
HAL Id: hal-04133836
https://hal.science/hal-04133836

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Trust and Explainable Federated Deep Learning
Framework in Zero Touch B5G Networks

Sabra Ben Saad, Bouziane Brik, Adlen Ksentini

To cite this version:
Sabra Ben Saad, Bouziane Brik, Adlen Ksentini. A Trust and Explainable Federated Deep Learning
Framework in Zero Touch B5G Networks. GLOBECOM 2022, IEEE Global Communications Confer-
ence, Dec 2022, Rio de Janeiro, Brazil. pp.1037-1042, �10.1109/GLOBECOM48099.2022.10001371�.
�hal-04133836�

https://hal.science/hal-04133836
https://hal.archives-ouvertes.fr

1

A Trust and Explainable Federated Deep Learning
Framework in Zero Touch B5G Networks

Sabra Ben Saad*, Bouziane Brik‡, Adlen Ksentini* , Senior IEEE,

Abstract—The emergent Zero touch Service and Management
(ZSM) paradigm aims to automate the orchestration and man-
agement of running network slices, in Beyond 5G networks
(B5G), with an unprecedented level of scalability. To achieve this
vision, ZSM calls for a large usage of advanced deep learning
algorithms, in order to dynamically build efficient decisions. In
this context, Federated deep Learning (FL) proved their effi-
ciency in not only building collaborative deep learning models,
among several network slices, but also ensuring the privacy
and isolation of such network slices. Indeed, FL-based solutions
give ”machine-centric” decisions about running network slices
and their performance, which will be then executed/applied by
managers, i.e., slice manager staff/module. However, FL-enabled
solutions do not provide any details about why and how such
decisions were made, and thus such decisions cannot be properly
trusted/understood by slice managers. To alleviate this issue, we
leverage eXplainable Artificial Intelligence (XAI) paradigm that
aims to improve the transparency of black-box FL decision-making
process. In particular, XAI helps to explain the FL-based decisions
to make them interpretable/trustable by network slices managers.
In this paper, we design a novel XAI-powered framework to
explain FL-based decisions. We first build a deep learning model
in federated way, to predict key performance indicators (KPI)
of network slices. Our FL-based KPI prediction is useful for
the configuration and the management of network slice lifecycle,
especially for the Service Level Agreement (SLA) violation and
the network slice re-configuration. Then, we develop several XAI
models on the top of our FL-based model, such as SHapley
Additive exPlanations (SHAP), Local Interpretable Model-agnostic
Explanations (LIME), RuleFit, and Partial Dependence Plot (PDP),
to enhance the level of trust, credibility (in the local data/models),
transparency, and explanation of the FL-based decisions, while
adhering the data privacy, to different B5G network stakeholders,
such as slice managers. Experiments results show the efficiency
of our XAI-powered framework, to explain FL-based decisions
related to latency KPI predictions.

Index Terms—Zero Touch Management (ZSM), 5G and Beyond,
Federated Deep Learning, Explainable Artificial Intelligence.

I. INTRODUCTION

BEYOND 5G networks (B5G), or so-called ”6G”, are con-
sidered as key enabler of a wide range of new perva-

sive services related to different vertical industries, including
eHealth, automotive, energy, and manufacturing [1]. This is
possible by the support of massive number of coexisting network
slices with different requirements and functionality. Indeed,
thanks to network softwarization paradigm, network slicing con-
sists of building isolated logical networks on top of a common

*Eurecom, Sophia Antipolis, France. ‡University of Bourgogne, France. This
work has been partially supported by the European Union’s H2020 MonB5G
(grant no. 871780) project.

physical resources, while meeting the needed requirements by
network slices, in terms of latency, bandwidth, and reliability [2]
[3]. However, such new services and paradigms introduce more
issues on the management and orchestration of the massive
network slices, during their life-cycles, that traditional network
infrastructures fail to cope with. ZSM emerges as a promis-
ing paradigm, towards providing zero-touch orchestration and
management of running network slices at massive scales in
B5G networks. It designs a new autonomic orchestration and
management framework, that heavily enabling distribution of
functions together with data-driven techniques. To achieve this
vision, ZSM calls for a large usage of advanced deep learning
algorithms, in order to dynamically build efficient decisions
at different levels, including radio resource allocation, energy-
efficiency management, computing/memory resource provision-
ing, etc. In this context, FL proved their efficiency in building
collaborative deep learning models, among several network
slices. In particular, FL enables each network slice manager to
build a local learning model using its proper data, and send it
to a central entity, e.g. the central orchestrator and management
framework, to be aggregated with the other network slices’
local models. Hence, FL allows running network slices to
create deep learning models, without sharing their data, and
thus ensuring the privacy and isolation of such network slices.
Indeed, FL-based solutions give ”machine-centric” decisions
about running network slices and their performance, which
will be then executed/applied by managers, i.e., slice manager
staff/module. However, FL-enabled solutions do not provide
any details about why and how such decisions were made,
and thus such decisions cannot be properly trusted/understood
by slice managers. It is a very critical decision, because the
FL model is collaboratively trained in disturbed nodes, and
without access and verification to their local dataset. In other
words, the main issue of FL-based mechanisms are the black-
box decisions, whose internal functioning of the FL model is not
understood and hidden. To alleviate this issue, we leverage XAI
paradigm that aims to improve the transparency of black-box
FL decision-making process. In particular, XAI helps to explain
the FL-based decisions to make them interpretable/trustable by
network slices managers. In this paper, we design a novel XAI-
powered framework to explain FL-based decisions. Our frame-
work studies the use of linear and non-linear XAI techniques,
to identify the most informative features and investigate their
impact on the final FL model predictions. Therefore, we first
build a deep learning model in federated way, to predict KPI
of network slices. Specifically, our FL-based model predicts the

2

latency KPI of network slices, in order to help in anticipating
any violation of SLA, related to the latency KPI. Then, we
develop several XAI models on the top of our FL-based model,
such as SHAP, LIME, RuleFit, and PDP to enhance the level of
trustiness (in the local data/model and the FL global model),
transparency, and explanation of the FL-based decisions, to
different B5G network stakeholders, such as slice managers.
Noting that our framework leverages a real dataset about latency
KPI that, we generate using OpenAirInterface platform. This
paper is organized as follows. Section II gives a review of related
work. Section III describes the design and specification of
our proposed XAI-powered FL framework. Section IV presents
the performance evaluation of our proposed XAI-powered FL
framework. Finally, section V concludes the paper.

II. RELATED WORK

In this section, we present the few works, that addressed the
explainability of FL-based models. In [5], the authors proposed
a novel scheme to interpret FL-based models. They leveraged
shapley value to compromise the data-privacy protection and
model explainability in FL. This scheme enables each FL
participant to get feature importance for its own features (data),
and a unified feature importance for the features of the other

participants. In work [6], the author proposed an explainable
horizontal federated learning approach, leveraging integrated
gradients explainability method. The authors compared be-
tween centralized and federated models, and applied integrated
gradients to show the score of each feature related to each
prediction for both models. We observe that few studies have
been proposed to deal with the explanation issue of FL-based
models. These studies addressed this issue either in general way,
i.e. whatever the use case [5], or focusing on a specific and
simple use case, such as Taxi travel time prediction [6], which
is very simple and different from B5G-enabled use cases. In this
work, we designed a novel framework that leverages RuleFit,
LIME, SHAPE and PDP as XAI approaches, to explain and
interpret an FL-based model of latency prediction. We note that
our framework enables not only to deduce the most relevant
features conducting to each FL-based latency prediction, but
also providing both local and global explanations related to
latency predictions of running network slices.

III. PROPOSED ARCHITECTURE OF THE XAI-EMPOWERED
FL FRAMEWORK

In this section, we present our XAI-empowered FL framework
for the B5G networks. First, we give an overview about the

Fig. 1: The proposed trust B5G Architecture of our XAI-Empowered FL Framework.

3

architecture of our proposed FL framework. Then, we describe
our deep neural architecture we build to predict the latency
related to the B5G networks, and our XAI-FL approaches we
applied to interpret and explain the outputs of our deep learning
model, trained on local data in disturbed nodes, during the FL
process.

A. System overview Architecture

Fig.1 gives an overview about the architecture related to our
FL framework. Our architecture presents different 5GB parties,
including the slice provider, the slice managers, and inter-slice
manager (orchestrator), that collaboratively train a deep learning
model, in federated way. First of all, the slice orchestrator
initiates the federated learning process to build a learning
model about latency KPI prediction. It defines the learning
parameters such as, learning rate, neural architecture (number
of layers/neurons), activation functions, and neural weights
optimizer, in addition to the needed data. The orchestrator then
sends such information to the involved slice managers in the
FL process (step 1 in Fig. 1). After that, the slice managers
start to build their local learning models, using their own data.
Once done, the slice managers send their local models to the
slice orchestrator for aggregation ∆wi, in order to generate
a global model (steps 1 and 2 in Fig. 1). The latter will be
deployed at the slice managers level, to predict the latency KPI
in real time (steps 3 and 1 in Fig. 1). In addition, we apply
four different XAI approaches, to generate local, global, and
feature importance-based explanations, related to the latency
predictions. Thus, our framework allows the slice provider’s
decision makers to not only monitoring the latency KPI of
running network slices, but also how and why predictions are
made, through a graphical XAI user interface (step 4 in Fig 1).
It is worth noting that our study is mainly based on a realistic
B5G dataset, that we generate using OpenAirInterface, imple-
menting the network slicing concept, called EARCD (Eurecom
AMF Resource Consumption Dataset). Our dataset provides the

response time (latency) of the Access Mobility Function (AMF),
running as virtual network functions (VNF) inside the network
slices, to handle user attach requests, while considering various
parameters, including available and consumed CPU and RAM
memory resources. Therefore, we consider ten running network
slices and we generate a sub-dataset for each network slice
of 2813 samples (rows). Each sub-dataset comprises five input
features (CPU capacity, RAM capacity, used CPU, used RAM,
and number of attach request), and one output feature, which
corresponds to latency in terms of average duration to process
users attachments, by the network slices’ AMFs. Noting that we
also leverage 5G UE emulator, my5G-RANTester1, to emulate
multiple number of users that send a high number of attach
request packets, to the ten network slices (AMF functions).
Furthermore, each slice manager implements a neural network
of one input layer of five neurons (our five input features), four
connected hidden layers of 20 neuron nodes, and one output
layer of one neuron (latency prediction). The activation function
in all layers is the rectified linear activation function.

B. Explainable FL-based models for B5G networks

Several ML/DL explainable approaches were proposed to
show the features impact, on the target labels. In order to
interpret ”Black-Box” of our FL-based model, we apply model
agnostic approaches [4], which aim to understand the inner
working of learning models. The model agnostic methods can
be divided into two main categories: local model-agnostic and
global model-agnostic. In what follow, we present the model-
agnostic approaches, that we apply to explain our FL model.

1) Global Model-Agnostic Methods: The Global methods
aim interpret learning model working in general way. We apply
Partial Dependence Plots (PDP) method [4].

a) Partial Dependence Plot (PDP): PDP method shows
which input features of the dataset will highly impact the
predictions of the learning model. In particular, PDP shows

1https://github.com/my5G/my5G-RANTester

Index Rule Type Coef Support Importance
0 RAM Limit linear -1.7331745177629882e-05 1.0 0.019120719931916517
1 CPU Limit linear -0.3863503198444083 1.0 0.4437676624823355
2 RAM Used linear 7.339808833175027e-11 1.0 0.02421002610926749
3 CPU Used linear -0.0 1.0 0.0
4 Nb of attach linear 0.02773183326589316 1.0 3.731478647971506
218 Nb of attach <= 315.0 rule -0.0 0.8380221653878943 0.0
110 Nb of attach <= 305.0 rule -5.055127499190173 0.8300756170637752 1.898535809011758
371 Nb of attach <= 295.0 rule -0.0 0.8169375534644996 0.0
152 Nb of attach <= 285.0 rule -0.0 0.8093473924194927 0.0
214 Nb of attach <= 315.0 & Nb of attach <= 205.0 rule -0.0 0.7215619694397284 0.0
153 Nb of attach <= 325.0 & Nb of attach <= 205.0 rule -0.0 0.7190946855751325 0.0
108 Nb of attach <= 305.0 & Nb of attach <= 205.0 rule -7.960556588113531 0.7169623846699787 3.5860281771803635
364 Nb of attach <= 205.0 & Nb of attach <= 295.0 rule -0.0 0.7153004688165933 0.0
186 Nb of attach <= 315.0 & Nb of attach <= 195.0 rule -0.0 0.7072123640526617 0.0
319 Nb of attach <= 195.0 & Nb of attach <= 295.0 rule -0.0 0.705848787446505 0.0

Fig. 2: Rulefit results: Top 15 Rows of the Un-filtered Rules Features.

Index Rule Type Coef Support Importance
108 Nb of attach <= 305.0 & Nb of attach <= 205.0 rule -7.960556588113531 0.7169623846699787 3.5860281771803635
84 Nb of attach <= 305.0 & Nb of attach <= 195.0 rule -0.32092101036293835 0.698094425483504 0.14732986873044338
109 Nb of attach <= 195.0 & RAM Used > 273678336.0 & Nb of attach <= 295.0 rule -0.5977991989325068 0.6815906165069375 0.2784902910759459
26 Nb of attach <= 195.0 & RAM Limit > 384.0 & Nb of attach <= 295.0 rule -4.476594397374145 0.6684180630502699 2.1074984685432097
269 Nb of attach <= 305.0 & Nb of attach <= 195.0 & RAM Limit > 384.0 & Nb of attach <= 135.0 rule -1.0005563936082231 0.5568020448736154 0.4970394456376536

Fig. 3: Rulefit results: Top 5 Rows of the Filtered Rules.

4

(a) (b) (c) (d)

Fig. 4: Partial Dependence Plots on EARCD dataset.

the linear relationship between features and target label (s). It
means that if one features goes up, the target label will go up
(or down) too. Thus, A PDP enables to determine whether the
relationship type between the target label and each feature is
linear, monotonic or more complex. The PDP plots visualize the
average partial relationship between the predicted target and one
or more features. In our case, the FL clients will only share a
partial information of PDP, which are the variation percentage,
in order to save their data privacy.

2) Local Model-Agnostic Methods: The local interpretation
methods explain individual predictions. Therefore, the predic-
tions of a single instance is described as the sum of feature
effects. In this context, we apply three main methods: SHAP,
LIME, and RuleFit.

a) SHapley Additive exPlanations (SHAP): It is based
on game theoretically optimal Shapley values, to interpret the
outputs of any machine-learning models [4]. SHAP consists
to calculate the contribution/impact of each feature to the
final ML/DL model output. Specifically, The SHAP approach
calculates shapley values from coalitional game theory, where
a player, in a coalition, corresponds to a feature value of the
data instance. Shapley values show how to fairly distribute
the “output” (prediction) among the features. Noting that a
player can be a set of features, such as pixels of an image,
or one feature value, such as for tabular data. In our study,
we apply SHAP method by calculating the shapley values of
each individual prediction, where each individual feature of our
dataset corresponds to a player in the coalition.

b) Local Interpretable Model-agnostic Explanations
(LIME): LIME method consists to train interpretable models to
approximate the predictions of the ML/DL model. In particular,
LIME creates a new dataset containing perturbed samples
and their predictions of the studied ML/DL model. Then, an
interpretable model is trained using the new dataset, which
is weighted by the proximity of the sampled instances to the

instance of interest. However, the new interpretable model
will approximate accurately the ML/DL model predictions
locally (local fidelity), and cannot provide a good global
approximation. In our case, we first create a perturbed data
instances of our EARCD dataset, then we build an interpretable
model of our local/individual predictions of the latency KPI.

c) Rulefit Method: The RuleFit algorithm is also another
explainable solution to understand the relationship between
features in the form of decision rules [4]. RuleFit builds a
sparse linear model, leveraging both the dataset features and
a set of new features that generated from the interactions
between the original dataset features (decision rules). These
new features are automatically built from decision trees, where
each tree path is transformed to a decision rule. In our study,
we apply RuleFit to generate hundreds of new decision rules.
We then apply additional filtering/combining to determine the
most important/informative rules. Therefore, such new rules will
help slice provider’s decision makers to better interpret and
understand our FL-based model predictions.

IV. PERFORMANCE AND EVALUATION

In this section, we validate our XAI-empowered framework
through an experimental study. We implemented the proposed
XAI framework in Python, leveraging tensorflow library as well
as XAI libraries, including SHAP, and PDPBox. Following
sections, we present the obtained results of the different XAI-
techniques used.

A. Performance evaluation of Global Model-Agnostic Method

Fig. 4 shows the obtain partial dependence plots trained on
our EARCD dataset. The left plot in the Fig. 4 depicts the effect
of the number of attach requests on the latency; we can clearly
see a linear relationship among them (Straight line), when the
number of attach requests is superior to 200. Similarly, we

5

Predicted value

0.18
(min) 12.06

95.10
(max)

negative positive
Nb of attach > 230.00

40.15
2.50 < CPU Limit <=...

3.23
RAM Limit > 3072.00

1.21
635842560.00 < RAM...

1.14
CPU Used > 0.65

0.86

Feature Value
Nb of attach 280.00
CPU Limit 3.00
RAM Limit 4096.00
RAM Used 661037056.00
CPU Used 0.92

Features Impact

Nb of attach > 230.00,

40.1456199741355

2.50 < CPU Limit <= 3.50, -3.2278344868730575

RAM Limit > 3072.00, -1.211170243871387

635842560.00 < RAM Used <= 835198976.00, -1.1390523650426132

 CPU Used > 0.65 -0.8561447261580017

Fig. 5: Lime results displaying the predicted label and the top five
features impact.

Fig. 6: SHAP value (impact on model output)

analyze the effect of the used CPU on the latency (Fig.4-b)
as well as on the number of attach requests (Fig.4-c), to show
the interaction between these two features. We clearly see an
interaction (different stripes and colors from purple to yellow)
between the “Number of attach” and “CPU Used” features.
Furthermore, the purple/blue color reflects the low dependence,
while the green/yellow presents the high dependence of the
features. For a number of attach less than 300 requests, the
latency is nearly independent (=2.92%) of the CPU used, shown
in purple and blue; whereas for values greater than 300 there is
a strong dependence (30.00%) on CPU used (shown in green,
and yellow color). Similarly, there is also a strong dependence
between the ”number of attach” feature and ”RAM used”, ”CPU
Limit”, and ”RAM Limit” features, when their values are greater
than ”300”, ”200”, and ”300”, respectively.

B. Performance evaluation of Local Model-Agnostic Method

Fig. 6 and Fig. 7 show the most informative features in an
orderly manner. For a particular observation, each input feature
has either a positive or a negative contribution to the final
latency prediction (Fig. 6). Moreover, the blue color reflects
the low value of the feature, while the Red color presents the
high value of the features. Based on the obtained plots, we
can notice that the most important feature is the number of
received attach request. Also, the more number of attach is
high, the more the latency is high. It is reasonable explanation

because the processing duration of the received attach requests
increases as the number of received requests increases as well.
After that, the second important feature is the ”CPU Limit”
feature. Indeed, the AMF functions with a high number of
CPUs will generate a less latency, as compared with AMFs
with low number of CPUs. Hence, the more resources allocated
to AMFs are high, the more attach request treatment is faster,
so the latency of attach requests decreases. Similarly, using
the RuleFit method, Fig. 8 shows similar results of feature
importance, which confirms the obtained results in Fig. 6 and
Fig. 7 for the SHAP method. In Fig. 8, the highest scoring
features corresponds to the following features: (1) number of
attach: corresponds to the number of Attach Requests sent to
the AMF; (2) CPU Limit: corresponds to the Number of CPU
allocated to AMF; (3) RAM Used: corresponds to the memory
used during AMF processing; (4) CPU Used: corresponds to
the CPU used during the AMF processing; (5) RAM Limit:
corresponds to the memory allocated to the AMF. Additionally,
RuleFit method enables to generate new rules about dataset
features and their combinations. Such rules will help to show
the importance of the features for the model predictions.
Fig. 2 illustrates some rules of the RuleFit method through a
table containing five main columns: ”Rule” which is either an
existing feature or a rule formula (combining more features).
”Type”, which is either linear for the existing features, or rule
for a new generated rule. ”Coef” which is the coefficient of the
rules and features. ”Support” presents what proportion of the
dataset supports the corresponding rule/feature. ”Importance”,
which reflects the importance of each rule on the predictions.
Noting that the feature importance is deduced from the weights
of the regression model. Besides, in Fig. 3, we eliminate the
insignificant features based on several criteria, such as (1)
eliminate the rules with 0.00 coefficient since they are not
significant; (2) sort the rules based on their support value; and
(3) eliminate the leanest rules to keep more important rules.
As results, all the most significant rules involves the ”Nb of
attach” feature, which confirms the previous results (Fig. 6,
Fig. 7, and Fig. 8). Therefore, we notice that the most significant
rule combinations also mostly contain these features. As an
example, the first rules above work as follow: IF ”Nb of attach”
≤ 305 and (&) ”Nb of attach” ≤ 205, THEN we have 3.58
as a feature importance for the KPI predictions. The second
rule is very similar to the first one. Therefore, it might make

Fig. 7: SHAP value (average impact on model output)

6

Fig. 8: Feature Importance using Rulefit on EARCD Dataset.

sense to combine or eliminate some of the similar rules for
a more interpretable set of rules. Ideally, we need to apply
some filtered methods to group the similar rules and create
a leaner model, which would cover all the interaction effects,
which would ultimately help the ML analyzer to understand the
working mechanism of our FL trained model. Fig. 5 depicts
the positive/negative impact of the features on our FL model
predictions (latency KPI), using the LIME method. Using a
test instance, the value of the predicted label, which is the
latency, is equal to 12.06 seconds. It is presented by a bar on
the left, and depicted by the given vector. We can see the colors
blue and orange, depicting negative and positive associations,
respectively. As we observe, the ”number of attach” feature
has a higher and positive impact (sign (+)) on the predicted
latency, and when the number of attach is more than 230
requests, the higher latency we obtain. In addition, we also see
that the ”CPU Limit” feature has a lower/negative impact on
the predicted latency (sign (−) in Fig. 5). In general, we can
deduce that our XAI-empowered framework provides a good
performance in explaining our FL-based model, when predicting
the latency KPI. It mainly helps to interpret and understand the
local and global functioning of our FL-based model by showing
the most informative features conducting to each prediction.
Therefore, our XAI-based framework will help decision makers
of slice providers, to not only detecting latency SLA-related
violations for each running network slice, but also to determine
the main reasons that conduct to such SLA violations, and hence
studying how to anticipate them and use the results for the most
advantageous network slice re-configuration (i.e, the resource
allocated for the slice: RAM, CPU,..). Additionally, according
to the FL concept and the characteristics of the XAI algorithms,
the latter can be classified into 2 categories: (1) XAI models run
in the FL client side, which are PDP and Rulefit (because these
algorithms are related to the local dataset and the local model
(model fit)), and (2) XAI models run in the FL server side, which
are LIME and SHAP (because these algorithms are related to
the label prediction). However, for PDP, the FL clients will only
share the plots that show the percentage of feature impact on
the target label, in order to save their data privacy. Moreover,

Fig. 9: Partial Dependence Plots on EARCD dataset.

the reasons behind the usage of different XAI algorithms, that
present similar results, is about increasing confidence in the
outcomes of XAI algorithms.

V. CONCLUSION

In this paper, we designed a novel XAI-powered FL-enabled
framework that enables not only the prediction of the latency
KPI, but also the interpretation of critical predictions made by
the FL-based model. First, we built a new DNN model to predict
the KPI (latency) of network slices, in federated way. Then, we
developed multiple XAI models, i.e., RuleFit, LIME, SHAP,
and PDP, on top of our federated DNN architecture, to enable
more trust, credibility (in the local data, the local model and
the FL global model), transparency, and explainability of the
predictions made by our FL-based framework to different B5G
ML users, such as the slice provider. The in-depth experiments
results on Latency predictions, showed the efficiency and ex-
plainiblity of our proposed FL framework. This makes it a
promising FL framework and explainable Deep Learning FL
Framework for its users.

REFERENCES

[1] M. Isaksson et al, ”Secure Federated Learning in 5G Mobile Networks”,
IEEE GLOBECOM, 2020.

[2] Sabra Ben Saad et al, ”A Trust architecture for the SLA management in
5G networks”, IEEE ICC, 2021.

[3] Sabra Ben Saad et al, ”An end-to-end trusted architecture for network
slicing in 5G and beyond networks”, wiley journal, 2021.

[4] Christoph Molnar, ”Interpretable Machine Learning A Guide for Making
Black Box Models Explainable”, Chapter 6, 2022-03-29.

[5] Guan Wang, Digital and Smart Analytics, ”Interpret Federated Learning
with Shapley Values”, FML Workshop, Hong Kong, 2019.

[6] Jelena Fiosina, ”Explainable federated learning for taxi travel time predic-
tion”, VEHITS, 2021.

