
HAL Id: hal-04133821
https://hal.science/hal-04133821v1

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning for Service Migration: A Survey
Nassima Toumi, Miloud Bagaa, Adlen Ksentini

To cite this version:
Nassima Toumi, Miloud Bagaa, Adlen Ksentini. Machine Learning for Service Migration: A Sur-
vey. Communications Surveys and Tutorials, IEEE Communications Society, In press, pp.1-1.
�10.1109/COMST.2023.3273121�. �hal-04133821�

https://hal.science/hal-04133821v1
https://hal.archives-ouvertes.fr


Machine Learning for Service Migration: A Survey
Nassima Toumi12, Miloud Bagaa3 4, Adlen Ksentini1

1 EURECOM, Sophia-Antipolis, France
2 Department of Networks, TNO, The Hague, The Netherlands

3 Department of Electrical and Computer Engineering,
Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.

4 CSC-IT Center for Science Ltd. Espoo, Finland.
Email: nassima.toumi@tno.nl, miloud.bagaa@uqtr.ca, adlen.ksentini@eurecom.fr

Abstract—Future communication networks are envisioned to
satisfy increasingly granular and dynamic requirements to ac-
commodate the application and user demands. Indeed, novel
immersive and mission-critical services necessitate increased com-
puting and network resources, reduced communication latency,
and guaranteed reliability. Thus, efficient and adaptive resource
management schemes are required to provide and maintain
sufficient levels of Quality of Experience (QoE) during the
service life-cycle. Service migration is considered a key enabler
of dynamic service orchestration. Indeed, moving services on
demand is an efficient mechanism for user mobility support,
load balancing in case of fluctuations in service demands, and
hardware failure mitigation. However, service migration requires
planning, as multiple parameters must be optimized to reduce
service disruption to a minimum. Recent breakthroughs in
computational capabilities allowed the emergence of Machine
Learning as a tool for decision making that is expected to
enable seamless automation of network resource management
by predicting events and learning optimal decision policies. This
paper surveys contributions applying Machine Learning (ML)
methods to optimize service migration, providing a detailed
literature review on recent advances in the field and establishing
a classification of current research efforts with an analysis of their
strengths and limitations. Finally, the paper provides insights on
the main directions for future research.

I. INTRODUCTION

Network evolution towards 5G and beyond (B5G) tech-
nologies has been motivated by multiple high-demanding
applications such as autonomous driving, Augmented Reality
(AR), and high-resolution video streaming. Indeed, these ap-
plications generate multiplied traffic volumes and are charac-
terized by very stringent requirements for latency, throughput,
network availability, but also density with the required support
for increased numbers of connected users and devices, which
current network technologies are unable to sustain. Thus,
next-generation networks are expected to provide support
for heterogeneous applications with highly precise Service
Level Agreement (SLA) guarantees for latency and reliability,
such as immersive Tactile Internet, haptic and mission-critical
applications, while optimizing energy consumption and mini-
mizing the carbon footprint [1], [2]. Future networks are also
envisioned to achieve higher programmability by supporting
increasingly granular and dynamic network behavior cus-
tomization and attaining full automation and self-management
through network intelligence [3], [4].

To overcome the ultra-low latency requirement, Multi-
access Edge Computing (MEC) can be leveraged to deploy
services on edge clouds in the vicinity of users. Indeed, the
MEC concept allows computation and storage to be offloaded
to edge devices or clouds that are closer to the end-users, thus
decreasing service latency and improving the response time.
Moving services to the edge also reduces network congestion
and communication costs and accelerates content delivery
through caching popular content [5], [6]. Therefore, end-
users can attach to the closest edge cloud and access services
with an improved QoE. However, a number of users access
network services on their handheld mobile devices and can
change locations during service provisioning. This mobility
might increase the distance between them and their initial edge
cloud, which would require passing communications through
intermediary edge clouds to reach the service due to the limited
coverage of edge clouds. This might lead to increased service
latency and response time; even to service interruption.

To mitigate this issue and ensure service continuity, multiple
works have proposed to move services along with the users,
under different terms such as “Follow-Me Edge” (FME),
“Follow-Me Fog”, or “Companion Edge Computing” [7]–[10].
The main idea is to migrate services to the nearest available
edge or fog cloud, following the user’s mobility seamlessly
so that the end-user experiences minimal service disruption or
degradation.

Software migration is defined as the process of relocating a
virtual environment from one physical node to another by sus-
pending the running instance on the source node, copying the
disk, memory, and process states, and resuming the instance
on the destination node [11]. It differs from re-instantiation
in the sense that migration preserves session information for
stateful services instead of creating a new session on a different
service instance [12]. Besides mobility support, migration
helps maintain services in case of node or link failure and
prevents service degradation in case of network overload by
moving services to physical nodes with sufficient resources.

Given the strict requirements of new applications, the
migration process ought to be automated and optimized to
reduce the impact on QoE to a minimum. Multiple parameters
can be optimized during migration planning, such as the
timing of migration, destination node selection, and migration
strategy. Indeed, service degradation can be minimized if the



migration process is triggered proactively by predicting the
user’s mobility or the network load surges. Then, selecting
the destination node should take into account migration costs,
network bandwidth, and link latency. Finally, the migration
strategy should be chosen depending on SLA requirements
for service availability and multiple factors that affect the
migration process duration, such as the Virtual Machine (VM)
or container size, network bandwidth, or the probability of
unexpected events disrupting the migration process.

One promising method that can help optimize migration is
Machine Learning (ML), which has been successfully applied
to different problems in multiple areas in networking [13]–
[16], and increasingly complex network management problems
are being tackled thanks to Deep Learning (DL), a more ad-
vanced technique of ML that relies on Deep Neural Networks
(DNN) and removes the need for manual feature engineering
[17]. More recently, Reinforcement Learning (RL), another
branch of ML, has gained momentum for its potential to auto-
mate network management. Indeed, it allows an agent to learn
policies from previous experience and continuously improve
decision making through feedback from the environment [18].

The main advantage of these AI-based methods compared to
conventional approaches is the capability of deriving patterns
and policies from datasets of input and output examples
or from past experiences, and the ability to provide results
quickly regardless of the size of the solution space. Indeed, op-
timization using classic algorithmic methods and mathematical
models either require detailed knowledge of the problem and
its dynamics to determine the optimal solution (which is not
always possible for complex problems) or rely on exploration
by evaluating all or a significant part of the solution space. For
the latter, the computational solving time and cost can increase
exponentially as the problem scales to bigger instances, which
is not convenient for runtime use. Besides, AI techniques can
dynamically adapt to changes in the environment, as opposed
to fixed rules and static hard-coded algorithms and models.
Relying on ML/RL methods allows full automation of the
Life-Cycle Management (LCM) of services, thus eliminating
the need for human intervention and making autonomous
Zero-touch network and Service Management (ZSM) a re-
ality [19], [20]. In this vein, service migration can benefit
from ML/RL in multiple ways. For instance, using network
analytics, ML can be leveraged to predict events that are
likely to cause service disruptions, such as user mobility or
network overload. This early prediction allows for preventive
measures to be taken; in this case, to trigger migration in
advance to minimize service disruptions experienced by the
users. Furthermore, ML/RL accelerate decision-making when
selecting the destination node and network path and reduce the
migration time by choosing the appropriate migration scheme.
To this end, a model can be trained to learn an efficient policy
and output qualitative solutions in near real-time.

A. Related Surveys and Motivation

Table I summarizes related surveys in the literature. Pre-
vious works have studied related topics such as live VM or

container migration or ML-based service orchestration but in
a separate manner. Most live migration surveys focus on the
data transmission phase of the process while ignoring the
planning phase [11], [21]–[24], which is essential for opti-
mizing multiple aspects of migration to reduce the impact on
QoE. Oleghe [25] provides a review of optimization schemes
for the placement and scheduling of containers in a MEC
environment but focuses on solutions based on traditional
optimization methods such as multidimensional knapsack,
Markov Decision Processes (MDP), or exact and heuristic
algorithms. Similarly, Wang et al. [26] discuss optimization
strategies for service migration in MEC and identify AI-based
strategies as a promising tool for making efficient decisions in
future research works. Rejiba et al. [27] focus on mobility-
triggered migration, and classify contributions in terms of
optimization objectives such as time, cost, and success rate, but
only a few ML-based solutions are mentioned, in a succinct
manner. Zolfaghari et al. [28] and Dias et al. [29] provide
systematic reviews on contributions to the VM consolidation
process, which includes migration, and multiple works using
ML techniques are mentioned in the latter. However, VM
consolidation is only one of many use cases for service
migration, and most of the included ML-based contributions
focused on load prediction to trigger the migration process
proactively. Furthermore, those surveys are limited to the
trigger and placement phases, and do not include the migration
strategy selection process which consists in determining the
appropriate method for data transmission. Hence, this process
can also be optimized using ML to minimize service interrup-
tion time. On the other hand, multiple surveys have discussed
the opportunities and use cases of applying ML-based methods
such as Deep Learning or Federated Learning (FL) for network
management and resource provisioning in Cloud Computing
[14], [17], [20], [30]–[35], or with a focus on MEC [36]–[38].
However, migration-related contributions are ignored or briefly
mentioned without deep analysis. Zhong et al. [30] perform
a comparative analysis of ML-based container orchestration
approaches for resource provisioning. Khan et al. [31] review
ML-centric resource management approaches and identify
multiple factors that can affect migration time, but without
going into details on the subject, by mainly referring to works
that use ML for prediction to reduce migration time. However,
ML can be used to optimize migration in multiple other
ways, such as placement or selecting the appropriate migration
scheme. Similarly, Masdari et al. [39] present a survey of
contributions using forecasting for predictive VM migration
in Cloud Computing, where classification is provided in terms
of prediction schemes.

To the best of the author’s knowledge, the current survey
is the first contribution that studies the application of ML-
based methods to service migration optimization for all phases
of the planning process independently from the virtualization
technology. In contrast with previous work, this work covers
service migration planning in both Edge and Cloud Computing
contexts, which can be triggered by user mobility, workload, or
failure. Additionally, more complex use cases where multiple



instances are migrated in parallel are covered. Overall, the
survey includes a taxonomy of works on all phases of service
migration planning, namely, reactive and proactive migration
trigger, placement, but also data transfer strategy selection.

B. Contributions and Paper Organization

This paper covers background on related technologies and
the fundamentals of service migration and ML, and provides
an exhaustive overview of the current research on the topic.
The main contributions of this work are summarized as
follows:

• The use of ML for service migration is motivated by
describing multiple use case scenarios and applications.

• The main enabling technologies are identified and their
impact on service migration is discussed.

• A taxonomy of the works of interest is provided and
contributions are categorized into the different phases of
the optimization process of service migration, with an
analysis of their contributions and shortcomings.

• Insights are provided on challenges and open research
issues based on the identified limitations of current works.

For the reader’s convenience, the main abbreviations used in
this paper are listed in Table II, and the paper’s structure is
shown in Figure 1, where the background knowledge sections
are colored in blue, and the taxonomy sections are colored
in red. The remainder of this paper is organized as follows.
Section II provides an overview of the technological ecosystem
of migration and its different enablers together with a set of
use case examples. Section III details technical aspects of the
migration process and Section IV provides a primer on ML and
RL techniques. Sections V to VII review relevant contributions
to migration optimization in terms of reactive and proactive
triggers, service placement, and migration scheme selection,
respectively. Section VIII discusses the open issues and future
research directions, and Section IX concludes the paper.

II. ENABLERS AND USE CASES

A. Enablers and Technological Ecosystem

This section provides a background on the enabling and
related technologies for migration and discusses their effect
on the process.

1) Network Function Virtualization: Network Function Vir-
tualization (NFV) decouples network functions from propri-
etary dedicated hardware and allows the deployment of ser-
vices on general-purpose servers as VMs or containers. NFV
reduces capital and operational expenditures [40], facilitates
service management, and allows flexible and efficient resource
provisioning by dynamically scaling instances up and down
depending on the evolution of their resource consumption and
service demand [41]. Furthermore, virtualizing functions and
services facilitates their migration to a different physical node.
Two main technologies can be used for service virtualization:

a) Virtual Machines: are deployed on top of hypervisors,
with an Operating System (OS), kernel, and hardware-level
virtualization. This allows deployments of independent VMs
isolated from the host OS, thus making it possible to virtualize
different guest Operating Systems on top of the host OS.
However, due to the number of abstraction layers, hypervisor-
based virtualization creates a high overhead, affecting overall
performance.

b) Containers: Are a lightweight alternative to VMs,
where the abstraction is made at the OS level instead of
hardware virtualization for VMs. With containerization, the
OS kernel of the hosting machine is shared between multiple
isolated instances of user-space environments. This OS-level
virtualization produces a lower overhead and reduces image
size, making it faster to migrate containers compared to VMs
[42].

2) Software Defined Networking: SDN is a paradigm that
separates network intelligence from the forwarding compo-
nents. It introduces a layered architecture comprising three
separated planes: An application plane that formulates the
desired network behavior and sends it through a northbound
interface to a control plane where a logically centralized
controller disposes of a holistic view of the network and
translates the formulated behavior into a set of forwarding
rules. Finally, a forwarding layer composed of interconnected
network devices enforces the forwarding rules that are received
through a southbound interface. Centralizing intelligence at
the control plane reduces deployment costs and facilitates
network management. Indeed, since the data plane devices
only apply the forwarding rules, less intelligence is needed
in the networking equipment, and cheaper devices can be
used. Furthermore, the control plane can dynamically change
the network behavior by updating the forwarding rules on all
of the involved data plane devices in an automated manner,
thus making the network programmable [43]. This dynamic
management of network behavior facilitates service migration
by automatically redirecting network flows to the destination
node once the service instance has been resumed.

3) Microservices and Service Function Chaining: As vir-
tualization gained popularity, the concept of micro-services
emerged, which is the decomposition of services into multiple
small blocks that perform simple functions, this approach im-
proves services’ modularity and resilience, adds flexibility in
service management, and allows for function sharing between
services [44]. Decomposing services into a set of functions
creates the need for steering traffic between those functions in
a certain order so that services are delivered properly; this
process is referred to as Service Function Chaining (SFC)
[45]. Service migration in a SFC context ought to consider
additional aspects, which adds more complexity to the process.
Indeed, services contain multiple Service Functions (SFs),
where multiple instances of VMs and/or containers might need
to be migrated. Since the service relies on all of the different
functions, it cannot be resumed until the migration of all of
the functions has been completed. Therefore, those functions
should be migrated in a synchronized manner [46]. Moreover,



TABLE I: Comparison of Related Surveys and Studies

Reference Scope Migration
(Data Transfer) Other Planning ML Techniques

[11], [21]–[24] Live migration technique evaluation, and impact
analysis of different factors for VMs and/or containers ✓ X X

[25] Review of scheduling models for placement
and migration of containers ✓ ✓ X

[28], [29] Systematic review on VM consolidation X ✓ ✓

[26] Discussion of optimization strategies
for service migration in MEC ✓ ✓ X

[27] Classification of mobility-triggered migration
contributions in terms of optimization objectives ✓ ✓ X

[30] Comparative analysis of ML-based container
orchestration approaches for resource provisioning X X ✓

[14], [17], [20], [31]–[35] Overview of ML-based techniques
and their use for network resource management X X ✓

[36]–[38] Discussion of applications of DL
to network management in MEC X X ✓

[39] Classification of forecasting schemes
for predictive migration X ✓ ✓

Current Survey Survey of ML-based contributions
to migration planning ✓ ✓ ✓

Fig. 1: The Survey Structure

the migration process should consider the link mapping for
the new placements of the migrated instances and its effect on
the end-to-end latency of the service.

4) Edge Computing: Edge Computing aims to provide
storage and computing capabilities at the logical borders of the
network in the close vicinity of users. It is a key technology
for future communication networks [47] since it enables a
wide range of delay-sensitive applications [48] by reducing
the distance between services and the end-users, thus dimin-
ishing the end-to-end cost and latency of communications and
facilitating real-time processing. Besides, moving computation
closer to the edge reduces network load and avoids transferring
sensitive data. However, Edge nodes and links are resource-
constrained, which means that particular attention must be paid
to the amount of transferred data during the migration process
to reduce network load, and avoid performance degradation
[49]. Additionally, due to the time-sensitive nature of MEC
applications, the migration process needs to be completed in a
short time span. Two main edge-based concepts have emerged
in recent years:

• Multi-Access Edge Computing (MEC): Formerly
known as Mobile Edge Computing, MEC is a concept

introduced by the Industry Specification Group (ISG)
of the European Telecommunications Standards Institute
(ETSI) [50], which moves the storage and computing
capabilities to Edge devices in the access networks [51].
The initiative aims to provide a standardized reference
architecture for MEC and create an open environment to
facilitate MEC application development and integration.

• Fog Computing: Fog Computing was introduced as a
way to extend core cloud computing capabilities into the
edge, thus reducing the amount of data transmissions, and
computations performed at the core cloud. Fog devices
can be edge routers, switches, access points, computers,
or UE devices such as smartphones. However, unlike
MEC, fog nodes cannot operate independently from a
core cloud [52], [53].

To support Edge applications in 5G systems, 3GPP stan-
dards [54], [55] define an architectural framework and a set of
procedures that enable UEs to access Edge Application Servers
(EAS) that are managed by Edge Enabler Servers (EES).
In particular, the standards define the Application Context
Relocation (ACR) decision process, where user context is



TABLE II: List of Common Acronyms

Acronym Description
ACR Application Context Relocation
CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Network
DQN Deep Q-Networks
DRL Deep Reinforcement Learning

ETSI European Telecommunications
Standards Institute

GRU Gated Recurrent Unit
KPI Key Performance Indicator

LCM Life-Cycle Management
LR Linear Regression

LSTM Long-Short Term Memory
MANO Management and Orchestration
MDP Markov Decision Process
MEC Multi-access Edge Computing

ML/DL Machine Learning/Deep Learning
NFV Network Function Virtualization
NN Neural Network
PER Prioritized Experience Replay
PI Policy Iteration

QoE Quality of Experience
QoS Quality of Service
RL Reinforcement Learning

RNN Recurrent Neural Network
SDN Software Defined Networking
SFC Service Function Chaining
SLA Service Level Agreement
UE User Equipment

URLLC Ultra-Reliable Low
Latency Communications

VI Value Iteration
VM Virtual Machine
VNF Virtual Network Function

relocated (i.e. migrated) from one EAS to another following
detected or predicted UE mobility to ensure service continuity.
The target EAS for ACR is selected using (predicted) UE
position and specific application characteristics criteria, but
the details of context transfer between the source and target
EAS are left out of the scope of the standards.

5) Orchestration and Life-Cycle Management: Service or-
chestration provides a set of policies and procedures meant
to guarantee the service’s QoE and optimize the operator’s
objectives from the deployment of the service to its deletion.
It ensures the proper service creation, operation, and deletion
while satisfying the service KPIs by performing monitoring,
anomaly detection, and elasticity and fault management proce-
dures such as scaling or service migration to prevent or recover
from service disruptions [56]. For efficient service orchestra-
tion, the decision-making process of different LCM operations
needs to be optimized to determine the best course of action.
Decisions should be made quickly for a short response time.
Furthermore, orchestration policies should be dynamic to adapt
to changing service requirements and unexpected events in

real-time.
Although traditionally mathematical models and algorithms

are used for optimization problems (e.g., Integer Linear Pro-
gramming, different heuristics, or Game Theory), most of
these proposals fall short on scaling to bigger or more com-
plex problem instances, as the processing time exponentially
increases with the size of the solution space. On the other hand,
ML is gaining popularity as an efficient method to tackle more
complex problems and is being applied to multiple research
areas, including network and service management. Indeed,
ML is expected to play a crucial role in accomplishing the
objectives of B5G networks by enabling real-time decision-
making and adaptive Zero-touch Service Management [57],
[58]. In this vein, the 3GPP standards introduce the Network
Data Analytics Function (NWDAF) in the 5G core architecture
[59], which can be used to train ML models using data
collected from other components of the architecture, and
provide analytics. NWDAF predictions can then be used by
the 5G system to trigger and optimize operations such as ACR
for Edge applications [60]. Subsequently, as a part of the LCM
process of services, and as shown in the use case examples in
Section II-B, migration can also benefit from ML optimization.

B. Use Case Examples

To illustrate applications of ML for service migration,
multiple use case examples are described in the following.

1) Mobility in MEC: The example in Figure 2 depicts
a ML-enhanced Follow-Me Edge [61] system. End-users in
mobility are connected to Edge Clouds using handheld devices
and consuming services such as infotainment, high-definition
video streaming, or interactive applications like cloud gaming.
To reduce latency and transmission costs, these services are
hosted on the edge clouds closest to the users. Since the users
are mobile, they might move away from the Edge Clouds they
were initially attached to, which results in increased response
times, and service disruption. Therefore, the services must be
dynamically migrated to the nearest edge cloud at all times,
following the user’s mobility patterns.

However, the migration process consumes time, as data
needs to be transmitted to the destination edge cloud, im-
pacting the duration of service disruption for the user. This
disruption can be minimized by using ML to trigger the mi-
gration process proactively, relying on the historical positions
as well as velocity data to train a ML model that predicts
the user’s path, estimates the moment when migration will
be required, and the best target edge cloud node. Using that
information, migration can be triggered to the selected edge
node in the predicted trajectory early enough to reduce service
degradation time. Similarly, ML can be used for clustering by
identifying services that are simultaneously used by groups of
users and applying the same mobility patterns for migration.

2) Cloud-Edge offloading: Deploying services at the edge
reduces communication latency and cost and preserves the
confidentiality of sensitive data. However, edge servers dispose
of limited storage and computation capabilities and cannot host
compute-intensive applications. In contrast, cloud servers are



Fig. 2: Mobility Use Case in Multi-access Edge Computing

resource-sufficient, but placing services in the cloud increases
the end-to-end communication latency and cost. Thus, the best
choice for placing a service depends on application needs that
might vary in time. In consequence, an efficient Cloud-Edge
offloading scheme should adapt to changes in user application
needs in real-time by moving services to cloud servers when
the applications require more resources and to edge servers
when lower latency becomes a priority. However, service
migration has a cost and also causes service interruptions;
hence, ML could be used to predict the changes in user
demands in the short but also mid-term future. If spikes or dips
in resource demand are predicted to be very short, or if too
many fluctuations are predicted in a certain interval, it might be
worth evaluating whether the multiple successive migrations
would cause more disruptions than offloading the service for a
limited number of times. Based of those predictions, a decision
model can then be trained to schedule offloading operations
with the objective of minimizing impact on the service’s QoE
over time.

3) Load balancing: ML can also be used for load balancing
to optimize resource allocation by moving service instances
depending on service request evolution to avoid overloading
or underloading Edge Clouds. For example, ML can predict
surges in network traffic that can lead to service overload,
and if the current physical node does not dispose of sufficient
resources to scale the service up, the latter can be proactively
migrated to a different hosting node with enough resources to
host the scaled-up service. In contrast, ML can be used for
consolidation by predicting the reduction in resource usage.
Based on those predictions, the decision can be made to free
underused physical nodes by relocating services to physical
nodes hosting other services in a way that minimizes the
number of used servers and reduces energy consumption.

Fig. 3: Migration Process Steps

4) Fault tolerance: Industry 4.0 relies on Industrial IoT
(IIoT) to automate and optimize the operations of the future
smart factories by deploying IoT sensors to collect industrial
data in real time, and transmit it to geo-distributed MEC
nodes for analysis and decision-making [62]. However, factory
automation use cases require a high level of reliability [63],
which means that efficient mechanisms are needed to predict,
detect and mitigate node failures. Similar to the previous use
cases, ML can be used to anticipate failures by predicting
early signs ahead of time and proactively migrating services
from the potentially faulty node to a healthy one, which can
reduce service interruptions compared to reactive measures.
Furthermore, using past and present experience, RL models
can help select the physical node candidates that are currently
the most reliable for migrating services with strict require-
ments, such as Ultra-Reliable Low Latency Communications
(URLLC). RL models will also be able to dynamically adapt
to changes and events in the network by continuously updating
their decision policy, which is an advantage compared to static
failure mitigation policies.

III. MIGRATION PROCESS

As illustrated in Figure 3, the service migration process
comprises two separate phases. The first is a planning step,
where monitoring data is processed, and decisions are made



regarding the moment when migration should be triggered, the
destination node, the transfer link, and the migration scheme
that should be used. Optimizing this process minimizes
service disruption by forecasting migration triggers and
proactively starting the migration process before service
degradation is experienced, by selecting the best-suited node
and link mapping for the migrated service instance, and by
choosing the optimal migration strategy that minimizes QoE
degradation for the service [64].
The second phase applies previous decisions: when the
original instance is stopped, the state is effectively transferred
to the destination node, where the instance is resumed before
performing service traffic redirection. This phase is out of the
scope of this paper, as the surveyed contributions focus on
the decision process in migration.

A. Trigger

The migration trigger process determines the appropriate
moment when the service migration should start. Service
migration can be performed in a reactive way if triggered
manually or automatically after observing a degradation of
QoE, or proactively if this degradation is predicted in advance,
thus reducing or even preventing impact on QoE. Multiple
events and factors can trigger automated service migration
[65]–[67]:

• Mobility, when changes in the recorded positions of a
group of User Equipments (UE) of interest imply that a
significant portion of users of the service is moving away
from the service’s current placement nodes in a similar
mobility pattern.

• Resource availability, when the request load increases
significantly, and a scale-up of the service is required, but
the hosting nodes do not dispose of sufficient resources.
The monitored metrics, in that case, are the request load,
resource capacity, and the percentage of resource usage.

• Reliability, in case of a major service disruption caused
by hardware failure, or performance degradation observed
through service availability time, and application-specific
QoE KPIs.

• Security, if unusual system behavior indicates that the
hosting infrastructure has been compromised.

• Consolidation based on resource usage distribution, to
reduce power consumption by moving services from
under-loaded nodes.

B. Placement

During the placement process, the destination node for the
migrated instance is selected, and in the case of a SFC, the
inbound and outbound virtual links of the migrated instances
also need to be mapped again. This process is very similar to
classic node and link mapping, which has been extensively
explored in the literature [68], but as detailed in Section
III-D, multiple migration-specific optimization objectives and
constraints need to be taken into account additionally.

C. Migration Scheme Selection
Once the migration timing and target have been selected,

the VM/container files and current state need to be saved and
transmitted over the network to the destination node according
to a selected scheme. Then, the service is resumed, the user
traffic is redirected to the new instance, the original instance
is deleted, and the resources are freed on the source node.

Multiple migration techniques have been proposed for both
VMs and containers. Each method targets different metrics and
has its own advantages and drawbacks. Thus, the appropriate
technique depends on the service’s constraints and priorities,
as well as multiple factors that can affect migration, such as
the VM/container size, network bandwidth, or page dirtying
rate [22], [24], [69]. Furthermore, certain methods require
additional parameters to be optimized, for instance, the number
of iterations for the pre-copy live migration, as shown in the
following.

Service migration methods can be classified into two types:
stateful and stateless. Stateless migration concerns services
that have no running state and do not keep any session
information, meaning that services can be simply deployed
by starting new instances on the destination nodes. Stateful
migration, however, is more challenging, as it requires state
information to be preserved and transferred to the destination
node to resume the service. Most contributions in the literature
focus on stateful migration since stateless migration only
consists of stopping the instance at the source node and
restarting it from scratch at the destination node without
preserving the current running state. Therefore, the scope of
this survey is limited to stateful migration due to its complexity
and challenges.

Multiple strategies have been proposed for stateful migra-
tion as shown in Figure 4:

1) Cold migration: Where the original instance is
stopped/frozen, then its state is dumped and transferred over
the network, and the new instance is resumed on the desti-
nation node once the state has been completely transferred.
Using this approach, the service downtime is equal to the
total migration time, and the service is unreachable during
the whole migration process.

2) Live migration: Which aims to minimize downtime,
by keeping the instance running during most of the data
transmission process. Multiple methods can be used:

With the pre-copy method [70], the whole state is saved and
iteratively transferred. At each iteration, the memory pages
modified during the previous iteration (called dirty pages) are
copied to update the instance state. Once a predefined number
of iterations has been reached, the instance is stopped, and
the remaining dirty pages are transferred. However, a number
of memory pages might be transferred several times if they
are modified during multiple iterations, which increases the
amount of transferred data and the total migration time that
becomes non-deterministic. The pre-copy method is the most
commonly used live migration technique and is implemented
on most popular hypervisors such as VMware ESXi, Microsoft
Hyper-V, Xen, and KVM [71].



Fig. 4: Overview of the Different Migration Strategies

In contrast, the post-copy method [72] differentiates be-
tween execution state and memory pages by migrating them in
separate phases. The instance is first stopped at the beginning
of the process, and only the execution state is transferred.
The instance is then resumed, and the memory pages are
transferred only once, when required by the new instance
during its runtime, thus reducing data transmission load and
cost. However, service disruption might be caused by missing
pages during the instance execution, and resources at the
source node are not released when the new instance is resumed
due to the incomplete transmission process. In fact, the original
instance must be kept on the source node until all of the faulted
pages have been transferred, otherwise causing loss of data,
which means that resources are reserved both at the source
and destination nodes for a longer period.

The hybrid method aims to combine both previous methods
[73]. It first dumps and copies the execution and memory
state for a limited number of iterations to reduce the network
overhead compared to the pre-copy method. Then, the instance
is stopped, and the modified execution state is transferred to
the target node before resuming the instance. Then finally, the
faulted memory pages are transferred on demand. Compared
to the post-copy method, the number of faulty pages is sig-
nificantly reduced since most memory pages were transmitted
during the pre-dump phase, and only the dirtied pages require
transmission.

More recently, new contributions introduced another level
of granularity by proposing application-aware approaches that
consider application types and context. One proposal is to cat-
egorize transferred data according to their access frequencies,
and the least accessed data would then be migrated in priority,
as the probability of dirty pages and re-transmission is lower
[74]. Another proposed optimization approach is to identify the
core state needed by the application to initialize, and migrate it
in priority (or in advance when possible) to reduce downtime
[75]. Additionally, multiple SDN-based frameworks have also
been elaborated to coordinate application state transfer by

dynamically selecting the appropriate network paths for data
transfer flows [76], or through flow prioritization [77]. Other
frameworks aimed to reduce the volume of transferred data
using distributed databases [78], or using compact statelets
[79].

D. Optimization Objectives

Additional to the service’s KPIs that should be maintained
to avoid SLA violations, all of the steps in migration planning
should optimize metrics that are specific to the migration
process:

• Migration cost, which encompasses the cost of transmit-
ting data over the network links, the additional cost of
deploying services on the destination nodes and redirect-
ing traffic, and possible penalties from SLA violations
occurring during the migration process.

• Total migration time, which is the duration from the
moment when migration is initiated, to the moment
when the data has been completely transmitted to the
destination node, and deleted from the host node.

• Service downtime, the duration for which the service is
unreachable, which is critical for URLLC services.

• Network load, which is the amount of data transmitted
over the network during migration, which is an important
metric in bandwidth-constrained networks.

• Energy, which is the amount of energy that has been con-
sumed due to the migration process. Additional to data
transmission energy consumption, the original instance
is kept running on the source node until the instance at
the target node is ready, thus consuming energy at both
nodes.

IV. MACHINE LEARNING

Owing to substantial advancements in computing capabili-
ties and the growing volumes of generated and available data,
recent years have witnessed a growing interest in ML and
its applications in a wide range of research areas. Indeed,



(a) Feed-forward Neural Networks (b) Recurrent Neural networks (c) Convolutional Neural Network

Fig. 5: Relevant Neural Network Architectures

ML techniques give computing systems the ability to derive
policies, recognize patterns and extract features without being
explicitly programmed for those tasks; the learned knowledge
is then applied to process new data. ML techniques are
generally divided into three types: Supervised, Unsupervised,
and Reinforcement Learning.

A. Supervised and Unsupervised Learning

In Supervised Learning, pairs of input x and ground-truth
output y are provided to train the model, then, the model is
used to predict the value of y for a different set of inputs while
minimizing a loss function that penalizes prediction errors
[80]. In Supervised Learning, input data must be labelled,
which requires a pre-processing step to extract features, which
is generally performed manually, and requires a detailed
knowledge of data. The main applications for Supervised
Learning are classification, where one class is selected among
a finite set, and regression, where the output is a continuous
number. Algorithms from the regression class such as Linear
Regression (RL) are mainly used for the prediction and
recommendation systems. Conversely, Unsupervised Learning
takes unlabeled data as input, and infers data distributions by
detecting similarities between data points [81]. It is mainly
used for clustering, by grouping similar data points into a pre-
defined number of homogeneous classes, outlier detection to
isolate anomalies, and feature extraction to automate the pre-
processing step of Supervised Learning [82]. Both techniques
can be combined in Semi-Supervised Learning by using both
labeled and unlabeled data for training [83].

B. Reinforcement Learning

Reinforcement Learning is inspired by human learning,
where the agent learns behavior through its interactions with
the environment by evaluating selected actions according to
the observed outcomes.

Given an observation of the environment’s current state st,
the agent outputs an action at, then receives the new state of
the environment st+1, and a reward or penalty rt depending
on the outcome of that action. Thus, through a feedback loop
with the environment and by exploring the set of possible
actions, the agent learns a policy that aims to maximize its
cumulative reward by selecting the best-evaluated action for
each given state based on previous experience. The agent can
also dynamically respond to observed changes by continually

adjusting its policy. When the state space for a problem is
finite, the state action transitions can be modeled using a
MDP, and the optimal policy can be constructed through
basic Dynamic Programming (DP) methods such as Policy
Iteration (PI) or Value Iteration (VI) when the state transition
probabilities are known or using more sophisticated model-free
RL algorithms such as Q-learning, SARSA, or Monte-Carlo
where policies are improved and evaluated through direct
interactions with the environment [18].

C. Deep Learning

A more advanced field of ML uses Neural Networks (NN)
for training in more complex problems. NNs are composed
of multiple layers of neurons that are interconnected using
weighted links: The input layer receives input data, the output
layer returns the inference results, and intermediate layers
are called hidden layers. The number of hidden layers in a
NN defines its depth, and NNs that comprise more than one
hidden layer are called Deep Neural Networks (DNN). Each
link between neurons of successive layers is characterized by
weights a and b. During inference, for each value z received as
input by a neuron from the previous layer, the neuron applies
the weights a and b associated with that link (a ∗ z + b). The
weighted inputs for each neuron are then summed, and the
result is passed through a non-linear activation function such
as sigmoid, tanh, or ReLU before being transmitted to the
linked neurons in the following layer [17], [84]. Inference is
usually performed by forward propagation through the network
layers, and learning is performed by updating the link weights
using a backpropagation mechanism by calculating a loss
function derivative. Multiple methods for DRL can be found
in the literature (i.e., Feedforward, Recurrent, and Convolu-
tional NNs, Deep Belief Networks, Generative Adversarial
Networks, Deep RL). For the reader’s convenience, Table III
includes a taxonomy of the relevant ML methods.

1) Feed-forward Neural Networks: Or Multi-Layer Percep-
tron (MLP) is the default architecture for NNs, where the
output of each layer is directly fed to the next one, without
additional computation as shown in Figure 5a.

2) Recurrent Neural Networks (RNN): Introduce recursion
in the hidden layers by feeding the output of a layer back into
previous layers as shown in Figure 5b. RNNs are particularly
useful for processing sequences of data, such as text, speech,
or time series, but suffer from a vanishing gradient issue,



TABLE III: Deep Learning Taxonomy

DL Method Concept Main Algorithms Use Cases Use for service migration

Recurrent
NNs

The output of a layer can
be fed back to its input, or

the input of a previous layer
LSTM, GRU Data sequence processing,

time-series-based prediction.
Predicting when migration

will be needed.

Convolutional
NNs

Use convolutional and
pooling layers to reduce

input dimension and extract
features.

CNN
Problems with large

input dimensions such
as computer vision

Migration trigger prediction
and placement decision.

Deep
Reinforcement

Learning

Use feedback from the
environment to improve the
decision policy of the NNs.

DQN, DDPG,
A2C, A3C Learning decision policies Learning a policy for

migration target selection.

which can be solved using Long-Short Term Memory (LSTM)
[85] units composed of memory cells, input, output and forget
gates or Gated Recurrent Units (GRU) [86] composed of the
reset and update gates. These architectures allow the RNN to
efficiently learn long-term dependencies.

3) Convolutional Neural Networks (CNN): Illustrated in
Figure 5c, are generally used to process inputs with larger size
or dimensionality, such as images. Complexity in those cases
is reduced by adding two types of layers to the architecture:
convolutional layers that compress input size by extracting
features and pooling layers that combine the previous layer’s
input by computing the maximum or average value [87].

4) Deep Reinforcement Learning: Deep Reinforcement
Learning (DRL) methods rely on using DNNs for RL by
training them using feedback from the environment, where
the DNN gradually adjusts its weights depending on the
returned rewards and penalties [88]. Once the model has
been properly trained, it can provide near-optimal solutions
in a short time, which makes DRL particularly suitable for
real-time service orchestration and management [34]. Popular
DRL approaches include value-based methods such as Deep
Q-Networks (DQN) [89], and policy-based methods such as
Advantage Actor Critic (A2C) [90], Asynchronous Advantage
Actor Critic (A3C) [90], or Deep Deterministic Policy Gradi-
ent (DDPG) [91]. Figure 6 illustrates the difference between
value-based and policy-based Actor-Critic methods. Value-
based methods are mainly used for discreet action spaces,
where the Neural Network takes the state as input and outputs
the Q value, which corresponds to the expected cumulated
reward for each possible action. In comparison, the Actor-
Critic methods are employed for continuous action spaces and
use two separate neural networks: The actor network’s input
is the state, while the outputs are the exact action values. The
critic provides the Q value for that state and action pair. While
the actor network generates the actions that should be enforced
in the environment, the critic network’s role is to evaluate (i.e.
criticize) the actions by measuring the value function of those
actions, so that they can be adjusted accordingly.

V. MIGRATION TRIGGER

As discussed earlier, the migration trigger is the step in
the planning process to determine the appropriate moment
for starting service migration. Migration can be triggered

Fig. 6: Comparison between value-based and Actor-Critic
Deep Reinforcement Learning algorithms

reactively by taking into account the current service state or
proactively by forecasting different events that can potentially
provoke QoE degradation in services, such as user mobility,
workload peaks, or hardware failures. In this survey, prediction
contributions are classified in terms of look-ahead window size
as the following: short term for a few seconds up to less than
5 minutes, mid term for up to a couple of hours, and long
term for higher.



TABLE IV: Summary of mobility prediction references (Section VII.A)
Ref. Prediction target Method NN Architecture Dataset Results

Sh
or

t
te

rm

[92] Future app. specification
(includes user position)

Matrix
Completion [93] -

Combination of 3 datasets
for vehicular and pedestrian

mobility (2011,2017)
Estimation error of < 20%

[94] Edge cloud visit
probability of subscribers

Mixture Density
NN [95]

4 layers: 512, 128,
12, RMSProp

Geolife, pedestrian GPS
coordinates of 182 users
over 5 years (2007-2012)

Accuracy > 95 %

[96] Distribution of mobile users
and resource demands ConvLSTM

2 ConvLSTM layers
with 200 filters, each

followed by batch
normalization

GPS of 100 taxis in Rome
over one month (2014)

MSE less than 5%, ConvLSTM
outperforms LSTM with attention

[97] Future sequence of user
locations LSTM

Embedding and projection
layers: 1024 neurons.

Hidden layer: 256 neurons

Human mobility traces
from CRAWDAD NCSU

data set (2009)
Average latency reduced by 15%

[98] Density distribution of users LSTM and GRU 2,3, and 4 layers
of 50 neurons each

Vehicle trace generated
using SUMO LSTM accuracy around 85%

[99] Handover probabilities
to neighboring eNBs

GRU-based
RNN, CNN,

Markov Chain

6 layers: 2 GRU layers
of 20 neurons, 2 convolutional

with batch normalization,
2 dropout layers

300 vehicle traces
generated using SUMO Accuracy of over 95%

[100] User’s next cell CNN
2 convolution layers
with 128 filters then

2 fully connected

San Francisco taxi dataset
(GPS of 536 taxis over

30 days in 2009)
QoS violations reduced by 15%

Sh
or

t
an

d
m

id
-t

er
m [101] Single and group user

trajectory prediction LSTM
Set using Neural

Architecture Search
and Transfer Learning

GPS coordinates of 100
users over 2 years

(2009-2011)
Accuracy of 60-90%

[102]
Vehicular cloud availability

to user before migration
is required

LR combined
with NNs

One layer of
200 neurons

54000 samples of software-
generated vehicular traffic Precision of 93%

M
id

te
rm [103] Vehicular User

route trajectory SVM - Generated, observations from 5
users over 60 days

Very high accuracy
(almost 100%)

L
on

g
te

rm [104] User positions Factor Graph
Learning -

Dataset of locations and social
behaviour of a 100 users on a
social network app for 20 days

94% Precision,
7% more than SVM

A. Mobility Prediction

User mobility prediction has been extensively studied in
the literature due to mobile operators’ need to anticipate
future user movements and trigger handover or radio resource
reservation in a proactive manner [105]–[107]. As MEC
brought computation closer to users, and as shown in the
use case example in Section II-B1, service migration became
a requirement for user mobility support in next-generation
networks. On the other hand, proactively starting the migration
process can reduce QoE degradation but requires an accurate
prediction of the user’s future positions. Indeed, as shown
in the study by Gilly et al. [108], mobility prediction errors
have a linear effect on the average delay for MEC users post-
migration.

Thus, multiple works have included ML-based mobility pre-
diction into their migration schemes to improve performance,
as illustrated in Table IV.

In terms of input data used to train the algorithms, the
datasets differed depending on whether the objective was to
predict user [94], [96], [97], [101], [104] or vehicle mo-
bility [98]–[100], [102], [103], or both [92]. Contributions
that targeted vehicular mobility mainly relied on recorded
taxi traces from cities such as San Francisco and Rome,
or software-generated samples, while user mobility leveraged
various mobility traces spanning months to multiple years.
One observation is that apart from the New York taxi mobility
traces [109] used in [92], all of the other datasets comprise
less recent traces that have been collected between 2007 and
2014.
A few contributions combined mobility data with additional

information to improve prediction quality. Indeed, the solution
presented in [104] is able to achieve similar performance
with data from only 20 days by also considering the social
behaviour of users, which provides additional insights on their
future mobility. Similarly, Rago et al. [96] predict the distri-
bution of mobile users on available edge clouds, but also their
resource demands in terms of communication and computing.
The authors argue that this joint prediction allows the MEC
orchestrator to perform predictive resource allocation more
accurately by accounting for changes in resource demands.

Looking at the window size for prediction, it can be noticed
that most of the surveyed papers targeted a short term window
size by predicting the position of the user or vehicle in the next
few time steps, with fairly high accuracy values reaching 80
to over 95%. However, short term prediction, especially when
targeting the immediate next time-step, would not be sufficient
to perform migration early enough to prevent disruption of
services.

A majority of the surveyed contributions used NN and
RNN-based ML methods such as LSTM, GRU, and Convo-
lutional LSTM (ConvLSTM) [110] with a variety of Neural
Network architecture configurations in terms of depth and
number of neurons. Zhao et al. [101] set the hyper-parameters
of the LSTM prediction agent (i.e., NN depth, layer size,
connections) using the RL-based Neural Architecture Search
framework [111], and by using Transfer Learning (TL) from
previously tested parameter configurations as a teacher to
accelerate the learning process. Fattore et al. [98] also test
multiple values for the number of layers for LSTM and
GRU models, and conclude that for the specific input dataset



and prediction target, LSTM with 3 layers provided the
best results, while training significantly faster than the GRU
equivalent architecture (20 to 120% depending on depth).

A few papers combined mobility prediction with migration
target selection, by using the future position of users to deter-
mine the closest edge clouds and select the most appropriate
one for migration. To cope with cases where the predicted
positions are not accurate, Dalgkitsis et al. [100] introduce a
confidence level metric for the predicted next edge clouds,
depending on which the service instance is either directly
migrated to only one edge cloud, or duplicated and placed
on multiple edge clouds; then only one instance is kept post-
handover. In the same vein, Labriji et al. [99] predict handover
probabilities to neighboring eNBs that are assumed to be co-
located with MEC Edge platforms hosting services, which
means that the migration destination can be inferred from
the obtained predictions. At each handover event, multiple
strategies are used for service migration: (1) full replication,
where the VM is migrated to all of the neighboring MEC
nodes, (2) a single replication, where the target is the one with
the highest handover probability or (3) a proposed strategy that
optimizes the number of replications.

On the other hand, longer term predictions are more chal-
lenging compared to short term but allow migration planning
ahead of time, as well as migration scheduling optimization.
By forecasting a bigger part of the user or vehicle’s trajectory,
it may be possible to select more optimal targets that the user
can attach to for a longer period instead of only migrating
to the cloud immediately next to the source. In the long run,
such strategies would help reduce the number of migrations
and thus minimize the impact on QoS.

Kuruvatti et al. [103] used Support Vector Machines (SVM)
to predict mid-term vehicular routes, which is not as granular
as GPS positions, but considering that road maps are known,
it can still be sufficient to foresee whether or not the vehicle
is expected to leave the coverage area of its current serving
edge cloud. However, the dataset used to train the SVM model
was comprised of observations of only 5 users, which is not
sufficiently representative. As illustrated in Figure 7, Wu et al.
[104] combine mobility information and social data to forecast
future positions for service migration in MEC using a Fac-
tor Graph Learning coupled with selective feature extraction
using the ReliefF [112] algorithm to reduce complexity. As
mentioned earlier, by correlating mobility and social data, the
proposed solution is able to achieve performance for long term
prediction that is similar to those obtained by other solutions
for the short term, with a significantly smaller training dataset.

B. Workload Forecasting

Effective workload forecasting allows the early detection of
future over-loaded hosts that might not be able to support VM
scaling, or under-loaded hosts, in which case a consolidation
process would allow for more energy-efficient service place-
ment.

The work conducted by Manzano et al. [115] proposes a
methodology for evaluating the impact of ML-based overload

Fig. 7: Relevant feature extraction and social data correlation
for user position prediction in [104]

prediction methods on VM migration performance. Multi-
ple methods based on Linear Regression, Neural Networks,
LSTM, Simple Moving Average (SMA) and SVM algorithms
are evaluated using performance metrics for migration such
as energy consumption, SLA violations, and performance
degradation. The results show the importance of accurate
workload prediction for increased performance in the VM
migration process. The contributions that used ML to perform
workload forecasting for service migration are listed in Table
V.

The input datasets used to train the prediction models
are mainly based on real-world traces. In particular, many
contributions used datasets pulled from the CoMon monitoring
system [136], which provides realtime monitoring data from
the PlanetLab platform, a real-world network that comprises
over 1000 nodes spanning over 40 countries. However, the
CoMon project is not active anymore, an interesting alternative
would be the Measurement Lab (M-Lab) project [137], which
is a similar open distributed server platform that provides
detailed measurement data. A few works also used measure-
ments from large clusters made available by companies such
as Google [128], [130], Hadoop [126], and Ali-Baba [117], or
from operator backbone links [120], [132], [133]. A minority
generated synthetic samples from simulations or from existing
signals.

It can also be noticed that different from mobility prediction
that used traces collected over multiple years, workload pre-
diction uses input traces that are much smaller. Indeed, traffic
loads usually have a cyclic nature, where service demands
fluctuate depending on the time of the day and also differ
between weekdays and weekends.

The main prediction targets are future CPU usage and traffic
load, with the exception of [117], [118], and [130] that also
considered memory and bandwidth usage.

Similar to mobility prediction, workload forecasting con-
tributions also mainly focus on the short term time window.
Among those short term contributions, RNN-based methods
are used the most, with different variants and optimizations.
In [129], different LSTM variants were tested (LSTM, bi-
LSTM, bi-LSTM+, CAT-LSTM) with and without attention,
with similar results for all configurations. Duggan et al. [131]
analyze the maximum number of time-steps for which the



TABLE V: Summary of workload forecasting references(Section VII.B)
Ref. Prediction target Method NN Architecture Dataset Results

Sh
or

t
te

rm
[113] VM CPU usage LR - 5 days from Planetlab

(On-demand) 2% less SLA violations than static rule

[114] VM CPU load LR with error
estimation - 3 days from PlanetLab

(On-demand) SLA violations reduced to < 1%

[115] CPU utilization LR, NNs, LSTM,SVM
Simple Moving Average

3 layers of
100 neurons PlanetLab (On-demand) SMA (non-trainable) and

LSTM had the best performance

[116] Future host load Binary decision tree classifier - 3 days from PlanetLab
(On-demand) + random Similar to [114]

[117]
Host usage for
CPU, memory,

bandwidth
Hybrid kernel based SVR -

Ali-Baba data set (1300
machines during 12h)

(2017)
Mean Absolute Percentage Error < 1%

[118]
SFC requirements
in CPU, memory,

bandwidth
Deep Belief Networks [119]

5 layers:
60-128-32-16-6

neurons

10k generated samples
(superposition of sinusoidal

and cosine signals)
RMSE < 0.16

[120] Traffic load
fluctuation

Gaussian Process
Regression [121] and change

point detection [122]
-

Two 48h-long traces from
internet backbone link

(2018,2019)
Average prediction error of 0.13

[123] Future CPU
usage New Linear Regression - 4 days of PlanetLab

(on-demand)
50x less energy and SLA violations

than threshold

[124] Resource usage
patterns

Linear Regression, MLP,
SVR, Decision Tree Regression,

Boosted Decision Tree Regression
2 layers 5 days of PlanetLab

(on-demand) MLP had the lowest MSE (< 2%)

[125] Location-aware
workload Multivariate LSTM One layer of

50 neurons

San Francisco and Rome
taxi traces (35 days)

(2008,2014)

Accuracy improvement of > 40%
compared to location-unaware ARIMA

[126] Node workload Auto-regressive Modeling,
SVR, NN, LWR

One layer of
10 neurons

Google Cluster trace,
OLTP, Hadoop

(2008,2011,2012)

LWR MSE is less than 0.3,
NN performed the worst

[127] CPU utilization RNN with PSO,DE, CMA-ES One layer of
3 neurons

8 days of PlanetLab
(on-demand)

MSE of 4% for 1 step ahead, 9% for 4
(PSO,DE, CMA-ES more accurate

than backpropagation)

[128] CPU, memory,
disk usage WMA, ESA, HWM, AR, NN One layer of

3 neurons Google workload (2012) Reduced energy consumption,
number of migrations

[129] CPU Usage LSTM, bi-LSTM,
bi-LSTM+, CAT-LSTM 6 LSTM layers 12h of data generated

from deployed SFCs
RMSE reduced from 29 in simple
historical sequence to 7 with SFC

Sh
or

t,
m

id
te

rm [130] Resource usage Multiple Linear Regression -
24h from Google Cluster
dataset (12k machines)

(2016)

Accuracy of 99% for very short
term, 95% for short term,

90-93% for mid-term

[131] Host CPU
consumption RNN One layer of

3 neurons
10 days of PlanetLab

(on-demand) MSE < 0.05 for up to 15 minutes

Sh
or

t,
m

id
,

lo
ng

te
rm

[132],
[133]

Future host
capacity

DNN composed of 3D-CNNs
and fully connected layers

3 layers:
3×3×3 kernel,
6×6×6 kernel,

dropout

2 months of measurement
from a major operator in a
large metropolitan region

<1% of un-serviced demand
for all time windows

[134],
[135] Traffic volume

Deep Spatio-Temporal NN
(Fusing ConvLSTMs
and 3D-ConvNets)

Fusion of 3
ConvNet layers
and ConvLSTM

twice

7 week data trace
from the city of

Milan (2015)

Up to 35 % less error than ARIMA
for mid and long term. In

short term, ARIMA performed
equally, sometimes better

prediction accuracy is acceptable. The authors train an RNN
using the Back-Propagation-Through-Time (BPTT) algorithm
instead of the vanilla backpropagation and observe that the
model can accurately predict CPU consumption 15 minutes
into the future. To maximize prediction accuracy, Mason et
al. [127] use RNNs to predict host CPU consumption where
RNN weights are determined using swarm and evolutionary
optimization algorithms such as Particle Swarm Optimization
(PSO) [138], Differential Evolution (DE) [139] and Covari-
ance Matrix Adaptation Evolutionary Strategy (CMA-ES)
[140].

On the other hand, and despite their simplicity, statistical
and regression-based methods such as Simple Moving Av-
erage, Autoregressive Integrated Moving Average (ARIMA),
simple/multiple Linear Regression, Support Vector Regression
(SVR), and Locally weighted linear regression (LWR) (which
don’t require an intensive training phase) achieve similar,
sometimes better performances than more elaborate DL meth-
ods such as NNs and LSTM for the short term time window.
One exception is the work done in [125] where location-
aware Multivariate LSTM performs better than location-

unaware ARIMA. However, NN performance is bound to
the specific architecture/hyperparameter configuration that has
been implemented, as well as the input dataset. Thus this
conclusion cannot be generalized. Nevertheless, Regression-
based methods require less computation and demonstrate a
good performance overall, which makes them an interesting
alternative to NN-based models for short term prediction.

In terms of NN architecture, it can be seen that generally,
RNNs with one hidden layer, sometimes with as little as
3 neurons, can have a similar performance as a NN of 3
layers with 100 neurons each on the same dataset (PlanetLab).
It is, therefore, not necessary to use deeper neural network
architectures to obtain a good performance in short term load
prediction.

In contrast, mid and long term predictions have not been
as extensively explored as short term. Evaluation results in
[130] show that Multiple LR performs well for mid-term with
an accuracy of 90-93%, while the authors of [134], [135]
demonstrate that Regression methods are not efficient for long
term prediction, with a mean error multiplied by a factor
of 4 to 5. Instead, the proposed ConvLSTM-based solution



achieves higher performance with 35% less error. Similarly,
the solution in [132], [133] leverages a Deep Spatio-Temporal
Neural network (D-STN) [135], which is composed of an
encoder with a stack of 3D-CNNs and ConvLSTMs to forecast
future host capacity, with a result of under 1% of un-serviced
demands for all time windows.
Although NN-based prediction methods are more complex
than Linear Regression, they prove more efficient in medium
and long-term prediction, which allows better-informed deci-
sions in the long run.

Another observation is that adding context information and
correlating data can improve overall performance. Kim et al.
[129] used dependencies between VNFs in SFCs to predict
future CPU usage, which achieves a significant error reduction
compared to using a simple historical data sequence. Nguyen
et al. [125] also aimed to predict location-aware workload
by using mobility data to predict future workload based on
the workload of nearby edge data-centers, which improves
accuracy. Bega et al. [133] provide a context-aware prediction
solution by considering traffic from different types of services
(i.e. Youtube, Snapchat, Facebook).

C. Failure Prediction

In high-availability systems, anomaly detection and predic-
tion is a critical process for failure mitigation and avoidance.
ML techniques and particularly DL methods have proven their
efficiency in addressing this challenge [141], and as illustrated
in Table VI, multiple works perform failure detection either
from workload metrics or from log messages to proactively
trigger migration from the future faulty nodes to healthier
ones. Failure prediction is different from mobility and load
prediction in the sense that the latter forecasts continuous
values, and performances are evaluated by calculating the
error. In contrast, failure prediction output is a discrete value
(i.e., whether or not there would be a failure during the targeted
look-ahead window). In that case, it is important to reduce
false negatives (measured using recall) where an upcoming
failure is not detected, but also false positives (measured
using accuracy/precision) that lead to unnecessary migrations.
Thus, to have an accurate performance evaluation of failure
prediction, it is important to measure precision together with
recall or calculate the F1 score that uses both.

Another difference is the availability of training datasets.
Indeed, it is difficult to obtain balanced datasets because
failures are fairly rare due to the high availability requirements
in computer systems. Furthermore, as pointed out by [142],
there is a lack of best practices for logging failures and creating
datasets.

Two types of datasets were used: performance metric traces
[143]–[147], and log messages [148]–[151].
In the first category, multiple performance metrics such as
CPU and memory usage, disk-level sensor data, or system-
level signals are examined to detect performance degradation
or other early signs of failure to determine the nodes that are
most likely to fail in the future. Li et al. [146] use monitoring
data from Ali-Baba data-centers to predict failures in the

short, mid, and long term. The proposed solution includes
an AIOps pipeline which comprises a pre-processing phase
of training data where feature engineering extracts relevant
features, a ML model training phase that also includes hyper-
parameter tuning, and an evaluation phase. Lin et al. [147]
perform training in two phases: in the first phase, a Bi-
LSTM model is trained using temporal data, and a second
Random Forest model is trained using spatial data to detect
node dependencies. In the second phase, a ranking model is
trained using the intermediate results from the previous models
to produce a ranking of nodes that are the most likely to
experience failures. The obtained results surpass those of a
vanilla LSTM. Haghshenas et al. [143] use a Multi-Agent
ML-Based approach by training Q-learning on each server.
The learned strategy aims to minimize faults but also energy
consumption through consolidation.

Fewer works used log messages, which require text pro-
cessing to analyze application logs and detect patterns leading
to failure events. Das et al. [150] leverage the Time-Based
Phrases extraction mechanism to analyze noisy system log
messages and identify successive and correlated time-based
events that indicate a likely node failure in supercomputers,
and thus predict node shutdowns ahead of time and improve
resilience. The authors also observe and discuss the effects
of different types of node failures on system performance.
Nam et al. [151] use a CNN model to predict future VM
failures by analyzing log messages and detecting early fault
messages after a pre-processing phase using log-based word
embedding and pre-failure tagging techniques. The model then
outputs a probability of failure after a certain time for each
VM. Although accuracy was satisfactory for the CNN model,
the F1 score was at 67% at best, which means that many failure
events were not correctly predicted due to false negatives.
In contrast, time-based phrase extraction and LSTM-based
models showcased high values for both accuracy and recall,
even for longer term prediction. However, it is not possible to
derive conclusions due to the small number of contributions
and the difference in datasets used as input.

D. Reactive Migration Trigger

In contrast with the previous subsections that mentioned
prediction contributions for proactive migration, a smaller
set of works tackled reactive migration by selecting the ap-
propriate timing to trigger the process. Almost all of them
employed RL methods to learn the appropriate strategy using
data generated randomly [152], from experiments [71], [153],
or using different mathematical models [154]–[156].

Elsaid et al. [71], [153] use Regression to predict live
migration time, power consumption, and the network overhead
of migrating a VM to a certain node depending on the VM
size and workload. These predicted metrics are then used to
determine the appropriate time to trigger the migration process
for one or multiple VMs in parallel, which reduced migration
time by up to 50%.

In [157], the authors propose a migration decision algorithm
that determines whether to trigger the migration or not for



TABLE VI: Summary of failure detection references (Section VII.C)

Ref. Method NN Architecture Prediction input Results
Sh

or
t

te
rm

[143] Multi-agent
Q-learning -

Host performance metrics,
5 days from PlanetLab

(On demand)
SLA violations reduced to 12%

[145]
FastTree,

RandomForest,
SVM

-
Disk and system-level

data, 1 month real-world data
from a large-scale cloud (2017)

FastTree has 20% increased
true positive rate compared

to SVM, RandomForest

[144] LSTM, Bi-LSTM 2 layers of 100
Cluster performance metrics,

Bitbrains dataset (2 months of
CPU and memory usage in 2014)

Accuracy of 95% for CPU,
97% for memory

[142] Chained NNs 6 NNs with a 52
neuron hidden layer

MOGON HPC failure
traces (2019)

Prediction of 73.02 % of
failure events, and almost

no false positive

[147]
Bi-LSTM,

Random Forest,
Ranking Model

One dense layer
of 128 neurons after

input layer of bi-LSTMs

Fault data, 3 datasets of
1 month (2017)

92% Precision and F1
score of 75%, better than

LSTM (72, 60)

[148] Two-phase LSTM 2 hidden layers
Cray: Logs of 4 systems over

8-12 months, 1800 to 6500
nodes (2017)

84% precision, 87% recall,
85% F1 score

[151] CNN Convolution, max pool,
dropout

Log data collected from
Openstack testbed
(600 data points)

Accuracy 95%, F1 score was
67% at best

M
id

,l
on

g
te

rm

[150] Time-Based
Phrases extraction -

Cray: Job logs from 3
systems over 8-18 months
(total of 13k nodes) (2017)

> 83% recall and
> 98% precision

[146] LSTM, MING,
Random Forest

Set using random search
for each scenario

Monitoring data from
Ali-Baba DC over 6 months Area Under the Curve 0.9

each time-step in a mobility in MEC scenario, which allows
a reward improvement of up to 75% compared to a static
decision policy. In addition, the authors also study the impact
of migration costs and resource demands on the decision
strategy. Duggan et al. [154] investigate the network resource
aspect of migration, and propose a solution to schedule VM
migrations during peak loads. In this context, a Q-Learning
agent is trained to determine the migration timing (migrate or
delay) for a group of VMs from over-utilized hosts depending
on bandwidth availability to transfer migration data.
Zangiabady et al. [155] propose a self-adaptive service migra-
tion mechanism where the decision is made to either trigger
service migration or not with the goal of minimizing the
number of migrations while increasing the number of accepted
service requests.

Peng et al. [158] propose a DRL-based decision strat-
egy learning method for service migration in MEC-enabled
vehicular networks. The model is trained using DQN to
decide whether a service should be migrated following the
user’s mobility, while taking into account the cost and QoS
requirements. The obtained decision strategy allows further
QoS improvements compared to the VI solution in [61].
Furthermore, the work studies the effect of vehicle’s velocity
and the memory dirty rate on the service’s performance
and the observed QoS metrics. Likewise, Park et al. [156]
formalize service migration in MEC by considering multiple
metrics such as migration cost, transaction cost, or energy
consumption. In the proposed solution, a DQN model that
includes convolutional layers (CNN) is trained using different
layer numbers (1-3) to determine whether to migrate a service
or not, depending on the distance between a user and the MEC

server where the service is currently deployed. Results showed
that little reward improvement was obtained (up to 3%) with
no impact from the number of layers. Lan et al. [152] study
reactive and proactive migration schemes with the goal of
minimizing latency and resource consumption by training a
DRL model using DDPG to select either a proactive or reactive
migration decision and its resource allocation. The model’s
performance is evaluated using multiple learning rate values.

Nonetheless, reactive migration timing takes away the ad-
vantage given by prediction, which allows scheduling and
starting the migration process in advance to reduce the impact
on services.

E. Discussion

This section described the contributions that employed ML
to predict in advance the events that trigger migration, as
well as reactive approaches. The mobility prediction literature
mainly focused on predicting future user positions, trajec-
tories, or distributions to proactively migrate services in a
MEC context. In workload forecasting, the surveyed works
predicted the future request load or VM or host resource
usage (mainly focusing on CPU) as the metrics that reflect
the future workload status. Those predicted values are used
to detect over-loaded or under-loaded nodes and perform
proactive migration with the objective of performing dynamic
resource provisioning and consolidation. In failure prediction,
the studied contributions aimed to improve service availability
by predicting future node failures using log messages or
performance metrics. It could be seen that there are relatively
few contributions that considered failure prediction. However,
service failure prevention is crucial to ensure high reliability



TABLE VII: Summary of reactive migration trigger references(Section VII.D)

Ref. Input Data Method NN Architecture Objective Main findings
L

oa
d M

L [153], [71] From experiment Regression - Time, network
congestion

Timing optimization reduced
migration time by up to 50%

R
L

[154] Generated,
triangular wave Q-Learning - Bandwidth usage Migration time reduced by 27%

[155] Generated,
Poisson distribution Q-Learning - Cost, request

acceptance Profit increase of up to 40%

M
ob

ili
ty R
L

[157] Generated Q-Learning - Cost, QoS Total reward improvement of up
to 75% compared to static policy

[159], [61] Generated VI - Cost, QoS Service disruption time 50-500ms
depending on distance to target

D
R

L [158] Not specified DQN Not specified Cost, QoS Improved QoS compared to [61]

[156] Random walk DQN, CNN 1,2,3 layers Cost, energy Layer number had no impact,
reward improvement of up to 3%

[152] Random DDPG One layer Latency, resource
usage, cost Cost reduced by > 50%

Fig. 8: Classification of the surveyed prediction works in terms
of time window and used methods

for mission-critical applications such as V2X or Industry
4.0 services, as service failures have important repercussions.
Failure prediction is especially important since failure-related
service migration is mainly performed proactively. Indeed,
the source node might not be operational/reachable once the
hardware failure has occurred. Additionally, it was noted that
balanced failure log datasets are lacking, which makes failure
prediction more difficult. Thus, more work is needed in that
specific direction.

Moreover, for all prediction targets, most contributions
relied on RNNs, and LSTM in particular, followed by different
Regression methods and NNs with satisfactory results. It could
be seen that Regression methods exhibited similar if not
improved performances compared to RNN when predicting
future short term loads, with reduced complexity. However,
Regression performance dropped when moving to longer look-
ahead windows, where LSTM showed robust results.

Furthermore, it was shown that deeper Neural Networks are
not always more effective for short term load prediction, as
models with only one hidden layer were able to achieve very

high precision values. In contrast, for longer term prediction,
deeper architectures were used. Nonetheless, the optimal set
of hyper-parameter is different for each problem and dataset,
and multiple combinations should be tested during training.

More recent models such as the attention-based Transformer
[160] might also be worth exploring. Indeed, although it has
been mainly used for Natural Language Processing (NLP) with
popular implementations such as the BERT [161] and GPT-
3 [162] models, recent applications to time-series forecasting
have shown promising results [163], [164]. This method would
be particularly interesting for failure prediction if applied to
analyzing textual log messages.

In terms of input data, it could be seen that many real-
world datasets and platforms are made available for workload
metrics, while failure logs and recent pedestrian and vehicular
mobility traces are harder to find. Another key takeaway is
that in many cases of mobility and load prediction, correlating
input data with additional information such as application
context, VNF dependencies, or user behaviour improved pre-
diction results, even when using smaller input datasets. This
observation concurs with the recent trend of Data-Centric AI,
which advocates using smaller sets of meaningful, higher-
quality data points for training AI models instead of larger
ones [165], [166] for improved efficiency.

Finally, as illustrated in Figure 8, the majority of contri-
butions for all three prediction types targeted short term time
windows, which is less challenging than longer term predic-
tions. However, the latter are important to allow migration
scheduling in advance for a minimal impact on service quality.
Therefore, future works should explore longer prediction time
windows.

VI. PLACEMENT

Once the need for migration has been established, the next
step is to select the target host for the migration process
that optimizes the performance metrics. In the following, the
contributions related to placement are classified into multiple
categories depending on context: Single instance placement
contributions are described in Section VI-A, SFC and Network
Slicing works are discussed in Section VI-B, and solutions



where both placement and timing are selected can be found
in Section VI-C. For each category, the surveyed papers are
further classified according to the migration trigger (load or
mobility), and per ML method. Finally, Section VI-D provides
an analysis and discussion of the featured contributions.

A. Single instance placement

Table VIII shows contributions that performed migration
target selection for single service instances. Please note that
for the sake of brevity, unless specified otherwise, the main
findings for each paper are expressed in terms of improvements
in comparison with static policies. It can be noticed that many
contributions compared their proposed solutions with least-
performing static policies such as always migrate, migrate to
a random target, or no migration. However, this comparison
is not sufficient for accurate performance assessment. In fact,
it is preferred to use optimal decision outputs (provided by
exact algorithms or ILPs) as the upper bound benchmark to
determine the optimality gap for the proposed solutions.

Mobility-triggered migration in a MEC context was studied
the most, with the objective of improving performance-related
metrics (delay, service continuity, overhead, migration time)
and reducing costs. A smaller set of contributions also con-
sidered minimizing energy consumption [173], [182], [183],
[186]. In terms of input data, similar to the observation made
on mobility prediction, the most recent traces used in the
surveyed papers were collected in 2014.

Precursor works have introduced using RL for service
placement in migration by formulating the problem as a MDP,
and finding the optimal decision strategy based on Policy-
Iteration (PI) [169], [170], [190], [191] or Value-Iteration (VI)
[61], [159], [170] to construct a decision strategy that selects
the best migration target for each state. However, not all
RL problems can be solved through iteration. Indeed, these
methods require the state space of the problem to be finite,
which is not always the case, and it is not always possible to
know the exact transition probabilities between states. Thus,
other works have used Q-Learning [172], [173], which is
a model-free RL method that does not require knowledge
of state transition probabilities. Nevertheless, Q-Learning is
a tabular method that relies on state-space exploration until
convergence, which requires multiple state visits and action
explorations for each state for the Q-table values to converge.
Therefore, it is not scalable as it cannot handle larger state
and action spaces. To cope with large state and action spaces,
researchers resorted to DL techniques by training Neural
Networks to select policies and approximate future rewards
with algorithms such as DQN or Actor-Critic methods.

DQN was used by multiple contributions in the context
of mobility in MEC [174]–[177], [181], [182] sometimes
using enhancements that accelerate convergence and improve
efficiency such as Prioritized Experience Replay (PER) [192],
or dueling DQN [120], [181]. Chen et al. [182] use Deep Re-
cursive Q-Networks (DRQN) models that incorporate LSTM
layers into the vanilla DQN to better process historical data of
user position to select the migration target of task offloading

Fig. 9: Multi-agent DRL architecture for service migration

based on predicted user mobility in MEC. Additionally, mul-
tiple types of applications are considered (AR, infotainment,
health, and video surveillance). DRQN coupled with PER and
application context awareness resulted in a delay minimization
of 20 to 40% compared to vanilla DQN, and migration costs
were divided by a factor of 2 to 3.

Actor-Critic methods such as DDPG, PPO, A2C, or A3C
train an actor-network to select the action for a given state and
a critic network to approximate the value functions. Ren et al.
[180] train a DRL model using Proximal Policy Optimization
(PPO) [193] while using LSTM for the policy network to
extract time-series features. The model is initially trained
offline using service log data from a simulated environment,
then used in an online environment without updating its
parameters to avoid performance degradation. The observed
experiences are recorded and used to train new offline models
that would periodically replace the current model. To enhance
performance, the authors propose a different definition of input
state to reduce its dimensionality and decompose the action
space by making the agent select the target node for the
migration of one VM at a time. Compared to an optimal
solution from ILP, the proposed PPO and LSTM combination
achieves a migration cost that exceeds the optimal value by
20%.

To reduce complexity and training delays, Multi-Agent DRL
(MADRL) solutions were proposed by deploying decision
agents per MEC server [185], [186], or per Service Entity
[187] to distribute decision-making without loss of perfor-
mance. Figure 9 illustrates a Multi-Agent scenario where each
computing node hosts its own ML agent. For all of the service
instances that are hosted by the node, the ML agent makes
decisions to select the service instance to be migrated, and
determine its migration target.

On the other hand, there are comparatively very few
contributions that used ML-based solutions besides RL and
DRL. Emu et al. [167] use Ensemble DL algorithms, namely
E-ConvNets and E-ANN with the objective of minimizing
delay and migration overhead. A number of models are
simultaneously trained using different sets of data from the



TABLE VIII: Summary of single-instance placement references(Section VI-A)

Ref. Input data Method NN Architecture Objective Main findings
M

ob
ili

ty

M
L [167] Generated

E-ConvNets,
E-ANN, CNN,

ANN
1 to 6 layers Delay, overhead

E-ConvNets had the best
performance, for 3 and 4 layers,
optimality gap of less than 10%

(compared to ILP)

R
L

[168] San Francisco
taxi (2009) Modified PI - Delay, Cost Average migration cost reduced by 85%

[169]
Generated, Shortest

Path Map-Based
Movement Model

PI - Long-term costs,
QoS

Average user-perceived latency
reduced by 15%

[170] Generated PI, VI,
in-place VI - Cost Up to 5% reward increase

compared to [171]
[172] Shanghai taxi (2007) Q-Learning - Delay, cost Up to 60% less delay

[173] Simulated Q-Learning - Cost, energy,
processing time Revenue increase of up to 40%

D
R

L

[174]
[175]

Smartphone mobility
(2014) DQN Not specified Service continuity,

cost

Percentage of successful migrations
up to 20% more than

multi-attribute algorithm.

[176] Random DQN Not specified Cost Average cost reduction by 3%
compared to greedy

[177] Generated DQN 3 layers of
15 neurons QoS Received data increased by 6%

[178] Generated DQN Not specified Delay 45% less delay than no relocation,
20% less than static policy

[179] Random A3C Not specified Long-term costs,
QoS

Long term benefits
increased by 70%

[180] Shenzen taxi (2014) PPO, LSTM Not specified Cost Cost 20% higher than optimal solution

[181] Shanghai mobile
user data (2014) Dueling DQN 2 layers of 3

and 10 neurons Delay, cost- Average cost 20-40% less than DQN

[182]
Geolife: Beijing user

data with different
applications (2007-2012)

DRQN
LSTM layer
instead of

fully connected

QoS, delay, cost,
energy, failure

Delay reduction of over 50%
compared to static, 20 to 40 %

compared to DQN depending on
app, migration cost divided by 2-3x

[183] Generated DQN, Double
DQN

2 layers, size is
2x input size +1 Delay, cost, energy Average delay reduced by 15%,

DDQN outperforms DQN

[184] Linear movement DQN 3 layers of 20
neurons Generic Performance close to greedy

M
A

D
R

L [185] Random
Double DQN,
3 MEC agents,
one centralized

2 layers of 256
neurons Delays, cost Average delay close to optimal

solution with ILP

[186] Shanghai taxi (2007) DDPG, one agent
per MEC Server

Actor: 2 layers
of 512 and

128 neurons,
Critic: 2 layers

of 512 and
256 neurons

Delay, energy
MADRL takes less time, reward

close to centralized Actor
Critic by over 90%

[187] Generated,
MBPR model

IDQN, CNN
One agent

per Service Entity

3 convolutional
layers and 3

fully connected

Delay, cost,
migration time

Up to 40% less service delays
than static policy, up to

30% less than classic DQN

L
oa

d M
L [188] Generated Neural

Network

9 dense layers,
8 batch normalization
layers of decreasing

size (330-100)
neurons

Downtime Delay close to optimal performance

D
R

L [120] Backbone traffic
(2018,2019) DQN One hidden layer

of 20 neurons
Cost, resource

overload
DQN with PER outperforms stepwise

optimization and vanilla DQN

[189] Generated Policy
Gradient

2 layers of 1000
and 61 neurons

Performance,
cost Delay reduction of 2%

training set, and their outputs are later accumulated into a
common layer. Evaluation results show that E-ConvNets had
the best performance, and achieved a 10% gap with the optimal
solution from ILP.

Unfortunately, many contributions did not specify the
NN architecture details used by their proposed solutions,
which makes evaluation and reproducibility more difficult.
From available information, vanilla DQN-based solutions used
smaller architecture with 1-3 layers of 3 to a maximum of
20 neurons, but the performance did not significantly surpass
greedy solutions. Double DQN architectures increased layer
size, with average delay results approaching optimal for a
multi-agent setting. Emu et al. [167] test different depth

values (1-6) for Ensemble CNNs, and observe that 3 and
4 layer-architectures achieve the best performance, which is
close to optimal. The Neural Network proposed in [188] also
achieves close to optimal delays for load-triggered migration
with a deeper architecture of 9 dense layers, followed by batch
normalization layers of decreasing size (330 to 100 neurons).

B. SFC and Network Slicing

As detailed in Table IX, multiple works have also explored
service migration in a SFC [190], [194], [195], [198]–[203] or
Network Slicing [196], [197]context. As stated earlier, those
scenarios add another layer of complexity to the migration
process with the additional consideration for the correlations



TABLE IX: Summary of SFC/NS placement references (Section VI-B)
Ref. Load input Method NN Architecture Objective Output SFC/NS context Main findings

L
oa

d

M
L [194] Generated Attention-

based GRU Not specified Migration
frequency

VNF
+ target

SFC length of
2-5 VNFs

Reward 10% below optimal
with attention

R
L [190]

Generated,
Cycle-

stationary
model

PI - Energy, loss
of revenue Target 3 SFC types, max

length of 3 VNFs

Total cost close to ILP,
execution time 1-5s

while ILP is 22-5457s

D
R

L

[195]
UK ISP

backbone
(On-demand)

DDPG
Mix of fully

connected and
normalization

Cost VNF SFC length
not specified

Cost reduced by 30%, 10%
compared to DQN, converges

10 times faster

[196] Generated Dueling
DQN

2 layers of
128 neurons

Resource cost,
service

interruption

New
config.

Network slicing:
5 nodes per slice

Long term revenue increased by
50% compared to greedy

[197] Random DQN, A2C
2 layers of 64 neurons

for DQN, 64 and
256 neurons for A2C

Operation time,
resource usage Target Network slicing

A2C performance remains high
(under 2% failure), DQN
declines for more apps

[198]
Generated,

Poisson
process

Q-Learning - Delay, energy Target
+ scaling

SFC length
of 2-6 VNFs

Total delay 20% lower
than random selection

M
A

D
R

L [199]

Summer
olympics
streaming

system
(2008)

DQN, one
agent per

node
Not specified Long-term

profit
VNF

+ target
3 SFC types, max
length of 3 VNFs

Reward 85% close to ILP
better than single agent DQN

[200]
Real Uunet
traffic (On-

demand)

DQN, one
agent per

node
Not specified

Energy,
overhead,

network cost

VNF
+ target

SFC length
of 3 VNFs Cost reduced by 10%

M
ob

ili
ty

R
L [201]

San
Francisco

taxi (2008)
Dyna-Q - Resource usage Target SFC length

not specified
Average user latency reduced

by up to 60%

D
R

L

[202] Generated A3C Not specified Cost of Re-
configuration

Target
+ Traffic
routing

SFC length
not specified

Reduced average orchestration
delay compared to DQN

[203] Generated A2C Not specified Delay, cost VNF
+ target

SFC length
not specified

Average delay reduction of 20-80%
compared to static, particularly

for high speed movements

and links between VNFs. Furthermore, in the SFC context,
another decision is to select which VNFs should be migrated
and which ones should remain on their current hosts. The
proposed solutions employed various ML methods, ranging
from classic PI [190] or Q-Learning [198], to DL with RNNs
[194], or DRL methods such as DQN [196], [197], [199], [200]
and Actor-Critic methods [195], [197], [202], [203]. Actor-
Critic methods present the advantage of converging faster than
DQN. As demonstrated in [195], a DDPG agent converges 6
to 10 times faster than DQN, with a 10% cost improvement.

Different SFC lengths are considered. For their simulations,
the authors of [190] and [199] use 3 types of SFC, with a
maximum length of 3 VNFs. Using PI, the solution proposed
by Eramo et al. [190] achieves a total cost close to ILP, while
keeping the execution time in a range of seconds as opposed
to the ILP that can reach multiple hours for longer episodes.
Jing et al. [199] use Multi-Agent DQN to attain rewards that
are 85% close to ILP.

When the migration process is triggered due to insufficient
resources, the new instance at the target node requires a scale-
up. In this vein, Yao et al. [198] propose a model for selecting
migration targets and scaling for migrated VNFs, and evalu-
ating SFCs with a length of 2 to 6 VNFs. Results showcase
an important performance degradation for SFC lengths of 3
and over using Q-Learning, which suggests that Q-Learning
might not scale well to longer SFC instances. In comparison,
in [194], SFCs comprising 2 to 5 VNFs are migrated using
Attention-based GRU, with a consistent performance achiev-
ing a reward that is only 10% below optimal.

Architecture-wise, available information is not sufficient to
compare references and results.

In contrast with the previous sub-section, most SFC and
NS placement references tackle load-triggered migration. In-
terestingly, despite the wide availability of real-world load
datasets (as discussed in Section V-B), most contributions used
generated, sometimes random load data.

C. Joint Placement and Trigger Timing

This section discusses the contributions that incorporated
the time dimension to the placement process of migration
by learning policies for jointly selecting when and where the
service should be triggered. A majority of references relied on
Q-Learning and DQN to generate decision policies.

This approach presents the advantage of performing both
decisions in one step, which has the benefit of reducing com-
putation time. Furthermore, the availability of viable migration
targets can impact the decision to trigger migration.

Yang et al. [204] use a correlation coefficient k to establish
relationships between the user’s historical position data of
the last k time-slots and improve decisions. The problem is
divided into two sub-tasks: Selecting the migration target and
deciding when to trigger the process. Wang et al. [205] use
three structurally identical DQNs in parallel to enable continu-
ous model improvement, where one network makes decisions
on whether to migrate services to a certain MEC server at
the current time slot in real-time. The other two use the
experiences and reward for policy evaluation and refinement
offline, and periodically update the decision network with new



weights. This method allows simultaneous decision-making
and training, which results in migration policies that adapt
to changes in trajectory or velocity.

Liu et al. [206] propose a distributed framework for joint
task migration in MEC. Multiple DRL agents are trained
using Counterfactual Multi-Agent (COMA) Policy Gradient
[207], where independent actor-networks are based on GRUs,
and a shared critic network is based on classic feed-forward
NNs. Consequently, completion time is reduced by 10 to 25%
compared to a single Actor-Critic agent.

Abdel Wahab et al. [208] design an application-aware
approach for the placement and adjustment of VNFs at each
time slot depending on the environmental changes such as user
mobility or service demand peaks. First, to reduce placement
complexity in large-scale systems, the authors propose a
clustering technique based on K-medoids that partitions the
network into multiple clusters based on selected performance
metrics (energy efficiency, high bandwidth capacity, CPU...).
Then, if a SLA violation is expected, the migration target is
selected from the cluster that best satisfies the SLA of the
application being migrated. This approach achieves an average
cost that is only 10% higher than the optimal value from ILP,
while improving computation time by up to a 100 folds.

Once again, information on the Neural Network architecture
is generally missing, and most contributions use different
input datasets, with results evaluations against static decision
policies. Thus, no comparison can be made.

D. Discussion

The contributions described in this section provided the
means to select the migration target of one or multiple VNFs
using ML methods while optimizing a variety of objectives
such as cost, energy, migration time, or QoE metrics. Addition-
ally, some works considered the time dimension by selecting
the time slot where migration should be triggered depending
on mobility or load data.

Another observation that can be made is that most con-
tributions have focused on the mobility-related use cases in
MEC, such as Vehicular Networks, which confirms the grow-
ing interest in Edge Computing technologies in the research
community. Further, motivated by the trends of using micro-
services and Network Slicing, multiple works are considering
more complex use cases where multiple dependent VNF in-
stances are migrated simultaneously. In that case, RL methods
such as Q-Learning might not be scalable enough, and DL
methods should be favored. In order to reduce the additional
complexity from these use cases, Multi-Agent solutions were
also proposed where the migration decision for each instance is
managed by an independent agent, which ultimately reduced
training and inference time, while maintaining performance
levels.

Regarding ML methods, and apart from a few exceptions, it
can be noticed that an overwhelming majority of contributions
for placement have used RL and DRL for learning the optimal
decision policy, with the Q-learning and DQN algorithms

being the most popular. In the meantime, several better-
performing DRL algorithms have been gaining attention. In
particular, Actor-Critic algorithms such as DDPG and A2C
showcased increased performance and shortened convergence
time compared to DQN. Proximal Policy Optimization (PPO)
would also be worth exploring further, which can be easier
to tune with a robust performance, and is currently used as
the default RL algorithm for training OpenAI models [215].
A comparative analysis might then be beneficial to perform an
assessment and determine whether these algorithms are best
suited for this problem. Besides, few contributions leveraged
enhancements such as PER or Dueling DQN [216] that have
proven their efficiency in improving the model’s accuracy and
reducing convergence time.

Apart from SFC-related references, very few contributions
considered application types and context when selecting the
migration target. However, different application types may
have distinct requirements, which might have an effect on the
optimal target to select. In fact, contributions that considered
multiple application types and requirements achieved close to
optimal results.

It could also be observed that many references did not
disclose details on the Neural Network architecture being
implemented by their respective solutions. For future works,
authors are advised to provide complete information on the
evaluation setup, so that experiments can be reproduced,
evaluated, and built upon.

Finally, future works should make use of real-world load
traces to train placement models instead of synthetic data,
which might not be realistic, particularly considering that
open platforms such as the M-Lab project [137] provide
access to real-time monitoring traces from distributed network
infrastructures.

VII. MIGRATION SCHEME OPTIMIZATION

Once the migration target has been selected, remains the
decision to select the migration strategy between the pre-copy,
post-copy, and hybrid-copy methods. In addition, the migration
process can be improved using some enhancements that have
been proposed in the literature, such as CPU throttling [217],
data compression [218], or delta compression [219]. Figure
10 depicts the aforementioned live migration enhancements;
compression and delta compression are used to reduce the
size of transferred data for dirtied memory pages, while CPU
throttling consists in reducing CPU time for the instance
to be migrated, which results in reducing its activity, and
minimizes the number of dirtied pages at each iteration. This
ultimately helps the migration process to converge but can
negatively impact service performance. The pre-copy and hy-
brid methods, in particular, can be optimized by selecting the
number of iterations before stopping the original instance, and
scheduling the order of memory page transmission. Finally,
the transmission process can also be optimized by selecting
the migration path and the allocated bandwidth. The works
described in the following have used ML techniques to help
make those decisions and are summarized in Table XI.



TABLE X: Summary of joint trigger and placement references (Section VI-C)

Ref. Input data Method NN Architecture Objective Main findings
L

oa
d R

L
[191] Planetlab

(on-demand) , PI - Energy, SLA
violation, cost

14% cost reduction
compared to greedy

[171] Shenzen taxi
(2014) Q-Learning - Cost Average cost ratio doubled

compared to random policy

D
R

L

[209] San Francisco
taxi trace (2008) DQN 4 layers Delay, energy,

cost
30-70% cost, delay reduction

compared to threshold and Q-Learning

M
ob

ili
ty

R
L

[210],
[211]

San Francisco
taxi (2008) Modified PI - Cost Average cost reduced by up to 50%

[212] From
experiment Q-Learning - Cost, QoE 30% delay reduction

[213] Shenzen taxi
(2014) Q-Learning - Cost, efficiency Cost 20-30% over optimal

D
R

L

[214] Random walk DQN Not specified Cost, QoE 20-30% reward increase compared
to dynamic programming

[204]
Shanghai taxi,

year not
specified

DQN Not specified Cost Cost reduced by 50%

[205] Generated DQN
3 layers:

64,256,256
neurons

Distance,
migration# Over 60% delay reduction

M
A

D
R

L

[206] Random walk Policy gradient,
GRU, NN

One layer of
128 GRUs Process duration Completion time reduction

of 10-25% compared to Actor Critic

B
ot

h

M
L [208] Generated K-medoids - SLA violations Average cost 10% higher than ILP,

while up to 100x faster

Fig. 10: Migration scheme enhancements

A. Strategy Selection

In the following are detailed contributions that tackled mi-
gration strategy selection by predicting the effect of choosing
one of the available methods on multiple metrics, which
guides decision making. Jo et al. [220] compare multiple ML
techniques (Linear Regression with SVR, with and without
bagging) for predicting the effect of selecting different live
migration techniques and potential enhancements on multiple
key metrics such as performance degradation, downtime, mi-
gration time, and resource utilization. The predicted values are
fed into an algorithm that chooses the best option considering
the service’s SLA constraints. Ultimately, SVR with bagging
provided the best performance, but multiplied learning and
prediction times compared to other methods. This work has
been used as a reference for multiple subsequent contributions
that reused the same methods and/or evaluation metrics.

Indeed, Motaki et al. [221] use SVR and K-Nearest Neigh-
bour Regression to predict the effect of using pre-copy, post-
copy, and the enhancements explored in [220] on additional
target metrics such as SLA violation time and migration
overhead. Similarly, Cho et al. [222] also use SVR to predict
the effect of those methods on migration cost in terms of VM
performance degradation, its duration, and resource overhead.
Based on those predicted metrics, a policy is proposed to select
the best live migration technique that reduces SLA violations.
Different from previous papers that used SVR, Altahat et
al. [224] employ DNNs for prediction. The DNN model is
trained to output the expected migration time, downtime, the
total load of transferred data, and performance degradation
for VMs when the pre-copy or post-copy methods are used
to perform migration. Those key metrics are predicted under



TABLE XI: Summary of migration scheme selection and improvement references (Section IX)

Ref. Context Decision/Prediction Output Method NN Architecture Results
Se

le
ct

io
n

Se
ct

io
n

V
II

-A

[220] Migration strategy selection:
pre-copy or post-copy, with
enhancements (compression,

delta compression, CPU
throttling)

Effect on performance
degradation, downtime,

migration time,
resource usage

LR, SVR,
SVR with
bagging

- Error of 5-10% for
SVR with bagging

[221]
Effect on [220] metrics
+ SLA violation time,

migration overhead
SVR, KNN - KNNR outperforms

SVR, 20% error

[222] Effect on [220] metrics SVR - Average error of 10%

[223] Performance data collection
for cold and live migration

Migration cost, duration,
required bandwidth

LR,
Multivar.

Regression
- 80-90% accuracy

[224]
Migration strategy
selection: pre-copy

or post-copy

Expected migration time,
downtime, data load,

performance degradation
DNNs 2 layers:32

and 16 neurons Lower error than [220]

[225]

Determine whether to
rebuild, or perform

cold or live
pre-copy migration

Downtime and delay of
rebuilding, cold, live pre-copy

LR, SVR,
NNs

One layer of
sigmoid or ReLU NN ReLU has lowest error

Im
pr

ov
em

en
t

Se
ct

io
n

V
II

-B [226]
Improved hybrid-copy
method with Switched

Decision Factor

Probability of page memory
writes for pre-copy iterations

Markov
model - Up to 75% page

fault reduction

[227]
Reducing unnecessary

transmissions of dirtied
pages in pre-copy

Probability for memory page
to be dirtied in the next round

Markov
model -

Migration time in high
dirty rate similar to

low dirty rate

[228] Multi-phase pre-copy Future dirty pages Auto
Regression - Downtime reduced

by up to 20%

[229]

Bandwidth allocation
adjustment to minimize

transmission delays
and transmission costs

Bandwidth allocation
per time-step

DDPG,
DQN

- DQN: 2 layers
of mean(input,
output) neurons

- DDPG: 400 and
300 neurons

Downtime reduced
to under 1s

varying parameters such as application type, VM size, page
dirtying rate, network bandwidth, and resource utilization. This
proposal outperforms multiple regression techniques used in
[220] in terms of accuracy for multiple metrics and signifi-
cantly lowers prediction time. However, training time remains
very high compared to Linear Regression and SVR.

Some works have also applied classic Linear Regression
methods for migration metric prediction. The authors of [225]
use Supervised Learning (LR, SVR, and NNs) in an SFC con-
text to predict the resulting downtime and delay for rebuilding,
cold, and live migration using pre-copy of SFCs, assuming
that the target host has already been selected. The evaluation
explores the effects of different parameters such as VM size,
network traffic load, computing capacity, and page dirty rate
on downtime and delay. The predicted values are used to
build a policy for selecting migration schemes. Martins et al.
[223] implement a container platform and perform multiple
migration experiments using the cold and pre-copy methods
in a monitored environment to collect performance data.
Afterwards, the LR and Multivariable Regression methods are
used to identify patterns and predict migration cost, duration,
and the required bandwidth depending on the image size, OS
distribution, and the migration method (cold or live using pre-
copy). However, those contributions only consider pre-copy
as a live migration method and do not study improvement
techniques compared to the previous works.

B. Strategy Improvement

The migration process can also be improved by reducing the
number of re-transmitted memory pages, which in turn reduces
transmission cost and migration time. This can be done by
identifying patterns of page modification and selecting the
pages that should be copied at each iteration accordingly. Wu
et al. [227] forecast the probability for each memory page to be
dirtied in the next round using the Markov prediction model.
Combined with dirtying page rate from monitoring data, those
predictions are used to select the memory pages that should be
migrated in priority for each iteration. The obtained strategy
reduces the memory size migrated at the first round, which,
in the long run, significantly reduces total migration time for
applications with high dirty rates.

Besides the memory modification prediction, a few contri-
butions proposed modified migration schemes. Shukla et al.
[228] elaborate a multi-phase pre-copy based live migration
approach that minimizes page transfer and migration time.
During the first phase, the VM image and the memory pages
are transferred to the destination host, then in the second phase,
the least modified pages are transferred. In the third phase, an
auto-regressive approach is used to forecast future dirty pages
and leave the transfer process of the most frequently modified
pages to the fourth phase, which corresponds to the stop-and-
copy step of the pre-copy live migration method.

Targeting the faulted memory page transfer phase in the
hybrid live migration scheme, Lei et al. [226] present an
improved hybrid-copy method for live migration, where the



number of page faults is reduced without increasing migration
time by introducing a Switched Decision Factor (SDF). It
is defined as the moment when the process switches from
the pre-copy phase of the hybrid process to post-copy. In
other words, it determines the number of iterations of the
pre-copy phase before switching to post-copy. The authors
use a Markov model to detect the memory access pattern of
different workload types (write-intensive and read-intensive)
and forecast the probability of memory writes on pages for
each iteration of pre-copy. Then, a set of the least likely to
be modified pages is transferred during the next iteration,
which reduces the number of duplicate transmissions. At each
iteration, the SDF value is computed to determine whether
the process should stop the iteration phase. If applicable, the
memory access pattern is also predicted to proactively transfer
the required pages, thus reducing the number of faulty pages
once the instance has been resumed.

Another way to optimize the migration process is to manage
the amount of bandwidth allocated to the data transfer, espe-
cially in case of multiple concurrent migrations and/or if the
network resources are scarce. Indeed, a dynamic allocation
scheme can help prevent network congestion and adapt to
network load fluctuations. This motivated authors in [229] to
tackle network resource usage during the migration process
of SFCs, where DQN and DDPG networks were used to
allocate and adjust bandwidth for SFC migrations at each time
step with the objective of minimizing transmission delays,
propagation, processing and queuing delays while keeping
bandwidth consumption at a minimum.

C. Discussion

Compared to the other stages of the migration process, fewer
contributions have been made to migration scheme selection
and improvement using ML. However, optimizing this process
is crucial to reduce the impact on service continuity and user’s
QoE. The results from the discussed references showcased
the benefits of selecting the appropriate method and ordering
memory page copies. Furthermore, network resource usage
should be explored more thoroughly, in particular in the MEC
migration use case where network resources are limited, which
requires a dynamic resource allocation and traffic routing
mechanism to account for changes in traffic load.

Algorithm wise, and different from previous sections, it can
be seen that the majority of the works that optimized the
data transfer process mainly used Supervised Learning, and
particularly Regression methods or Neural Networks to predict
the effect of the migration methods and improvements on
selected metrics, or to predict memory page dirtying patterns.
Although NN methods improved performance compared to
Linear Regression, it should be noted that training time was
also significantly higher. More advanced RNN methods might
also be worth exploring to detect memory page dirtying
patterns. In terms of input data, most references generated
data from running scheduled migration experiments or fed
data collected from the environment into the model. Notably,
Motaki et al. [221] aggregate datasets from multiple workload

types (online transactions, multimedia, e-commerce, data, and
computationally intensive applications) to emulate realistic
cloud workloads.

VIII. CHALLENGES AND RESEARCH DIRECTIONS

This survey presented a comprehensive review of the con-
tributions using ML to facilitate service migration and show-
cased the benefits of such methods. To conclude the paper,
the following section outlines the remaining challenges and
discusses future possibilities for research in the area of ML
for service migration in future networks.

A. Training Data and Environment

To train a ML model correctly, a training data-set must be
available with a sufficient volume of realistic and sometimes
labeled data. However, real training data is not always avail-
able. For example, in the mobility prediction use case, it is
difficult to obtain user position data due to the sensitivity of
such information. To mitigate this issue, many contributions
listed in this survey use different taxi mobility data sets or
generate synthetic mobility trajectories. Still, those data sets
do not always reflect realistic user mobility patterns. One
emerging approach is Data-Centric AI, where smaller sets of
meaningful, higher quality curated data points are used for
training AI models [165], [166], which provides promising
results and optimizes the training process by reducing the size
of training data.

In the RL case, the model learns policies through direct
interactions with the environment by exploring sets of actions
and observing the effects on the long-term rewards to evaluate
and improve the current policy. However, for service migra-
tion, experimenting random actions during the exploration
phase can lead to important service disruptions, drops in the
user’s QoE and SLA violations, or migration failure. A few
mitigation approaches were proposed in the literature to avoid
the effects of bad exploration decisions, for a safe RL [230],
but those methods slow down the learning process. Thus, the
model should be trained in a simulated environment that is
identical to the real one, to output realistic rewards.

A promising direction would be the use of Digital Twins,
which are defined as the virtual instances that fully describe a
physical system and its features [231], and are extensively
used for simulations in Industry 4.0 use cases. Indeed, a
Digital Twin can emulate the environment’s feedback to the
actions selected from the RL agent or generate realistic data
distributions to train ML models. Another possible solution
for RL is the use of ML sandboxes using network simulation
tools as proposed in [232].

B. DRL Model Update Post-Training

One of the advertised advantages of using RL methods for
policy selection is that RL models can adapt to changes in the
environment by continuously updating their policy depending
on rewards from the environment. However, it can be noticed
from studying DRL references in this survey that in practice
(besides a few exceptions),



once the NN model converges to a satisfactory policy,
training is stopped, and the model is switched to a full
exploitation mode where no exploration is performed and the
policy is not updated anymore. Although it could be argued
that a deployed model should not be updated online to avoid
loss of performance, this practice takes away one of the main
advantages of using RL.

One solution would be to train another version of the model
offline and update the main online model periodically or when
the current policy becomes less efficient due to important
changes in the environment.

Additionally, one emerging paradigm dubbed Continual
Learning [233]–[237] or Lifelong Learning [238], [239] has
been gaining attention. The aim is to allow continual online
Neural Network training and update by learning from new
tasks, without loss of previous knowledge to preserve perfor-
mance on prior tasks. To this end, one proposal is to expand
Neural Networks dynamically: old neuron parameters are fixed
to avoid loss of knowledge, and new neurons are added to
perform incremental learning.

C. Explainability and Model Tuning

Another issue hindering the widespread use of ML for
network orchestration and management is the fact that ML
models are seen as opaque black boxes, which raises concerns
for reliability and accountability. Indeed, critical decision
systems require solid trust and performance guarantees. This
need for increased transparency in AI functioning has moti-
vated research efforts in the field of Explainable AI (XAI)
[240]–[243] which is a field that aims to make ML models
more transparent, interpretable, and trustworthy by providing
explanations on why the model came to provide a certain
output. This can, in turn, help detect and correct model design
errors that might hinder its performance.

Indeed, the performance of ML models heavily depends
on the chosen architecture and hyper-parameters, such as the
number and size of layers, the activation function, or the
selected algorithm. Thus, those hyper-parameters should be
carefully chosen to improve efficiency and accuracy. Finding
the right combination of hyper-parameter values is not a
straightforward process, as each problem is different, and a
set of hype-parameters that proved to be optimal for a specific
problem would not work for related problems. Many methods
were proposed to automate the hyper-parameter optimization
process [244]–[246]. However, most popular search methods
leverage greedy, random, or genetic approaches to explore
the solution space, which can prove to be resource and time-
consuming. Explainability would help understand the effect of
certain settings on the model’s performance and guide hyper-
parameter optimization in a more intuitive manner.

D. Edge Mobility

The main idea behind edge computing is to move compu-
tations closer to the end-user with the objective of reducing
communication cost, latency, and network load. An emerging
trend aims to go beyond current MEC implementations and

offload computation down to the user terminals by virtualizing
end device resources that are underutilized and made available
to authorized third parties. Multiple proposals implemented
that concept under different names such as Vehicular Edge
Computing [247], Vehicular Cloud Computing [102], [248],
[249], Vehicular Fog Computing [250], or Vehicular Micro
Clouds [251] for the specific use case of Vehicular Networks,
and the more general V-Edge [252] proposal that considers all
types of computation resources.

However, this concept incurs possible mobility of the
computing resources, which adds another dimension to be
considered in the migration planning, where the computing
nodes can also change locations. Thus, both the service
provider and consumer are considered to be dynamic. In the
service migration context, it would mean that the service user,
migration source, and target can be mobile during the process,
which leads to dynamic distance and data transmission costs
and duration that can affect migration time, downtime, or
even cause migration failure. Therefore, to support service
migration in that context, future contributions ought to take
into account mobility patterns, sojourn time, velocity, and
battery life of the UE providing the service. Similar to the
classic migration scenarios with static source and target nodes,
ML can be beneficial in the Edge mobility use case during all
phases of the migration process. Indeed, for migration target
selection, the ML-based decision model can be trained using
additional input such as the current and predicted mobility of
the target candidates and availability times as well. It can also
be used during the migration trigger phase by predicting the
availability time of the service’s current placement nodes to
trigger service migration proactively when the current node is
predicted to go offline in the near future. This use case also
adds new prediction inputs, such as battery consumption or
historical data of device availability (when the user makes its
device available for external use) to detect device availability
patterns.

E. Application-Aware Migration

Among the contributions surveyed in this paper, a few works
have proposed a selection mechanism for the memory pages
that should be migrated in the next copy iteration by detecting
page modification patterns, and prioritizing pages that are least
likely to be modified. However, those works do not consider
the application specifics when selecting the page copy order.
Indeed, the least modified pages might not be of the highest
importance for running the service; thus, migrating them in
priority might not be the best choice.

An interesting future direction would be to propose service-
aware selection strategies for memory page copy. Future works
might use ML methods to analyze the service runtime data and
classify memory pages into categories: pages that are critical
for service runtime, pages without which the service can run
but with a degraded performance, and so on. Consequently,
memory pages that are essential for service runtime are mi-
grated in priority, and depending on the required performance,
the instance can be resumed on the target node sooner, which



would reduce downtime. Further, this analysis can help detect
content that is not used by the service during its runtime, and
avoid its transmission to preserve bandwidth.

F. User Context-Aware Migration

A step further for application-aware migration would be to
also differentiate between individual user contexts, and use ML
to predict the pages that each user is likely to use. This predic-
tion, associated with the predicted probability of the service
being requested by specific users in the next time slots, can be
used to prioritize user context and memory page transmission.
Once the core part of the application has been migrated, this
context-based approach can be used to progressively migrate
the content required for each user to the target node. Once
the context and frequently requested pages for a user have
been successfully transferred, the user’s subsequent requests
are re-directed to the target node. This approach would have
the benefit of reducing request load on the source instance
earlier as opposed to classic migration schemes that only
re-direct user requests once the migration process has been
completed, which can reduce service disruptions for load-
triggered migration.

IX. CONCLUSION

Machine Learning is a promising tool for decision-making
that paves the way to Zero-touch network automation. It allows
an efficient service orchestration and Life-Cycle Management
using prediction and decision policy creation and improve-
ment. Thus, it has been used by several works in the literature
to improve different stages of the service migration process
and guarantee service availability and user QoE.

This survey paper investigated the applications of ML
to optimize the service migration process and provided a
background on migration, ML, and the relevant related tech-
nologies. Furthermore, the survey elaborated a comprehensive
taxonomy of the current state-of-the-art solutions for the dif-
ferent stages of the migration process, with a discussion of the
observed trends and suggestions for future works. Finally, the
limitations of current proposals were discussed, and multiple
research directions and open issues were outlined to motivate
future contributions to the subject.

ACKNOWLEDGMENT

This work has been partially supported by the European
Union’s H2020 5G!Drones (grant no. 857031) project.

REFERENCES

[1] V. Fanibhare, N. I. Sarkar, and A. Al-Anbuky, “A survey of the
tactile internet: Design issues and challenges, applications, and future
directions,” Electronics, vol. 10, no. 17, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/17/2171

[2] E. Calvanese Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Kte-
nas, N. Cassiau, L. Maret, and C. Dehos, “6g: The next frontier: From
holographic messaging to artificial intelligence using subterahertz and
visible light communication,” IEEE Vehicular Technology Magazine,
vol. 14, no. 3, pp. 42–50, 2019.

[3] A. Clemm, M. F. Zhani, and R. Boutaba, “Network management 2030:
Operations and control of network 2030 services,” Journal of Network
and Systems Management, vol. 28, p. 721–750, 10 2020.

[4] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” 07 2018, pp. 20–20.

[5] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. ZHANG, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Vehicular Technology Magazine, vol. 12,
no. 2, pp. 36–44, 2017.

[6] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g
network edge cloud architecture and orchestration,” IEEE Communi-
cations Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[7] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On enabling
5g automotive systems using follow me edge-cloud concept,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5302–5316,
2018.

[8] W. Bao, D. Yuan, Z. Yang, S. Wang, W. Li, B. B. Zhou, and A. Y.
Zomaya, “Follow me fog: Toward seamless handover timing schemes
in a fog computing environment,” IEEE Communications Magazine,
vol. 55, no. 11, pp. 72–78, 2017.

[9] R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo, “Move with me: Scalably
keeping virtual objects close to users on the move,” in 2018 IEEE
International Conference on Communications (ICC), 2018, pp. 1–6.

[10] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino, “Com-
panion fog computing: Supporting things mobility through container
migration at the edge,” in 2018 IEEE International Conference on
Smart Computing (SMARTCOMP), 2018, pp. 97–105.

[11] T. Le, “A survey of live virtual machine migration techniques,” Com-
puter Science Review, vol. 38, p. 100304, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013720304044

[12] H. Hawilo, M. Jammal, and A. Shami, “Orchestrating network function
virtualization platform: Migration or re-instantiation?” in 2017 IEEE
6th International Conference on Cloud Networking (CloudNet), 2017,
pp. 1–6.

[13] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Network,
vol. 32, no. 2, pp. 92–99, 2018.

[14] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. Caicedo Rendon, “A comprehensive sur-
vey on machine learning for networking: Evolution, applications and
research opportunities,” Journal of Internet Services and Applications,
vol. 9, 05 2018.

[15] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, and
J. M. Arco, “A survey on machine learning techniques for routing
optimization in sdn,” IEEE Access, vol. 9, pp. 104 582–104 611, 2021.

[16] S. B. Melhem, A. Kaushik, H. Tabassum, and U. T. Nguyen, Machine
Learning for Resource Allocation in Mobile Broadband Networks,
2021, pp. 123–146.

[17] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile
and wireless networking: A survey,” IEEE Communications Surveys
Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[19] C. Benzaid and T. Taleb, “Ai-driven zero touch network and service
management in 5g and beyond: Challenges and research directions,”
IEEE Network, vol. 34, no. 2, pp. 186–194, 2020.

[20] J. Gallego-Madrid, R. Sanchez-Iborra, P. M. Ruiz, and A. F.
Skarmeta, “Machine learning-based zero-touch network and service
management: A survey,” Digital Communications and Networks, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2352864821000614

[21] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual
machine migration: Challenges, techniques, and open issues,” IEEE
Communications Surveys Tutorials, vol. 20, no. 2, pp. 1206–1243,
2018.

[22] S. Ramanathan, K. Kondepu, M. Razo, M. Tacca, L. Valcarenghi,
and A. Fumagalli, “Live migration of virtual machine and container
based mobile core network components: A comprehensive study,” IEEE
Access, vol. 9, pp. 105 082–105 100, 2021.

[23] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and
A. Puliafito, “Container migration in the fog: A performance
evaluation,” Sensors, vol. 19, no. 7, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/7/1488

[24] A. Choudhary, M. C. Govil, G. Singh, L. K. Awasthi, E. S. Pilli,
and D. Kapil, “A critical survey of live virtual machine migration



techniques,” Journal of Cloud Computing, vol. 6, no. 1, p. 23, Nov
2017. [Online]. Available: https://doi.org/10.1186/s13677-017-0092-1

[25] O. Oleghe, “Container placement and migration in edge computing:
Concept and scheduling models,” IEEE Access, vol. 9, pp. 68 028–
68 043, 2021.

[26] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration
in mobile edge computing,” IEEE Access, vol. 6, pp. 23 511–23 528,
2018.

[27] Z. Rejiba, X. Masip-Bruin, and E. Marı́n-Tordera, “A survey on
mobility-induced service migration in the fog, edge, and related
computing paradigms,” ACM Comput. Surv., vol. 52, no. 5, sep 2019.
[Online]. Available: https://doi.org/10.1145/3326540

[28] R. Zolfaghari, A. Sahafi, A. M. Rahmani, and R. Rezaei,
“Application of virtual machine consolidation in cloud computing
systems,” Sustainable Computing: Informatics and Systems, vol. 30,
p. 100524, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2210537921000172

[29] A. H. T. Dias, L. H. A. Correia, and N. Malheiros, “A
systematic literature review on virtual machine consolidation,” ACM
Comput. Surv., vol. 54, no. 8, oct 2021. [Online]. Available:
https://doi.org/10.1145/3470972

[30] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, “Machine
learning-based orchestration of containers: A taxonomy and future
directions,” CoRR, vol. abs/2106.12739, 2021. [Online]. Available:
https://arxiv.org/abs/2106.12739

[31] T. Khan, W. Tian, and R. Buyya, “Machine learning (ml)-centric
resource management in cloud computing: A review and future
directions,” CoRR, vol. abs/2105.05079, 2021. [Online]. Available:
https://arxiv.org/abs/2105.05079

[32] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intelli-
gence toward tomorrow’s intelligent network traffic control systems,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432–
2455, 2017.

[33] F. Tang, B. Mao, Y. Kawamoto, and N. Kato, “Survey on machine
learning for intelligent end-to-end communication toward 6g: From
network access, routing to traffic control and streaming adaption,”
IEEE Communications Surveys Tutorials, vol. 23, no. 3, pp. 1578–
1598, 2021.

[34] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[35] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Communications Surveys
Tutorials, vol. 20, no. 4, pp. 2595–2621, 2018.

[36] M. McClellan, C. Cervelló-Pastor, and S. Sallent, “Deep learning
at the mobile edge: Opportunities for 5g networks,” Applied
Sciences, vol. 10, no. 14, 2020. [Online]. Available: https:
//www.mdpi.com/2076-3417/10/14/4735

[37] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp.
869–904, 2020.

[38] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving
edge and cloud: Challenges and future perspective,” IEEE Communi-
cations Surveys Tutorials, vol. 22, no. 1, pp. 38–67, 2020.

[39] M. Masdari and H. Khezri, “Efficient vm migrations using forecasting
techniques in cloud computing: a comprehensive review,” Cluster
Computing, vol. 23, no. 4, pp. 2629–2658, Dec 2020. [Online].
Available: https://doi.org/10.1007/s10586-019-03032-x

[40] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tut., vol. 18, no. 1, pp.
236–262, Firstquarter 2016.

[41] ETSI GS NFV 002, “Network functions virtualization (nfv);
architectural framework v1.1.1,” ETSI, Tech. Rep., October 2013.
[Online]. Available: {http://www.etsi.org/deliver/etsi\ gs/NFV/001\
099/002/01.01.01\ 60/gs\ NFV002v010101p.pdf}

[42] J. Watada, A. Roy, R. Kadikar, H. Pham, and B. Xu, “Emerging
trends, techniques and open issues of containerization: A review,” IEEE
Access, vol. 7, pp. 152 443–152 472, 2019.

[43] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[44] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[45] J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7665.txt

[46] G. Sun, D. Liao, D. Zhao, Z. Xu, and H. Yu, “Live migration for
multiple correlated virtual machines in cloud-based data centers,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 279–291, 2018.

[47] D. Artuñedo Guillen, B. Sayadi, P. Bisson, J. P. Wary, H. Lonsethagen,
C. Antón, A. de la Oliva, A. Kaloxylos, and V. Frascolla, “Edge
computing for 5g networks - white paper,” Mar. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.3698117

[48] F. Spinelli and V. Mancuso, “Toward enabled industrial verticals in 5g:
A survey on mec-based approaches to provisioning and flexibility,”
IEEE Communications Surveys Tutorials, vol. 23, no. 1, pp. 596–630,
2021.

[49] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to dance:
Agile vm handoff for edge computing,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, ser. SEC ’17. New York,
NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3132211.3134453

[50] ETSI White Paper No. 28, “Mec in 5g networks,” ETSI, Tech.
Rep., June 2018. [Online]. Available: {https://www.etsi.org/images/
files/ETSIWhitePapers/etsi\ wp28\ mec\ in\ 5G\ FINAL.pdf}

[51] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-of-the-
art,” IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[52] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing: State-
of-the-art and research challenges,” IEEE Communications Surveys
Tutorials, vol. 20, no. 1, pp. 416–464, 2018.

[53] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys Tutorials, vol. 20, no. 3, pp. 1826–1857,
2018.

[54] 3GPP, “Technical Specification Group Services and System Aspects;
Architecture for enabling Edge Applications;,” 3rd Generation Partner-
ship Project (3GPP), Technical Specification (TS) 23.558, 12 2022,
version 18.1.0.

[55] ——, “Technical Specification Group Services and System Aspects; 5G
System Enhancements for Edge Computing; Stage 2,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.548, 12
2022, version 18.0.0.

[56] ETSI GS NFV 003, “Network functions virtualisation
(nfv); terminology for main concepts in nfv,”
ETSI, Tech. Rep., January 2018. [Online]. Available:
{https://docbox.etsi.org/isg/nfv/open/Publications pdf/Specs-Reports/
NFV003v1.3.1-GR-TerminologyforMainConceptsinNFV.pdf}

[57] A. Kaloxylos, A. Gavras, D. Camps Mur, M. Ghoraishi, and
H. Hrasnica, “Ai and ml – enablers for beyond 5g networks,” Dec.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.4299895

[58] S. Ali, W. Saad, D. Steinbach, I. Ahmad, and J. Huusko, “White paper
on machine learning in wireless communication networks,” 2020.

[59] 3GPP, “Technical Specification Group Services and System Aspects;
Architecture enhancements for 5G System (5GS) to support network
data analytics services,” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS) 23.548, 12 2022, version 18.0.0.

[60] G. Panek, I. Fajjari, H. Tarasiuk, A. Bousselmi, and T. Toukabri,
“Application relocation in an edge-enabled 5g system: Use cases, ar-
chitecture, and challenges,” IEEE Communications Magazine, vol. 60,
no. 8, pp. 28–34, 2022.

[61] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When
cloud services follow mobile users,” IEEE Transactions on Cloud
Computing, vol. 7, no. 2, pp. 369–382, 2019.

[62] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, advances
and challenges,” IEEE Communications Surveys Tutorials, vol. 22,
no. 4, pp. 2462–2488, 2020.



[63] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things real-
ization,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp.
2961–2991, 2018.

[64] S. Jain, M. P. Gilesh, S. D. Madhu Kumar, and L. Jacob, “On the
necessity of right optimizations for live migration of virtual machines,”
in 2018 IEEE Region Ten Symposium (Tensymp), 2018, pp. 124–129.

[65] R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Network
slice mobility in next generation mobile systems: Challenges and
potential solutions,” IEEE Network, vol. 34, no. 1, pp. 84–93, 2020.

[66] M. Torquato, P. Maciel, and M. Vieira, “Analysis of vm migration
scheduling as moving target defense against insider attacks,” in
Proceedings of the 36th Annual ACM Symposium on Applied
Computing, ser. SAC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 194–202. [Online]. Available:
https://doi.org/10.1145/3412841.3441899

[67] M. Ala’Anzy and M. Othman, “Load balancing and server consolida-
tion in cloud computing environments: A meta-study,” IEEE Access,
vol. 7, pp. 141 868–141 887, 2019.

[68] A. Laghrissi and T. Taleb, “A survey on the placement of virtual re-
sources and virtual network functions,” IEEE Communications Surveys
Tutorials, vol. 21, no. 2, pp. 1409–1434, 2019.

[69] S. Nathan, U. Bellur, and P. Kulkarni, “Towards a comprehensive
performance model of virtual machine live migration,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15.
New York, NY, USA: Association for Computing Machinery, 2015,
p. 288–301. [Online]. Available: https://doi.org/10.1145/2806777.
2806838

[70] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration
for virtual machines,” ser. ATEC ’05. USA: USENIX Association,
2005, p. 25.

[71] M. Elsaid., H. Abbas., and C. Meinel., “Live migration timing opti-
mization for vmware environments using machine learning techniques,”
in Proceedings of the 10th International Conference on Cloud Com-
puting and Services Science - CLOSER,, INSTICC. SciTePress, 2020,
pp. 91–102.

[72] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3, p. 14–26,
jul 2009. [Online]. Available: https://doi.org/10.1145/1618525.1618528

[73] L. Hu, J. Zhao, G. Xu, Y. Ding, and J. Chu, “Hmdc: Live virtual ma-
chine migration based on hybrid memory copy and delta compression,”
Applied Mathematics Information Sciences, vol. 7, pp. 639–646, 06
2013.

[74] P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Differentiated
service/data migration for edge services leveraging container charac-
teristics,” IEEE Access, vol. 7, pp. 139 746–139 758, 2019.

[75] H. Ko, M. Jo, and V. C. Leung, “Application-aware migration algo-
rithm with prefetching in heterogeneous cloud environments,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2021.

[76] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, “Fast:
Flexible and low-latency state transfer in mobile edge computing,”
IEEE Access, vol. 9, pp. 115 315–115 334, 2021.

[77] L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, “U-haul: Efficient
state migration in nfv,” in Proceedings of the 7th ACM SIGOPS
Asia-Pacific Workshop on Systems, ser. APSys ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2967360.2967363

[78] J. Santa, J. Ortiz, P. J. Fernandez, M. Luis, C. Gomes, J. Oliveira,
D. Gomes, R. Sanchez-Iborra, S. Sargento, and A. F. Skarmeta,
“Migrate: Mobile device virtualisation through state transfer,” IEEE
Access, vol. 8, pp. 25 848–25 862, 2020.

[79] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer, “Statelet-based efficient
and seamless nfv state transfer,” IEEE Transactions on Network and
Service Management, vol. 14, no. 4, pp. 964–977, 2017.

[80] P. C. Sen, M. Hajra, and M. Ghosh, “Supervised classification algo-
rithms in machine learning: A survey and review,” in Emerging Tech-
nology in Modelling and Graphics, J. K. Mandal and D. Bhattacharya,
Eds. Singapore: Springer Singapore, 2020, pp. 99–111.

[81] M. Usama, J. Qadir, A. Raza, H. Arif, K.-l. A. Yau, Y. Elkhatib,
A. Hussain, and A. Al-Fuqaha, “Unsupervised machine learning for
networking: Techniques, applications and research challenges,” IEEE
Access, vol. 7, pp. 65 579–65 615, 2019.

[82] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martı́nez-
Trinidad, “A review of unsupervised feature selection methods,”

Artificial Intelligence Review, vol. 53, no. 2, pp. 907–948, Feb 2020.
[Online]. Available: https://doi.org/10.1007/s10462-019-09682-y

[83] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Machine Learning, vol. 109, no. 2, pp. 373–440, Feb 2020.
[Online]. Available: https://doi.org/10.1007/s10994-019-05855-6

[84] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms,
applications and emerging research trends,” IEEE Access, vol. 6, pp.
24 411–24 432, 2018.

[85] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online].
Available: https://doi.org/10.1162/neco.1997.9.8.1735

[86] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.
3555

[87] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai, and T. Chen, “Recent advances in
convolutional neural networks,” Pattern Recognition, vol. 77, pp.
354–377, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320317304120

[88] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb 2015. [Online]. Available: https://doi.org/10.1038/nature14236

[89] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algo-
rithms: A comprehensive classification and applications,” IEEE Access,
vol. 7, pp. 133 653–133 667, 2019.

[90] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[91] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2019.

[92] E. Farhangi Maleki, L. Mashayekhy, and S. M. Nabavinejad, “Mobility-
aware computation offloading in edge computing using machine learn-
ing,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[93] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a
few entries,” IEEE Transactions on Information Theory, vol. 56, no. 6,
pp. 2980–2998, 2010.

[94] A. L. Ibrahimpašić, B. Han, and H. D. Schotten, “Ai-empowered
vnf migration as a cost-loss-effective solution for network resilience,”
in 2021 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), 2021, pp. 1–6.

[95] C. M. Bishop, “Mixture density networks,” Tech. Rep., 1994.
[96] A. Rago, G. Piro, G. Boggia, and P. Dini, “Anticipatory allocation of

communication and computational resources at the edge using spatio-
temporal dynamics of mobile users,” IEEE Transactions on Network
and Service Management, vol. 18, no. 4, pp. 4548–4562, 2021.

[97] C.-L. Wu, T.-C. Chiu, C.-Y. Wang, and A.-C. Pang, “Mobility-aware
deep reinforcement learning with glimpse mobility prediction in edge
computing,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1–7.

[98] U. Fattore, M. Liebsch, B. Brik, and A. Ksentini, “Automec:
Lstm-based user mobility prediction for service management in
distributed mec resources,” in Proceedings of the 23rd International
ACM Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, ser. MSWiM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 155–159. [Online].
Available: https://doi.org/10.1145/3416010.3423246

[99] I. Labriji, F. Meneghello, D. Cecchinato, S. Sesia, E. Perraud, E. C.
Strinati, and M. Rossi, “Mobility aware and dynamic migration of mec
services for the internet of vehicles,” IEEE Transactions on Network
and Service Management, vol. 18, no. 1, pp. 570–584, 2021.

[100] A. Dalgkitsis, P.-V. Mekikis, A. Antonopoulos, and C. Verikoukis,
“Data driven service orchestration for vehicular networks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp.
4100–4109, 2021.

[101] Z. Zhao, M. Karimzadeh, L. Pacheco, H. Santos, D. Rosário, T. Braun,
and E. Cerqueira, “Mobility management with transferable reinforce-
ment learning trajectory prediction,” IEEE Transactions on Network
and Service Management, vol. 17, no. 4, pp. 2102–2116, 2020.



[102] A. M. Mustafa, O. M. Abubakr, O. Ahmadien, A. Ahmedin, and
B. Mokhtar, “Mobility prediction for efficient resources manage-
ment in vehicular cloud computing,” in 2017 5th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud), 2017, pp. 53–59.

[103] N. P. Kuruvatti, S. B. Mallikarjun, S. C. Kusumapani, and H. D.
Schotten, “Mobility awareness in cellular networks to support service
continuity in vehicular users,” in 2020 3rd International Conference
on Information and Communications Technology (ICOIACT), 2020, pp.
431–435.

[104] Q. Wu, X. Chen, Z. Zhou, and L. Chen, “Mobile social data learning
for user-centric location prediction with application in mobile edge
service migration,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
7737–7747, 2019.

[105] H. Zhang and L. Dai, “Mobility prediction: A survey on state-of-the-art
schemes and future applications,” IEEE Access, vol. 7, pp. 802–822,
2019.

[106] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey
of machine learning techniques applied to self-organizing cellular
networks,” IEEE Communications Surveys Tutorials, vol. 19, no. 4,
pp. 2392–2431, 2017.

[107] R. Wu, G. Luo, J. Shao, L. Tian, and C. Peng, “Location prediction
on trajectory data: A review,” Big Data Mining and Analytics, vol. 1,
no. 2, pp. 108–127, 2018.

[108] K. Gilly, S. Filiposka, and S. Alcaraz, “Predictive migration
performance in vehicular edge computing environments,” Applied
Sciences, vol. 11, no. 3, 2021. [Online]. Available: https://www.mdpi.
com/2076-3417/11/3/944

[109] S. Moosavi, B. Omidvar-Tehrani, and R. Ramnath, “Trajectory
annotation by discovering driving patterns,” in Proceedings of the 3rd
ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics,
ser. UrbanGIS’17. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3152178.
3152184

[110] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, ser.
NIPS’15. Cambridge, MA, USA: MIT Press, 2015, p. 802–810.

[111] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” CoRR, vol. abs/1611.01578, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01578

[112] N. Spolaôr, E. A. Cherman, M. C. Monard, and H. D. Lee, “Relieff
for multi-label feature selection,” in 2013 Brazilian Conference on
Intelligent Systems, 2013, pp. 6–11.

[113] F. Farahnakian, P. Liljeberg, and J. Plosila, “Lircup: Linear regression
based cpu usage prediction algorithm for live migration of virtual
machines in data centers,” in 2013 39th Euromicro Conference on
Software Engineering and Advanced Applications, 2013, pp. 357–364.

[114] L. Li, J. Dong, D. Zuo, and J. Wu, “Sla-aware and energy-efficient
vm consolidation in cloud data centers using robust linear regression
prediction model,” IEEE Access, vol. 7, pp. 9490–9500, 2019.

[115] M. S. Ricardo, N. Goel, M. Zaman, R. Joshi, M. Daraghmeh, and
A. Agarwal, “Developing machine learning and deep learning models
for host overload detection in cloud data center,” in 2021 IEEE 12th
Annual Information Technology, Electronics and Mobile Communica-
tion Conference (IEMCON), 2021, pp. 0619–0626.

[116] L. LI, J. DONG, D. ZUO, Y. ZHAO, and T. LI, “Sla-aware and energy-
efficient vm consolidation in cloud data centers using host state binary
decision tree prediction model,” IEICE Transactions on Information
and Systems, vol. E102.D, no. 10, pp. 1942–1951, 2019.

[117] P. Nehra and A. Nagaraju, “Host utilization prediction using hybrid
kernel based support vector regression in cloud data centers,” Journal
of King Saud University - Computer and Information Sciences, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1319157821000975

[118] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen, “Virtual
network function migration based on dynamic resource requirements
prediction,” IEEE Access, vol. 7, pp. 112 348–112 362, 2019.

[119] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning
Algorithm for Deep Belief Nets,” Neural Computation, vol. 18,
no. 7, pp. 1527–1554, 07 2006. [Online]. Available: https:
//doi.org/10.1162/neco.2006.18.7.1527

[120] K. Qu, W. Zhuang, X. Shen, X. Li, and J. Rao, “Dynamic resource
scaling for vnf over nonstationary traffic: A learning approach,” IEEE
Transactions on Cognitive Communications and Networking, vol. 7,
no. 2, pp. 648–662, 2021.

[121] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[122] G. Comert and A. Bezuglov, “An online change-point-based model
for traffic parameter prediction,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 3, pp. 1360–1369, 2013.

[123] N. K. Biswas, S. Banerjee, U. Biswas, and U. Ghosh, “An
approach towards development of new linear regression prediction
model for reduced energy consumption and sla violation in the
domain of green cloud computing,” Sustainable Energy Technologies
and Assessments, vol. 45, p. 101087, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2213138821000977

[124] S. Mashhadi Moghaddam, M. O’Sullivan, C. Walker, S. Fotuhi
Piraghaj, and C. P. Unsworth, “Embedding individualized machine
learning prediction models for energy efficient vm consolidation within
cloud data centers,” Future Generation Computer Systems, vol. 106,
pp. 221–233, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167739X19308969

[125] C. Nguyen, C. Klein, and E. Elmroth, “Multivariate lstm-based
location-aware workload prediction for edge data centers,” in 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2019, pp. 341–350.

[126] B. R. Raghunath and A. B., “Prediction based dynamic resource
provisioning in virtualized environments,” in 2017 IEEE International
Conference on Consumer Electronics (ICCE), 2017, pp. 100–105.

[127] K. Mason, M. Duggan, E. Barrett, J. Duggan, and E. Howley,
“Predicting host cpu utilization in the cloud using evolutionary
neural networks,” Future Generation Computer Systems, vol. 86, pp.
162–173, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X17322793

[128] G. J. L. Paulraj, S. A. J. Francis, J. D. Peter, and I. J. Jebadurai,
“A combined forecast-based virtual machine migration in cloud
data centers,” Computers Electrical Engineering, vol. 69, pp.
287–300, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0045790617315732

[129] H.-G. Kim, S.-Y. Jeong, D.-Y. Lee, H. Choi, J.-H. Yoo, and J. W.-
K. Hong, “A deep learning approach to vnf resource prediction using
correlation between vnfs,” in 2019 IEEE Conference on Network
Softwarization (NetSoft), 2019, pp. 444–449.

[130] N. T. Hieu, M. D. Francesco, and A. Ylä-Jääski, “Virtual machine
consolidation with multiple usage prediction for energy-efficient cloud
data centers,” IEEE Transactions on Services Computing, vol. 13, no. 1,
pp. 186–199, 2020.

[131] M. Duggan, K. Mason, J. Duggan, E. Howley, and E. Barrett,
“Predicting host cpu utilization in cloud computing using recurrent
neural networks,” in 2017 12th International Conference for Internet
Technology and Secured Transactions (ICITST), 2017, pp. 67–72.

[132] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Pérez,
“Deepcog: Optimizing resource provisioning in network slicing with
ai-based capacity forecasting,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 361–376, 2020.

[133] D. Bega, M. Gramaglia, R. Perez, M. Fiore, A. Banchs, and X. Costa-
Pérez, “Ai-based autonomous control, management, and orchestration
in 5g: From standards to algorithms,” IEEE Network, vol. 34, no. 6,
pp. 14–20, 2020.

[134] C. Fiandrino, C. Zhang, P. Patras, A. Banchs, and J. Widmer, “A
machine-learning-based framework for optimizing the operation of
future networks,” IEEE Communications Magazine, vol. 58, no. 6, pp.
20–25, 2020.

[135] C. Zhang and P. Patras, “Long-term mobile traffic forecasting
using deep spatio-temporal neural networks,” in Proceedings of
the Eighteenth ACM International Symposium on Mobile Ad Hoc
Networking and Computing, ser. Mobihoc ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 231–240. [Online].
Available: https://doi.org/10.1145/3209582.3209606

[136] K. Park and V. S. Pai, “Comon: A mostly-scalable monitoring system
for planetlab,” SIGOPS Oper. Syst. Rev., vol. 40, no. 1, p. 65–74, jan
2006. [Online]. Available: https://doi.org/10.1145/1113361.1113374

[137] P. Gill, C. Diot, L. Y. Ohlsen, M. Mathis, and S. Soltesz, “M-lab:
User initiated internet data for the research community,” SIGCOMM



Comput. Commun. Rev., vol. 52, no. 1, p. 34–37, mar 2022. [Online].
Available: https://doi.org/10.1145/3523230.3523236

[138] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of ICNN’95 - International Conference on Neural Networks,
vol. 4, 1995, pp. 1942–1948 vol.4.

[139] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[140] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation,”
in Proceedings of IEEE international conference on evolutionary
computation. IEEE, 1996, pp. 312–317.

[141] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM Comput. Surv., vol. 54, no. 2,
mar 2021. [Online]. Available: https://doi.org/10.1145/3439950

[142] A. Frank, D. Yang, A. Brinkmann, M. Schulz, and T. Süss, “Reducing
false node failure predictions in hpc,” in 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics
(HiPC), 2019, pp. 323–332.

[143] K. Haghshenas, A. Pahlevan, M. Zapater, S. Mohammadi, and
D. Atienza, “Magnetic: Multi-agent machine learning-based approach
for energy efficient dynamic consolidation in data centers,” IEEE
Transactions on Services Computing, pp. 1–1, 2019.

[144] D. D. Vu, X. T. Vu, and Y. Kim, “Deep learning-based fault prediction
in cloud system,” in 2021 International Conference on Information
and Communication Technology Convergence (ICTC), 2021, pp. 1826–
1829.

[145] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li,
K. Jiang, W. Zhang, J.-G. Lou, M. Chintalapati, and D. Zhang,
“Improving service availability of cloud systems by predicting disk
error,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, Jul. 2018, pp. 481–
494. [Online]. Available: https://www.usenix.org/conference/atc18/
presentation/xu-yong

[146] Y. Li, Z. M. J. Jiang, H. Li, A. E. Hassan, C. He, R. Huang,
Z. Zeng, M. Wang, and P. Chen, “Predicting node failures in an
ultra-large-scale cloud computing platform: An aiops solution,” ACM
Trans. Softw. Eng. Methodol., vol. 29, no. 2, apr 2020. [Online].
Available: https://doi.org/10.1145/3385187

[147] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,
Y. Wu, R. Yao, M. Chintalapati, and D. Zhang, “Predicting node
failure in cloud service systems,” ser. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 480–490.
[Online]. Available: https://doi.org/10.1145/3236024.3236060

[148] A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: Deep learning for
system health prediction of lead times to failure in hpc,” in Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 40–51. [Online].
Available: https://doi.org/10.1145/3208040.3208051

[149] S. Behera, L. Wan, F. Mueller, M. Wolf, and S. Klasky, “Orchestrating
fault prediction with live migration and checkpointing,” in Proceedings
of the 29th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 167–171. [Online].
Available: https://doi.org/10.1145/3369583.3392672

[150] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday:
Predicting which node will fail when on supercomputers,” in SC18: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 108–121.

[151] S. Nam, J. Hong, J.-H. Yoo, and J. W.-K. Hong, “Virtual machine
failure prediction using log analysis,” in 2021 22nd Asia-Pacific Net-
work Operations and Management Symposium (APNOMS), 2021, pp.
279–284.

[152] D. Lan, A. Taherkordi, F. Eliassen, Z. Chen, and L. Liu, “Deep
reinforcement learning for intelligent migration of fog services in
smart cities,” in Algorithms and Architectures for Parallel Processing,
M. Qiu, Ed. Cham: Springer International Publishing, 2020, pp. 230–
244.

[153] M. Elsaid., H. Abbas., and C. Meinel., “Machine learning approach for
live migration cost prediction in vmware environments,” in Proceedings
of the 9th International Conference on Cloud Computing and Services
Science - CLOSER,, INSTICC. SciTePress, 2019, pp. 456–463.

[154] M. Duggan, J. Duggan, E. Howley, and E. Barrett, “A network aware
approach for the scheduling of virtual machine migration during peak
loads,” Cluster Computing, vol. 20, no. 3, p. 2083–2094, sep 2017.
[Online]. Available: https://doi.org/10.1007/s10586-017-0948-7

[155] M. Zangiabady, A. Garcia-Robledo, J.-L. Gorricho, J. Serrat-
Fernandez, and J. Rubio-Loyola, “Self-adaptive online virtual network
migration in network virtualization environments,” Transactions on
Emerging Telecommunications Technologies, vol. 30, no. 9, p. e3692,
2019, e3692 ett.3692. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/ett.3692

[156] S. W. Park, A. Boukerche, and S. Guan, “A novel deep reinforcement
learning based service migration model for mobile edge computing,”
in 2020 IEEE/ACM 24th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), 2020, pp. 1–8.

[157] C. Fan and L. Li, “Service migration in mobile edge computing based
on reinforcement learning,” Journal of Physics: Conference Series, vol.
1584, p. 012058, 07 2020.

[158] Y. Peng, L. Liu, Y. Zhou, J. Shi, and J. Li, “Deep reinforcement
learning-based dynamic service migration in vehicular networks,” in
2019 IEEE Global Communications Conference (GLOBECOM), 2019,
pp. 1–6.

[159] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-
based service migration procedure for follow me cloud,” in 2014 IEEE
International Conference on Communications (ICC), 2014, pp. 1350–
1354.

[160] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[161] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[162] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
1877–1901. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[163] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang,
and X. Yan, “Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecasting,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
6775a0635c302542da2c32aa19d86be0-Paper.pdf

[164] S. Wu, X. Xiao, Q. Ding, P. Zhao, Y. Wei, and J. Huang,
“Adversarial sparse transformer for time series forecasting,” in
Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 17 105–
17 115. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
file/c6b8c8d762da15fa8dbbdfb6baf9e260-Paper.pdf

[165] A. Ng, “Unbiggen ai,” IEEE Spectrum, vol. 9, 2022.
[166] M. Motamedi, N. Sakharnykh, and T. Kaldewey, “A data-centric

approach for training deep neural networks with less data,” CoRR,
vol. abs/2110.03613, 2021. [Online]. Available: https://arxiv.org/abs/
2110.03613

[167] M. Emu and S. Choudhury, “Ensemble deep learning assisted vnf
deployment strategy for next-generation iot services,” IEEE Open
Journal of the Computer Society, vol. 2, pp. 260–275, 2021.

[168] W. Wang, S. Ge, and X. Zhou, “Location-privacy-aware service migra-
tion in mobile edge computing,” in 2020 IEEE Wireless Communica-
tions and Networking Conference (WCNC), 2020, pp. 1–6.

[169] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE



Journal on Selected Areas in Communications, vol. 36, no. 10, pp.
2333–2345, 2018.

[170] X. Zhao, J. Liu, B. Ji, and L. Wang, “Service migration policy
optimization considering user mobility for e-healthcare applications,”
Journal of Healthcare Engineering, vol. 2021, p. 9922876, Jun 2021.
[Online]. Available: https://doi.org/10.1155/2021/9922876

[171] S. Cao, Y. Wang, and C. Xu, “Service migrations in the cloud
for mobile accesses: A reinforcement learning approach,” in 2017
International Conference on Networking, Architecture, and Storage
(NAS), 2017, pp. 1–10.

[172] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939–951, 2021.

[173] D. Wang, X. Tian, H. Cui, and Z. Liu, “Reinforcement learning-based
joint task offloading and migration schemes optimization in mobility-
aware mec network,” China Communications, vol. 17, no. 8, pp. 31–44,
2020.

[174] L. Rui, M. Zhang, Z. Gao, X. Qiu, Z. Wang, and A. Xiong, “Service
migration in multi-access edge computing: A joint state adaptation and
reinforcement learning mechanism,” Journal of Network and Computer
Applications, vol. 183-184, p. 103058, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804521000825

[175] M. Zhang, H. Huang, L. Rui, G. Hui, Y. Wang, and X. Qiu, “A
service migration method based on dynamic awareness in mobile edge
computing,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations
and Management Symposium, 2020, pp. 1–7.

[176] D. Zeng, L. Gu, S. Pan, J. Cai, and S. Guo, “Resource management
at the network edge: A deep reinforcement learning approach,” IEEE
Network, vol. 33, no. 3, pp. 26–33, 2019.

[177] F. D. Vita, D. Bruneo, A. Puliafito, G. Nardini, A. Virdis, and G. Stea,
“A deep reinforcement learning approach for data migration in multi-
access edge computing,” in 2018 ITU Kaleidoscope: Machine Learning
for a 5G Future (ITU K), 2018, pp. 1–8.

[178] F. De Vita, G. Nardini, A. Virdis, D. Bruneo, A. Puliafito, and G. Stea,
“Using deep reinforcement learning for application relocation in multi-
access edge computing,” IEEE Communications Standards Magazine,
vol. 3, no. 3, pp. 71–78, 2019.

[179] X. Yuan, Y. Zhu, Z. Zhao, Y. Zheng, J. Pan, and D. Liu, “An a3c-based
joint optimization offloading and migration algorithm for sd-wbans,”
in 2020 IEEE Globecom Workshops (GC Wkshps, 2020, pp. 1–6.

[180] H. Ren, Y. Wang, C. Xu, and X. Chen, “Smig-rl: An evolutionary
migration framework for cloud services based on deep reinforcement
learning,” ACM Trans. Internet Technol., vol. 20, no. 4, oct 2020.
[Online]. Available: https://doi.org/10.1145/3414840

[181] H. Wang, Y. Li, A. Zhou, Y. Guo, and S. Wang, “Service
migration in mobile edge computing: A deep reinforcement learning
approach,” International Journal of Communication Systems, vol.
n/a, no. n/a, p. e4413, e4413 dac.4413. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4413

[182] S. Chen, H. Chen, J. Ruan, and Z. Wang, “Context-aware online of-
floading strategy with mobility prediction for mobile edge computing,”
in 2021 International Conference on Computer Communications and
Networks (ICCCN), 2021, pp. 1–9.

[183] W. Chen, Y. Chen, J. Wu, and Z. Tang, “A multi-user service migration
scheme based on deep reinforcement learning and sdn in mobile
edge computing,” Physical Communication, vol. 47, p. 101397, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1874490721001348

[184] F. Brandherm, L. Wang, and M. Mühlhäuser, “A learning-based
framework for optimizing service migration in mobile edge clouds,”
in Proceedings of the 2nd International Workshop on Edge Systems,
Analytics and Networking, ser. EdgeSys ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 12–17. [Online].
Available: https://doi.org/10.1145/3301418.3313939

[185] A. Abouaomar, Z. Mlika, A. Filali, S. Cherkaoui, and A. Kobbane, “A
deep reinforcement learning approach for service migration in mec-
enabled vehicular networks,” in 2021 IEEE 46th Conference on Local
Computer Networks (LCN), 2021, pp. 273–280.

[186] Y. Dai, Q. Zhang, and L. Yang, “Virtual machine migration strategy
based on multi-agent deep reinforcement learning,” Applied Sciences,
vol. 11, p. 7993, 08 2021.

[187] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, “A joint
service migration and mobility optimization approach for vehicular

edge computing,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 8, pp. 9041–9052, 2020.

[188] D. M. Manias, H. Hawilo, and A. Shami, “A machine learning-
based migration strategy for virtual network function instances,” in
Proceedings of the Future Technologies Conference. Springer, Cham,
2020, pp. 563–577.

[189] X. Li, N. Samaan, and A. Karmouch, “An automated vnf manager
based on parameterized action mdp and reinforcement learning,” in
ICC 2021 - IEEE International Conference on Communications, 2021,
pp. 1–6.

[190] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach for
service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM
Transactions on Networking, vol. 25, no. 4, pp. 2008–2025, 2017.

[191] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan, “Learn-as-
you-go with megh: Efficient live migration of virtual machines,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 8, pp.
1786–1801, 2019.

[192] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” 2015, cite arxiv:1511.05952Comment: Published
at ICLR 2016. [Online]. Available: http://arxiv.org/abs/1511.05952

[193] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[194] T. Hirayama, T. Miyazawa, M. Jibiki, and V. P. Kafle, “Service
function migration scheduling based on encoder-decoder recurrent
neural network,” in 2019 IEEE Conference on Network Softwarization
(NetSoft), 2019, pp. 193–197.

[195] X. Bai, H. Lu, and Y. Lu, “Learning framework for virtual network
function instance migration,” in 2018 10th International Conference
on Wireless Communications and Signal Processing (WCSP), 2018,
pp. 1–7.

[196] W. Guan, H. Zhang, and V. C. Leung, “Slice reconfiguration based
on demand prediction with dueling deep reinforcement learning,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[197] R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Toward using
reinforcement learning for trigger selection in network slice mobility,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 7,
pp. 2241–2253, 2021.

[198] J. Yao and M. Chen, “A flexible deployment scheme for virtual
network function based on reinforcement learning,” in 2020 IEEE 6th
International Conference on Computer and Communications (ICCC),
2020, pp. 1505–1510.

[199] J. Chen, J. Chen, and H. Zhang, “Drlec: Multi-agent drl based elasticity
control for vnf migration in sdn/nfv networks,” in 2021 26th IEEE Asia-
Pacific Conference on Communications (APCC), 2021, pp. 89–93.

[200] R. Chen, H. Lu, Y. Lu, and J. Liu, “Msdf: A deep reinforcement
learning framework for service function chain migration,” in 2020 IEEE
Wireless Communications and Networking Conference (WCNC), 2020,
pp. 1–6.

[201] K. Ray, A. Banerjee, and N. C. Narendra, “Proactive microser-
vice placement and migration for mobile edge computing,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp. 28–41.

[202] S. Guo, Y. Dai, S. Xu, X. Qiu, and F. Qi, “Trusted cloud-edge network
resource management: Drl-driven service function chain orchestration
for iot,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6010–6022,
2020.

[203] H. Zhang, R. Wang, W. Sun, and H. Zhao, “Mobility management for
blockchain-based ultra-dense edge computing: A deep reinforcement
learning approach,” IEEE Transactions on Wireless Communications,
vol. 20, no. 11, pp. 7346–7359, 2021.

[204] B. Yang, P. Han, C. Feng, Y. Liu, and L. Guo, “Service migration with
high-order mdp in mobile edge computing,” in 2021 13th International
Conference on Communication Software and Networks (ICCSN), 2021,
pp. 206–212.

[205] C. Wang, J. Peng, F. Jiang, X. Zhang, W. Liu, X. Gu, and Z. Huang,
“An adaptive deep q-learning service migration decision framework
for connected vehicles,” in 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2020, pp. 944–949.

[206] C. Liu, F. Tang, Y. Hu, K. Li, Z. Tang, and K. Li, “Distributed
task migration optimization in mec by extending multi-agent deep
reinforcement learning approach,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1603–1614, 2021.



[207] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli,
and S. Whiteson, “Counterfactual multi-agent policy gradi-
ents,” CoRR, vol. abs/1705.08926, 2017. [Online]. Available:
http://arxiv.org/abs/1705.08926

[208] O. A. Wahab, N. Kara, C. Edstrom, and Y. Lemieux, “Maple: A
machine learning approach for efficient placement and adjustment
of virtual network functions,” Journal of Network and Computer
Applications, vol. 142, pp. 37–50, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804519301924

[209] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration
modeling and learning algorithms for containers in fog computing,”
IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–
725, 2019.

[210] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on
markov decision process,” IEEE/ACM Transactions on Networking,
vol. 27, no. 3, pp. 1272–1288, 2019.

[211] ——, “Dynamic service migration in mobile edge-clouds,” in 2015
IFIP Networking Conference (IFIP Networking), 2015, pp. 1–9.

[212] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A
dynamic service migration mechanism in edge cognitive computing,”
ACM Trans. Internet Technol., vol. 19, no. 2, apr 2019. [Online].
Available: https://doi.org/10.1145/3239565

[213] Y. Wang, S. Cao, H. Ren, J. Li, K. Ye, C. Xu, and X. Chen,
“Towards cost-effective service migration in mobile edge: A q-learning
approach,” Journal of Parallel and Distributed Computing, vol. 146,
pp. 175–188, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0743731520303488

[214] C. Zhang and Z. Zheng, “Task migration for mobile edge computing
using deep reinforcement learning,” Future Generation Computer
Systems, vol. 96, pp. 111–118, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X18329674

[215] Accessed: October 2022. [Online]. Available: https://openai.com/blog/
openai-baselines-ppo/

[216] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling network architectures for deep reinforcement
learning,” 2016.

[217] Z. Liu, W. Qu, W. Liu, and K. Li, “Xen live migration with slowdown
scheduling algorithm,” in 2010 International Conference on Parallel
and Distributed Computing, Applications and Technologies, 2010, pp.
215–221.

[218] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive, memory compression,” in 2009 IEEE Inter-
national Conference on Cluster Computing and Workshops, 2009, pp.
1–10.

[219] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of
delta compression techniques for efficient live migration of large
virtual machines,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser.
VEE ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 111–120. [Online]. Available: https://doi.org/10.
1145/1952682.1952698

[220] C. Jo, Y. Cho, and B. Egger, “A machine learning approach to
live migration modeling,” in Proceedings of the 2017 Symposium on
Cloud Computing, ser. SoCC ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 351–364. [Online]. Available:
https://doi.org/10.1145/3127479.3129262

[221] S. E. Motaki, A. Yahyaouy, and H. Gualous, “A prediction-based model
for virtual machine live migration monitoring in a cloud datacenter,”
Computing, vol. 103, pp. 2711–2735, 2021.

[222] Y. Cho, C. Jo, H. Kim, and B. Egger, “Towards economical live
migration in data centers,” in Economics of Grids, Clouds, Systems,
and Services, K. Djemame, J. Altmann, J. Á. Bañares, O. Agmon
Ben-Yehuda, V. Stankovski, and B. Tuffin, Eds. Cham: Springer
International Publishing, 2020, pp. 173–188.

[223] R. de Jesus Martins, C. B. Both, J. A. Wickboldt, and L. Z. Granville,
“Virtual network functions migration cost: from identification
to prediction,” Computer Networks, vol. 181, p. 107429, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S138912862031118X

[224] M. A. Altahat, A. Agarwal, N. Goel, and M. Zaman, “Neural net-
work based regression model for virtual machines migration method
selection,” in 2021 IEEE International Conference on Communications
Workshops (ICC Workshops), 2021, pp. 1–6.

[225] M. Wajahat, B. Balasubramanian, A. Gandhi, G. Jung, and S. P.
Narayanan, “Merit: Model-driven rehoming for vnf chains,” in 2020
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), 2020, pp. 139–145.

[226] Z. Lei, E. Sun, S. Chen, J. Wu, and W. Shen, “A novel
hybrid-copy algorithm for live migration of virtual machine,”
Future Internet, vol. 9, no. 3, 2017. [Online]. Available: https:
//www.mdpi.com/1999-5903/9/3/37

[227] T.-Y. Wu, N. Guizani, and J.-S. Huang, “Live migration improvements
by related dirty memory prediction in cloud computing,” Journal
of Network and Computer Applications, vol. 90, pp. 83–89, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804517301133

[228] R. Shukla, R. K. Gupta, and R. Kashyap, “A multiphase pre-copy
strategy for the virtual machine migration in cloud,” in Smart Intelligent
Computing and Applications, S. C. Satapathy, V. Bhateja, and S. Das,
Eds. Singapore: Springer Singapore, 2019, pp. 437–446.

[229] R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Ai-based
network-aware service function chain migration in 5g and beyond
networks,” IEEE Transactions on Network and Service Management,
pp. 1–1, 2021.

[230] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

[231] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, vol. 8, pp.
108 952–108 971, 2020.

[232] F. Wilhelmi, M. Carrascosa, C. Cano, A. Jonsson, V. Ram, and
B. Bellalta, “Usage of network simulators in machine-learning-assisted
5g/6g networks,” IEEE Wireless Communications, vol. 28, no. 1, pp.
160–166, 2021.

[233] J. Xu and Z. Zhu, “Reinforced continual learning,” in
Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,
2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/
file/cee631121c2ec9232f3a2f028ad5c89b-Paper.pdf

[234] O. Ostapenko, P. Rodriguez, M. Caccia, and L. Charlin,
“Continual learning via local module composition,” in Advances
in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 30 298–
30 312. [Online]. Available: https://proceedings.neurips.cc/paper/2021/
file/fe5e7cb609bdbe6d62449d61849c38b0-Paper.pdf

[235] Q. Pham, C. Liu, and S. Hoi, “Dualnet: Continual learning, fast
and slow,” in Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 16 131–
16 144. [Online]. Available: https://proceedings.neurips.cc/paper/2021/
file/86a1fa88adb5c33bd7a68ac2f9f3f96b-Paper.pdf

[236] Q. Gao, Z. Luo, D. Klabjan, and F. Zhang, “Efficient architecture search
for continual learning,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–11, 2022.

[237] J. Xu, J. Ma, X. Gao, and Z. Zhu, “Adaptive progressive continual
learning,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 44, no. 10, pp. 6715–6728, 2022.

[238] Z. Wang, C. Chen, and D. Dong, “Lifelong incremental reinforcement
learning with online bayesian inference,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 8, pp. 4003–4016, 2022.

[239] P. Singh, V. K. Verma, P. Mazumder, L. Carin, and P. Rai, “Calibrating
cnns for lifelong learning,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 15 579–15 590. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/b3b43aeeacb258365cc69cdaf42a68af-Paper.pdf

[240] P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, and P. M.
Atkinson, “Explainable artificial intelligence: an analytical review,”
WIREs Data Mining and Knowledge Discovery, vol. 11, no. 5,
p. e1424, 2021. [Online]. Available: https://wires.onlinelibrary.wiley.
com/doi/abs/10.1002/widm.1424

[241] L. Wells and T. Bednarz, “Explainable ai and reinforcement
learning—a systematic review of current approaches and trends,”
Frontiers in Artificial Intelligence, vol. 4, 2021. [Online]. Available:
https://www.frontiersin.org/article/10.3389/frai.2021.550030



[242] A. Heuillet, F. Couthouis, and N. Dı́az-Rodrı́guez, “Explainability in
deep reinforcement learning,” Knowledge-Based Systems, vol. 214,
p. 106685, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950705120308145

[243] N. Burkart and M. F. Huber, “A survey on the explainability of super-
vised machine learning,” Journal of Artificial Intelligence Research,
vol. 70, pp. 245–317, 2021.

[244] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K. Q. Weinberger, Eds., vol. 24. Curran Associates, Inc.,
2011. [Online]. Available: https://proceedings.neurips.cc/paper/2011/
file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[245] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231220311693

[246] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
machine learning. Springer, Cham, 2019, pp. 3–33.

[247] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular
edge computing and networking: A survey,” Mobile Networks and
Applications, vol. 26, no. 3, pp. 1145–1168, Jun 2021. [Online].
Available: https://doi.org/10.1007/s11036-020-01624-1

[248] A. Boukerche and R. E. De Grande, “Vehicular cloud computing:
Architectures, applications, and mobility,” Computer Networks, vol.
135, pp. 171–189, 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1389128618300057

[249] S. Olariu, “A survey of vehicular cloud research: Trends, applications
and challenges,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 21, no. 6, pp. 2648–2663, 2020.

[250] C. Tang, S. Xia, Q. Li, W. Chen, and W. Fang, “Resource
pooling in vehicular fog computing,” Journal of Cloud Computing,
vol. 10, no. 1, p. 19, Feb 2021. [Online]. Available: https:
//doi.org/10.1186/s13677-021-00233-x

[251] F. Dressler, G. S. Pannu, F. Hagenauer, M. Gerla, T. Higuchi, and
O. Altintas, “Virtual edge computing using vehicular micro clouds,”
in 2019 International Conference on Computing, Networking and
Communications (ICNC), 2019, pp. 537–541.

[252] F. Dressler, C. F. Chiasserini, F. H. Fitzek, H. Karl, R. L. Cigno,
A. Capone, C. Casetti, F. Malandrino, V. Mancuso, F. Klingler, and
G. Rizzo, “V-edge: Virtual edge computing as an enabler for novel
microservices and cooperative computing,” IEEE Network, vol. 36,
no. 3, pp. 24–31, 2022.


