. This connection is especially crucial in C-ITS, which provides applications
for traffic safety and efficiency.

2.1.1. Data Generation

The simulation depicted the movement of C-ITS equipped vehicles in the French city
of Reims. The simulation settings were configured as shown in Table 1. The initial stage
was to configure the SUMO simulator, after which the map of Reims, France, was retrieved
from Openstreetmap (https://www.openstreetmap.org/, accessed on 12 February 2023)
and loaded into the simulator. The second stage was the generation of random trips
for a hundred vehicles. The SUMO simulator periodically transmitted the locations and
details of each vehicle to the OMNeT++ simulator. The Veins framework then collected the
sent data from the OMNeT++ simulator, and the Artery framework generated the CAM
messages. The frequency of CAM message generation varied from 10 Hertz to 1 Hertz
(100 milliseconds to 1000 milliseconds).

The secure message structure was used to construct the security headers and certifi-
cates for the CAM messages in the Vanetza framework public key infrastructure (PKI)
system as stated in the European Telecommunications Standards Institute Technical Spec-
ifications, ETSI TS 103 097 [38]. The CAM signature and validation mechanisms were
constructed using the PKI system’s pseudonyms. Each generated CAM was signed with
a pseudonym by appending the signature at the end of the message. This signature is
used by the receiving vehicle’s validation system to authenticate the received message.
The mobility and communications between the vehicles were designed to simulate actual
movement in the C-ITS environment. This was done to ensure that the outcomes were as
realistic as possible. The simulation ran for two hours, with each vehicle taking a random
route. The CAM messages for each vehicle for the entire simulation duration were saved in
separate files.

https ://www.openstreetmap.org/
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Table 1. Simulation parameters.

Parameter Value

Network simulator OMNeT++

Road traffic simulator SUMO

Framework Artery (Vanetza, INET, Veins)

Number of nodes 100

Simulation time 7200 s

Road map of Reims 10,000 m × 10,000 m

CAM message interval 0.1 s

Carrier Frequency 5.9 GHz

Number of channels 180

Transmitter power 20 mW

2.1.2. Data Pre-Processing and Transformation

One typical strategy for traffic incident identification is to learn traffic patterns from
previously observed accumulated traffic data and identify instances when the real-time
traffic data differ significantly from the learned patterns [5,39]. A important component in
this respect is the vehicle’s speed, which has a direct influence on the safety, productivity,
and the degree of environmental implications for the traffic ecosystem.

It is presumed that a vehicle’s speed data recorded at successive timestamps would
demonstrate temporal continuity with minor, calculated deviations. As a result, the speed
standard deviation of a collection of messages belonging to a small sub-trajectory Tk

i of a
trajectory Tk should be low in normal conditions but may be significant under anomalous
conditions. Speeds measured at spatially close locations should also show spatial continuity
with minimum fluctuation. Anomaly detection using CAM messages is a multivariate
task, in which sub-trajectory sizes must be considered in order to be able to learn typical
conditions and recognise abnormal ones. Anomalies are defined as points that do not
appear to fit in with the rest of the dataset, based on the assumption that the vast majority
of occurrences in the dataset are normal.

We present strategies for predicting the occurrence of an incident on a road section
based on hypothesis testing. Our research is predicated on the premise that “if there
is a traffic incident on the road, the vehicle speed, as captured in the sent messages,
will significantly differ from the typical or expected speed at that section”. The central
hypothesis is that “If vehicles change their speed abruptly at a specific point, then it implies an
incident has occurred”. We target non-recurring traffic disruptions, the occurrence of which
is usually unexpected and random. In the event that an incident closes the whole lane, we
anticipate a significant change in speed as well as a change in heading as the cars approach
the incident area (as shown in Figure 1). We focus on local contextual anomalies, where an
occurrence may affect a sub-trajectory, and the contextual anomaly can be detected from
the behaviour features, speed, and heading.

Trajectory mining was utilised to extract the sample data for the study using the
PostgreSQL database system, with the spatial extension PostGIS employed for processing
spatial data. The CAMs created by vehicles passing through Boulevard Dauphinot (route
N51) in Reims, France, were the subject of the study. The initial step was to transform
each message’s latitude and longitude information into geometry data types using Spatial
Reference Systems SRID 4326 (WGS 84), Europe’s projection. All messages within a 150-
metre radius of an established reference location were retrieved using the ST_DWithin
function in PostGIS to build a bounding box. This produced messages for a 300-metre
section of road that served as our research area. Since C-ITS vehicles have a communication
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range of 150 m [40], a roadside unit (RSU) can be stationed at the centre of the designated
route. The extracted dataset contains trajectories for 40 vehicles.

Figure 1. Illustration of an accident scenario on the road.

Anomalies were added to the extracted dataset to construct an evaluation dataset
by placing an “obstacle” in the centre of the road segment [41]. The driver is deemed to
have noticed the obstacle when a message comes within range of it (based on distance
computation using latitude and longitude), and the data in the message are changed.
The speed is lowered by a number chosen at random from a defined range of values.
The subsequent messages will be updated as well, depending on the position and length
of the obstacle. The data anomalies reflected incidents on the road when cars had to
lower their speed as they approached the obstruction, maintain the reduced speed for
the length of the obstacle, and then restore regular speed after passing the obstacle. The
presented obstacles simulate road accidents (such as a stalled car, an accident, or road
debris), allowing us to label the messages of the vehicles affected by this incident as
anomalous. The remaining messages were not altered. Figure 2 presents the trajectories
(in blue) on Boulevard Dauphinot (route N51) and the obstacle section, showing normal
points in green with anomalies in red.

Figure 2. Area of interest; (a) trajectories on Boulevard Dauphinot (route N51); (b) obstacle section:
normal instances in green and anomalies in red; (c) obstacle section showing only the anomalies.
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The vehicle ID, timestamp, latitude, longitude, vehicle speed, and heading are used
to detect multivariate anomalies. The data are encoded as a data stream and fed into an
ensemble-based technique for event detection that makes use of the windowing concept.
Given that the focus is on non-recurring events, the anomalies of interest give rise to an
imbalanced data set.

Therefore, let Am be the set of CAM message anomalies. Then,

∀m, Pr(m ∈ Am) << 1 – Pr(m ∈ Am)

Further, let AT, the set of (sub-) trajectory anomalies, then

∀Tk, Pr(Tk ∈ AT) << 1 – Pr(Tk ∈ AT)

2.2. Problem Statement

Definition 1. Message: Each CAM message mi is defined by < vid, t, x, y, s, h >, where we have
the following:

• vid is the vehicle identifier;
• t is the timestamp of the message;
• x is the longitude of the vehicle vk at time t;
• y is the latitude of vk at time t;
• s is the speed of vk at time t in metres/second;
• h is the heading of vk at time t in degrees.

Definition 2. Vehicle Trajectory: A trajectory is a time-ordered sequence of n messages belonging
to a given vehicle such that Tk =< m1, m2, . . . , mn >

In this work, a trajectory is defined as the collection of all messages that are uniquely
identifiable by a single identifier. A sub-trajectory is a series of sequential messages that are
part of a trajectory.

Definition 3. Sub-Trajectory Ti
k is a sub-trajectory of Tk if and only if the following hold:

• Ti
k is a trajectory: Ti

k=〈mi1 , . . . , mip〉.
• ∀mij ∈ Ti

k, mij ∈ Tk.

• All consecutive messages in Ti
k are also consecutive in Tk, i.e., there does not exist a message of

Tk situated between messages of Ti
k that does not belong to Ti

k:

@mj ∈ Tk and mj /∈ Ti
k with

Rank(Tk, mi1 ) ≤ Rank(Tk, mj) ≤ Rank(Tk, mip )

Suppose we have a dataset Z = {z1, z2, . . . , zn}, where n is the total number of instances.
Each instance i of Z consists of both contextual and behavioural attributes. Additionally,
within Z, we have a set O of instances that are outliers or anomalies. Our goal is to assign
each instance i with an outlierness score Si such that outliers in O have much higher values
than other instances. The outlierness of an instance results from the abnormal behavioural
attributes in its context. Given the contextual attributes, there is an underlying pattern that
limits the behavioural attributes to some expected values, beyond which an instance is
considered an outlier.

Definition 4. Contextual outlier: Based on its contextual features, this is an instance whose
behavioural attributes contradict the dependent pattern.
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Definition 5. Contextual neighbours: Contextual neighbours of instance i are the instances that
are comparable to it based on its contextual attributes. In principle, the collection of contextual
neighbours of instance i is

CNi = {j : j ∈ D∧ j 6= i∧ sim(xi, xj) ≥ φ} (12)

where xi and xj are contextual attribute vectors, D = {1, 2, . . . , N} denotes the set of instances
indexes, sim(·) is a similarity function of two vectors, which in our case is a correlation measure,
and φ is a predefined similarity threshold.

The study concentrates on unsupervised contextual anomaly detection. It is preferable
to develop a robust model capable of efficiently and reliably predicting an observation
as an anomaly when the behavioural attributes are anomalous in the context. Moreover,
such a model should be sensitive to abnormalities in the contextual attributes and make
meaningful predictions using the best available relevant context. With the goal of improv-
ing detection performance in anomaly detection, an ensemble-based anomaly detection
technique with heterogeneous base detectors is developed.

2.3. Proposed Enhanced LSCP Algorithm (ELSCP)

Unsupervised outlier ensemble implementations lack labels for “outliers” and “in-
liners”. Hence, it is difficult to develop a reliable technique for selecting competent base
detectors and maintaining model stability. Conventional unsupervised combination ap-
proaches in parallel ensembles are usually general and global (e.g., averaging, maximising,
and weighted averaging) but do not consider locality. LSCP [19] uses the concept of near-
est neighbours in randomly chosen feature subspaces to build a local region around a
datapoint. The best base detectors in this neighbourhood are picked and combined to
create the final model. The LSCP algorithm was created to address two problems: a lack of
ground truth and a lack of a dependable technique for choosing the best base detectors. We
devised ELSCP, a novel method that improves on LSCP by improving how the local region
definition is retrieved and the selection of competent detectors.

The management of variance and bias, especially in ensemble approaches, is an inher-
ent difficulty in anomaly detection systems. An inherent challenge in anomaly detection
algorithms is how to handle variance and bias, especially in ensemble techniques. Ac-
cording to [42], variance is decreased by integrating heterogeneous base detectors using
techniques such as averaging, maximum of average, and average of maximum. In con-
trast, a composite of all base detectors may contain errors, resulting in increased bias. As
outlined in Aggarwal’s bias–variance framework, ELSCP combines variance and bias re-
duction. It improves variance reduction by introducing diversity through the initialisation
of heterogeneous base detectors with different hyperparameters. ELSCP also focuses on
detector selection based on local competency, which aids in identifying base detectors with
conditionally low model bias.

To compute the local region, LSCP employs the K-dimensional tree (KD-Tree) k-
nearest neighbours (kNN) method with Euclidean distance. The space partitioning strategy
utilised determines the effectiveness of the search trees, which can be binary or multidi-
mensional [43]. KD-tree involves binary splitting, in which each split considers just one
dimension. In a two-dimensional space, for example, the binary splitting hyperplane is
parallel to either the X or Y dimension. Ball tree employs a multidimensional method, in
which the split criterion is more flexible and can take values from multiple or all dimensions
into consideration. The splitting criterion requirements also dictate the geometry of the
resultant partitions, with KD-trees having rectangular partitions and ball trees having
spherical partitions.

When dealing with skewed datasets, binary slits generate elongated skinny rectangles,
increasing the number of backtracking levels during search, or making the tree highly
imbalanced. Additionally, rectangles and squares are not the best shapes for splitting. This
is because if the target point is at the corner of a rectangle, tracing many nodes around the
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corner to determine the nearest neighbour would complicate the search algorithm [44]. As
a result, the most efficient approach is to use a metric tree, such as the ball tree, where the
hypersphere spatial partitioning is explicitly adjusted to the distance function [43,45].

Considering we are working with spatial–temporal data, our aim in anomaly detection
is to discover local contextual anomalies where our contextual variables are longitude and
latitude. The Harvesine distance is the most exact measure for determining spherical dis-
tances on the Earth’s surface. As a result, we suggest combining the ball tree KNN method
with the Harvesine distance metric to enhance local region definition. The computation of
the Harvesine distance is presented in Equation (13):

d = 2 r sin–1

(√
sin2

(
φ2 – φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 – λ1

2

))
(13)

where r is the radius of the Earth (6371 km), d is the distance between two points, φ1
and φ2 are the latitudes of the two points, and λ1 and λ2 are the longitudes of the two
points, respectively.

Suppose we have a datasetR that is divided into training and test datasets: let Xtrain ∈ Rm×a

represent the set of training data with m points and a attributes, and Xtest ∈ Ry×a be the set of
test data with y points and a attributes. The ELSCP technique begins with a heterogeneous
list of base detectors D being fitted to the training data. The outcome of this training is a
predicted set of outlier scores Otrain, which is presented in Equation (14):

O(Xtrain) = [D1(Xtrain), D2(Xtrain), . . . , Dk(Xtrain)] ∈ Rm×k (14)

The second step is to generate the training pseudo ground truth (target) by picking the
highest score across all detectors from Otrain. The third step is to define a local (ξ) for each
test instance, Xtesti . This is defined by calculating each instance’s k nearest neighbours using
the ball tree KNN algorithm with the Harvesine distance. This is formalised as follows:

ξ = xj|xj ∈ Xtrain), xj ∈ Lens (15)

where Lens is the set of a test instance’s nearest neighbours according to ball tree ensem-
ble criteria.

Feature spaces are created by randomly picking t groups of [d/2, d] features to form
the local region Lens. The k training objects closest to Xtesti in each group are found using
the Harvesine distance. Training objects that occur more than t/2 times are added to the
Lens array. After defining the local region, a local pseudo ground truth (targets ∈ Rs×l)
is constructed by extracting the points in ξ from target. Using Equation (16), the local
training outlier score for the test instance is obtained from the pre-computed training score
matrix Otrain:

O(Xtrains ) = [D1(Xtrains ), D2(Xtrains ), . . . , Dk(Xtrains )] ∈ Rs×k (16)

The fourth step is to choose the optimal detector. This is done by calculating the simi-
larity between the base detector scores and pseudo target using correlation measures. The
absence of direct and consistent access to binary labels in unsupervised outlier identification
motivates similarity computation. Although it is feasible to convert pseudo outlier scores to
binary labels, obtaining an accurate conversion threshold is challenging [46]. Furthermore,
because imbalanced datasets are common in outlier identification tasks, utilising similarity
measures is more reliable [19]. We propose an implementation of ELSCP that computes the
final score using Pearson correlation and weights.
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Definition 6. Pearson Correlation: Let x and y be two vectors of length n, where x and y are the
means of the vectors. The Pearson correlation coefficient is defined as the ratio of the co-variance of
the two vectors to the product of their respective standard deviations (presented in Equation (17)).
It assesses the linear relationship between two numerical variables. It also applies to features that
are normally distributed:

rxy =
∑n

i=1((xi – x)(yi – y)√
∑n

i=1(xi – x)2 ∑n
i=1(yi – y)2

(17)

where n is the sample size; x = ∑n
i=1 xi
n denotes the mean of x; and y = ∑n

i=1 yi
n denotes the mean of y.

Using Equation (17), ELSCP computes the correlation between the local pseudo ground
truth (targets) and the local detector scores Di(Xtrains) as r(targets, Di(Xtrains)). This calcula-
tion loops through all the k base detectors. A histogram is constructed with b equal intervals
out of Pearson correlation scores, and detectors in the largest bin are chosen as competent
base detectors for the given test instance. The Pearson correlation values are then ranked
to compute weights. Finally, the selected detector scores are merged using the weighted
average of the maximum strategy as weighted_avg(D∗t (Xtesti)) to obtain the final detection
score. The implementation of ELSCP is summarised in Algorithm 1, with Figure 3 showing
the flow chart.

Algorithm 1: Enhanced LSCP.
Input : the pool of heterogeneous detectors D, training data Xtrain, test data Xtest,

the local region size k
Output : Outlier scores for each instance in Xtest

Train all base detectors in D on Xtrain;
Generate training outlier scores Otrain with Equation (14) ;
Generate pseudo ground truth: target := max(O(Xtrain));
for each test instance Xtesti in Xtest do

Define local region (ξ) by Ball tree kNN ensemble ;
Extract local pseudo ground truth targets by selecting k neighbours in (ξ) from
target;

for each base detector Di in D do
Get the outlier scores associated with training data in the local region Di(ξ);
Evaluate the local competency of Di by computing the similarity between
targets and Di(ξ) using Pearson correlation with Equation (17) ;

Select a group of t most similar detectors and add to the empty set D∗t ;
Compute weights by ranking the Pearson correlation scores;
return weighted_avg(D∗t (Xtesti )) ;

return scores;

ELSCP implementation applies two base detectors, HBOS and LOF. The local outlier
factor (LOF) [20] determines how far a sample’s density deviates from its neighbours on
a local scale. It is local in the sense that the anomaly score is determined by the object’s
isolation from the surrounding area. The locality is determined by the distance between the
k-nearest neighbours, which is used to estimate the local density. One can discover outliers
(samples that have a much lower density than their neighbours) by comparing the local
density of a sample to the local densities of its neighbours.

The procedure for ELSCP starts with HBOS and LOF base detectors being fitted to the
training data. A pseudo ground truth for each train instance is generated by taking the
maximum outlier score from all of the base detectors. We implement Pearson correlation
in the model selection and combination phases. In the computation of the final ensemble
score, we implement a weighted average, where the weight is computed by ranking the
Pearson correlation scores. For each test instance, the following are performed:
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1. Using the ball tree nearest neighbour algorithm with the Haversine distance metric,
the local region is defined to be the set of the nearest training points in randomly
sampled feature subspaces that occur more frequently using a defined threshold over
multiple iterations.

2. Using the local region, a local pseudo ground truth is defined, and the Pearson
correlation is calculated between each base detector’s training outlier scores and the
pseudo ground truth.

3. Weights are computed for each detector by ranking the Pearson correlation scores
such that the detector with the best score obtains the highest weight.

4. Using the correlation scores, the best detector is selected. The final score for the test in-
stance is computed using a weighted average of the best detector’s local region scores.

ELSCP is adapted to the streaming context by implementing it through a pipeline.
Given a dataset of CAMs, the stream simulator converts the data into a data stream. The
stream is passed to ELSCP through a reference window model, which implements the
windowing concept. Within the specified window size, a sliding window is implemented
such that partial anomaly scores are generated for each model. The partial scores are then
evaluated, and final scores are generated for each instance.

Figure 3. ELSCP flow chart: The results for steps 1 and 2 are cached; steps 3–5 are re-computed for
each test instance.

A sliding window approach is employed in streaming anomaly detection, in which
data samples inside a window are sorted by an outlier score, with highly ranked data
samples being labelled anomalies. For ELSCP adapted to streaming context, a pipeline
framework is adopted, where each incoming new instance xt is passed through a pre-
processor (unit norm scaler), which transforms xt into a scaled feature vector without
changing its dimensions. The scaled feature vector is then processed by the streaming
anomaly detection model, which predicts the label yt for the instance. This predicted
label is then passed to the running average post processor, which converts the score to
the average of all previous scores in the current window. Figure 4 depicts the proposed
anomaly detection framework.
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Figure 4. Anomaly detection framework.

The key advantage of using a sliding window is that with the arrival of a new data
instance, a sliding window may be modified, resulting in an online and incremental updat-
ing process. The update mechanism necessitates the deletion of an old data instance and
the storage of a new one, making it computationally efficient. The sliding window contains
the latest subset of the dataset at any given time. As a result, a sliding window approach
finds outliers based on the most recent subset and addresses the temporal property of
data streams.

2.4. Performance Indicators

In the unsupervised outlier detection setting, it is often problematic to judge the
effectiveness of the algorithms in a rigorous way. The majority of the outlier-detection
algorithms output an outlier score, which is converted to a label based on a threshold.
If the threshold selection is too restrictive (to minimise the number of declared outliers),
then the algorithm will miss true outlier points (false negatives). On the other hand, too
many false positives will be generated if the algorithm declares too many data points as
outliers. This trade-off can be measured in terms of precision and recall, common measures
of effectiveness.

In order to evaluate the performance of the different approaches, we use the area under
the curve of the receiver operating characteristic (AUC-ROC) [47] and the area under the
curve of precision–recall (AUCPR) [48]. Both indicators are based on the following concepts:

• True positive (TP): True positives are correctly identified anomalies.
• False positive (FP): False positives are incorrectly identified normal data.
• True negative (TN): True negatives are correctly identified normal data.
• False negative (FN): False negatives are incorrectly rejected anomalies.

The true positive rate (TPR), or recall, is

TPR =
TP

TP + FN
.

The false positive rate (FPR) is

FPR =
FP

FP + TN
.

The AUC-ROC receiver operating characteristics are TPR and FPR. The higher the
AUC-ROC, the better the detection. AUC-ROC is the most popular evaluation measure for
unsupervised outlier detection methods [49].

AUCPR uses precision and recall. Precision is the fraction of retrieved instances that
are relevant [50]. Recall or sensitivity is the ability of a model to find all the relevant cases
within a dataset:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
The AUCPR baseline is equivalent to the fraction of positives [51]:

AUCPR – baseline =
TP

TP + FP + FN + TN
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AUCPR is a highly effective assessment metric that performs well for a variety of
classification tasks. It is especially beneficial when dealing with imbalanced data when the
minority class is more significant, like in anomaly detection. As a result, we used these
metrics to assess the efficacy of anomaly detection algorithms in this study.

3. Results

This section presents the results obtained from experimenting with anomaly detection
approaches on CAMs. The algorithms were written in Python using the Python Streaming
Anomaly Detection (PySAD) framework [52]. This allows us to integrate batch processing
algorithms from the Python outlier detection (PyOD) framework [53] and apply them to
streaming data using a sliding window. The first series of studies was designed to see if the
proposed ELSCP employing Pearson correlation outperformed LSCP. We wanted to know
which model best estimated anomalous cases and what effect variations in window size
had on model performance. Several experiments were performed with varying window
sizes. Both algorithms employed two base detectors, HBOS and LOF. Table 2 summarises
the parameters used in the experiments.

Table 2. Experimental parameters.

Parameters Values

Window sizes 50, 100, 200, 300, 400, 500, 600

Sliding window size 50

Initial window (training set) 1000

Table 3 summarises the experimental results. Based on the data, it is evident that
the improvements to ELSCP resulted in better AUC-ROC and AUCPR performance.
Figures 5 and 6 indicate that the performance of both algorithms for AUC-ROC and AUCPR
improves gradually with increasing the window size.

Table 3. ELSCP AUC-ROC and AUCPR performance results for window size variation.

AUC-ROC AUCPR

Window Size LSCP ELSCP LSCP ELSCP

50 0.7408 0.7794 0.1793 0.2157

100 0.7763 0.8065 0.2126 0.2496

200 0.8203 0.8453 0.2525 0.3125

300 0.8706 0.8977 0.2989 0.3841

400 0.8833 0.9138 0.3145 0.4208

500 0.8910 0.9247 0.3206 0.4331

600 0.8917 0.9277 0.3206 0.4373

Average 0.8392 0.8707 0.2713 0.3504

The second series of tests was designed to assess the ELSCP performance by examining
the true positive and false positive rates using a receiver operating characteristic (ROC)
curve. The performance was also examined in terms of precision and recall. The baseline
AUC-ROC is usually set at a value of 0.5, which suggests no discrimination; 0.7 to 0.8 is
considered acceptable; 0.8 to 0.9 is considered excellent; and more than 0.9 is considered
outstanding [54]. ELSCP was trained with 67% of the data, and the prediction performance
was tested with 33% of the data. ELSP achieved 0.97 area under the ROC curve in both the
true normal data (class 0) and true anomalies (class 1), which is outstanding performance
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(as shown in Figure 7). The baseline AUCPR for the dataset was 0.087 (based on a sample
size of 6341 with 552 true positive anomalies). Based on the results obtained from the
precision recall curve (as shown in Figure 8), ELSCP achieved 0.66 for the positive class,
which is good performance.

Figure 5. Comparison of models’ AUC-ROC performance.

Figure 6. Comparison of models’ AUCPR performance.
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Figure 7. ELSCP ROC curves performance evaluation.

Figure 8. ELSCP precision–recall performance evaluation.
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In the third set of tests, we endeavoured to determine the anomaly detection method
that best estimates the number of anomalous events in C-ITS data. We used the data to anal-
yse the performance of MCD, IForest, RRCF, exact-STORM, LSCP, and ELSCP algorithms
in terms of AUC-ROC and AUCPR. The findings of the experiments are summarised in
Table 4. According to the results, the batch processing models (MCD, IForest, LSCP, and
ELSCP) that were adapted to the streaming context utilising the reference window model
outperformed the streaming models (RRCF and exact-STORM). In terms of AUC-ROC,
both LSCP and ELSCP performed admirably, with ELSCP surpassing LSCP by 3.64 percent.
MCD and IForest both yielded satisfactory results. Exact-STORM was at the baseline
and did not appear to differentiate between the positive and negative classes. In terms of
AUCPR, all models except Exact-STORM can distinguish between the positive and negative
classes since their average AUCPR value is higher than the baseline of 0.087.

Table 4. Average AUC-ROC and AUCPR performance results for various anomaly detection models
on C-ITS data.

Model AUC-ROC AUCPR

ELSCP 0.8945 0.3841
LSCP 0.8581 0.2858

IForest 0.7825 0.2210
MCD 0.7587 0.1665
RRCF 0.6042 0.1146

Exact-STORM 0.5000 0.0885

4. Discussion

Advances in battery technology and the availability of low-cost storage devices per-
mitted the collection of densely sampled trajectory data over a long period of time. With
more data, it is now feasible to identify more intriguing patterns. A great deal of progress
has been made in the field of anomaly detection systems, with several strategies developed
to handle the problem of anomaly identification. In the field of connected autonomous
vehicles, Xia et al. [55] developed a data collection and analytics framework for vehicle tra-
jectory extraction, reconstruction, and assessment. To minimise noise and remove outliers
in the trajectories, a Kalman filter and the Chi-square test were used. They also introduced
a trajectory discontinuity detection approach that can detect and reconstruct discontinuous
trajectories using a forward–backward prediction smoothing method.

Given that there is a lot of data without labels, unsupervised learning is widely
favoured for real-life applications, particularly anomaly detection. In this work, we per-
formed unsupervised anomaly detection in CAM data streams acquired from the C-ITS
environment. We evaluated anomalies that might have implications, such as an accident
or incident that requires motorists on that segment of the road to significantly lower their
speed as they approach the event location. We propose an ensemble anomaly detector,
enhanced locally selective combination in parallel outlier ensembles (ELSCP). ELSCP is
tailored for streaming scenarios by leveraging a pipeline framework that transforms data
into a stream using a reference window model that implements a sliding window approach.
The approaches in the ensemble are combined in such a way that the total complexity
does not surpass that of the individual model with the highest complexity. Based on our
findings, ELSCP can detect anomalies in CAMs.

4.1. Use Cases

We selected streaming techniques because in real-world C-ITS setups, anomaly detec-
tion would be performed by roadside devices that gather a large number of signals from
cars within range. This implies that it would have to process the messages on the fly for a
variety of reasons (memory limitation, response time, etc.). The windowing concept makes
it easier to discover abnormalities on the fly. This research can be applied to driver be-
haviour analysis, especially lane-changing behaviour analysis and obstacle detection. The
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detection capabilities of ELSCP might be incorporated into road operators’ decision-making
processes in order to improve safety and traffic flow. The timely detection of anomalies
is crucial, especially for emergency response teams, resulting in increased efficiency in
rescue operations.

4.2. Limitations

The first drawback of ELSCP is the extraction of adjacent data points forming the local
region of the test instance using a distance metric applied to the kNN ball tree algorithm.
This strategy has two challenges:

1. It takes much time to find the test instance’s nearest neighbours;
2. When many features or attributes are irrelevant, performance in a multidimensional

space can be degraded.

To remedy this problem, the local-region definition can be solved by the use of fast
approximate methods [56] or by prototyping [57]. Since these strategies do not require all
data points, they can greatly minimise the time necessary to build up a local domain. The
second drawback is that we used a basic maximisation approach to generate the pseudo-
ground truth. This might be enhanced by considering exact techniques, such as active base
detector pruning [58].

5. Conclusions

Detecting anomalies is a subjective task that relies on the problem domain, data traits,
and the kinds of anomalies present. In this work, we studied the anomaly detection issue
and applied it to messages generated by cars in C-ITS to detect anomalies characterised
by obstacles on roads. Our approach involves utilising data to actively detect anomalies
through unsupervised methods that target local contextual anomalies. A robust ensemble
for anomaly detection is proposed that improves variance reduction by using heteroge-
neous base detectors with different hyperparameters. Detector selection based on local
competency helps identify base detectors with a conditionally low model bias.

Our future work will concentrate on updating the calibration of outlier scores by
incorporating dependent loss functions, as a false negative in the C-ITS scenario might
cause some troubling difficulties. We also recommend introducing automated parameter
calibration in order to increase the algorithm’s chances of being used by road infrastructure
operators. Another essential component will be process optimisation in order to increase
complexity while fine tuning the ensemble learning decision rules for efficiency enhance-
ment. It will also be fascinating to investigate various scenarios based on actual traffic
incident situations. We also suggest transforming the ELSCP approach into a tool for the
real-time identification and analysis of data streams.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC-ROC Area under the curve of the receiver operating characteristic
AUCPR Area under the curve of precision–recall
CAM Cooperative awareness message
C-ITS Cooperative intelligent transport systems
ELSCP Enhanced locally selective combination in parallel outlier ensembles
ETSI TS European Telecommunications Standards Institute Technical Specifications
FDM Filter–discovery–match
FP False positive
FPR False positive rate
FN False negative
GPS Global positioning system
HBOS Histogram-based outlier score
IForest Isolation forest
ITS Intelligent transportation systems
IoT Internet of Things
KD tree K-dimensional tree
kNN k-nearest neighbours detector
LOF Local outlier factor
LoTAD Long-term traffic anomaly detection
LSCP Locally selective combination in parallel outlier ensembles
MAD Median absolute deviation
MCD Minimum covariance determinant
MTTD Mean time-to-detect
OMNET Objective modular network testbed
P Precision
PKI Public key infrastructure
PyOD Python outlier detection
PySAD Python streaming anomaly detection
R Recall
ROC Receiver operating characteristic
RRCF Robust random cut forest
RSU Roadside unit
STORM Stream outlier miner
SUMO Simulation of urban mobility
TP True positive
TPR True positive rate
TN True negative
VANET Vehicular ad hoc network
V2I Vehicle-to-infrastructure
V2V Vehicle-to-vehicle
V2X Vehicle-to-everything
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