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Development of numerical accuracy indicators for the far-field exergy balance method

The exergy balance method presents a relatively new paradigm for performance assessment based on the analysis of aerodynamic flows. It is particularly interesting for cases involving strong engine/airframe interactions as well as for coupled aero-thermal analyses, since it includes both mechanical and thermal effects into a single framework. Methods of this kind are very interesting for the analysis of numerical solutions, where flowfield details are accessible and which constitute the basis of the vast majority of design studies. CFD solutions themselves can however be marked by the presence of numerical errors of different sources, yet their influence on the performance analysis obtained by balance methods is a subject seldom addressed in the literature. This paper presents the development of appropriate metrics in order to reliably measure the accuracy of the exergy balance at the discrete level. The main argument presented is that since components of the exergy balance are linked to different irreversible and reversible phenomena, they can be affected by numerical error through different mechanisms. A decomposition of this error can therefore provide an interesting insight into different sources of inaccuracy that may be present in the balance computed on a given case. Such metrics can therefore be a practical complement to classical metrics used in performance evaluation (e.g. convergence of residual norms and near-field integrals), which on their own may be found to be inadequate in the case of methods aiming at analyzing the flowfield details.

I. Introduction

A erodynamic performance analysis methods are essential to performance prediction and improvement, and thus continue to be a core subject of applied aerodynamics research. One of the most important design parameters in external flows is the aerodynamic drag. Aerodynamic performance improvement relies on its accurate prediction, both in terms of accuracy and phenomenological decomposition. The standard approach for drag evaluation is the integration of forces along the surface of an aircraft, which is the so-called near-field approach. This however is limited in terms of physical insight, as drag can only directly be decomposed into a pressure and a friction component. This drawback has been a motivating factor for the development of far-field methods, which instead compute drag based on integrals in the flow field [START_REF] Van Der Vooren | Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components[END_REF][START_REF] Destarac | Far-Field / Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF][START_REF] Tognaccini | Aerodynamic force breakdown: Thermodynamic vs Vortex-force methods[END_REF][START_REF] Fournis | Invariant Vortex-Force Theory Extending Classical Aerodynamic Theories to Transonic Flows[END_REF]. On the one hand, this approach gives a further decomposition of drag into a viscous, induced and wave drag component. This is a precious insight both in the research field, where this approach is used for physical analyses [START_REF] Toubin | Improved unsteady far-field drag breakdown method and application to complex cases[END_REF][START_REF] Hue | Experimental and Numerical Methods for Transition and Drag Predictions of Laminar Airfoils[END_REF][START_REF] Hue | Fifth Drag Prediction Workshop: ONERA Investigations with Experimental Wing Twist and Laminarity[END_REF][START_REF] Hantrais-Gervois | Drag Polar Invariance with Flexibility[END_REF][START_REF] Petropoulos | Numerical aerodynamic performance assessment of HLFC wing configurations using far-field drag analysis[END_REF], and in the industry, where the decomposition gives a basis for design improvements or optimizations. On the other hand, some far-field approaches have been shown to be less sensitive to numerical errors, allowing the exclusion of a spurious drag component associated to errors present in the solution [START_REF] Van Der Vooren | Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components[END_REF][START_REF] Destarac | Far-Field / Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF][START_REF] Destarac | Three-Component Breakdown of Spurious Drag in Computational Fluid Dynamics[END_REF][START_REF] Destarac | Spurious far-field-boundary induced drag in two-dimensional flow simulations[END_REF][START_REF] Destarac | Investigating Negative Drag in Grid Convergence for Two-Dimensional Euler Solutions[END_REF]. Several methods of drag breakdown have thus been developed, either for the analysis of wind tunnel experiments or of numerical solutions [START_REF] Tognaccini | Aerodynamic force breakdown: Thermodynamic vs Vortex-force methods[END_REF][START_REF] Bailly | An Overview of ONERA Research Activities Related to Drag Analysis and Breakdown[END_REF][START_REF] Hart | Drag Decomposition Using Partial-Pressure Fields: ONERA M6 Wing[END_REF]. An important aspect is finally that of drag-thrust bookkeeping, which is an essential engineering aspect in aircraft design [START_REF] Van Der Vooren | Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components[END_REF][START_REF] Tognaccini | Methods for Drag Decomposition, Thrust-Drag Bookkeeping from C.F.D. Calculations[END_REF][START_REF] Drela | Considerations in Aerodynamic Force Decomposition[END_REF].

More recently, the scope of aerodynamic performance assessment has been extended beyond aerodynamic drag. A notable example concerns approaches based on the analysis of mechanical energy, such as the power balance method [START_REF] Drela | Power balance in aerodynamic flows[END_REF][START_REF] Sato | The Power Balance Method For Aerodynamic Performance Assessment[END_REF][START_REF] Sanders | Full-Aircraft Energy-Based Force Decomposition Applied to Boundary-Layer Ingestion[END_REF]. Another concerns approaches based on the thermodynamic notion of exergy, which expresses the maximum theoretically recoverable mechanical work that can be extracted from a system with respect to the reference conditions of a heat reservoir [START_REF] Arntz | Exergy-Based Formulation for Aircraft Aeropropulsive Performance Assessment: Theoretical Development[END_REF][START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF][START_REF] Aguirre | Exergetic Drag Characteristic Curves[END_REF][START_REF] Berhouni | Exergy Balance Extension to Rotating Reference Frames: Application to a Propeller Configuration[END_REF][START_REF] Ruscio | Unsteady exergy analysis of an airfoil (OAT15A) under transonic buffet condition[END_REF][START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF][START_REF] Berhouni | Exergetic analysis of the NASA rotor 37 compressor test case[END_REF]. The above innovative approaches have three distinct advantages with respect to classical momentum-based methods:

• They are more appropriate for tackling the difficulty of drag-thrust bookkeeping in configurations involving strong engine-airframe interactions, a notable example of which is the Boundary-Layer Ingestion (BLI) concept. The above methods provide a more appropriate evaluation of overall performance, by the study of kinetic energy perturbations and the power/exergy consumption of the propulsor. • They can provide a detailed physical decomposition in terms of the propulsion system, the kinetic (and thermal in the case of exergy) outflows from the control volume, as well as the sources of volume dissipation or irreversible loss of exergy. As such, this kind of analysis provides a useful physical insight even for classical configurations where momentum-based far-field methods are also applicable without ambiguity. • The third advantage concerns their applicability and pertinence in the domain of internal flows, and turbomachinery flows in particular. In such configurations drag is not a primary design parameter, but standard performance analysis methods are often entropy-based (e.g. [START_REF] Denton | The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines[END_REF]). Finally, an additional advantage of exergy-based formulations is the inclusion of thermal effects in the analysis.

Despite their novelty, such methods have also been employed in the detailed analysis of wind tunnel measurements. The power balance framework has been employed in the analysis of the BLI aerodynamic benefit [START_REF] Uranga | Analysis of the Aerodynamic Benefit from Boundary Layer Ingestion for Transport Aircraft[END_REF], whereas wind-tunnel adaptations of the exergy-based analysis have been investigated with the purpose of defining an exergy-based drag coefficient [START_REF] Aguirre | Exergy analysis of innovative aircraft with aeropropulsive coupling[END_REF].

It can however be argued that such methods are particularly adapted to the analysis of numerical solutions. On the one hand, this is the approach followed in the vast majority of design studies, before refined concepts are passed to the wind tunnel. A numerical approach allows broad exploratory studies at a low cost, but it is also commonly used for fine design refinements (shape optimization, engine integration, ...). On the other hand, contrary to near-field methods which rely on forces along the aircraft skin or propulsor surface, their far-field counterparts are based on the analysis of flowfield details far from the surface. This kind of detail is more readily accessible in numerical solutions compared to experiments, where flowfield details are limited and harder to obtain.

However, although numerical errors are present in CFD solutions, their influence is not often given sufficient attention or considered limited in far-field performance analyses. The nature and sources of error can be very different depending on the type of discretization or the underlying solver equations (e.g. viscous-inviscid interaction, lattice Boltzmann, Lagrangian methods). Most solutions in the aerospace field are however computed using compressible finite-volume Navier-Stokes solvers. These may be polluted by errors arising from the use of different solver techniques. The most common ones are inaccuracies due to an insufficient convergence of the iterative solver or due to degraded mesh quality, especially in realistic cases involving complex geometrical details. Even if the aforementioned factors are addressed in an overall satisfactory level, errors may remain present in the solutions. Major remaining errors of this type are the well-known influence of numerical dissipation in the solution, or that associated to turbulence modelling. Such errors may be acceptable in early design and exploratory phases, whose primary objective is the identification of trends and a general order of magnitude is adequate. On the other hand, novel methods of this kind are usually applied and presented in academic or sufficiently simple research configurations, where the aforementioned errors can easily be limited to a second-order influence with respect to physical phenomena. They cannot however be considered negligible in general cases of complex configurations, where issues such as grid imperfections may be present but accuracy is essential in order to reach fine performance gains.

The present paper is dedicated to the study of the influence of numerical errors in results of the exergy balance method, following previous studies aiming at better clarifying this aspect [START_REF] Petropoulos | Numerical investigations of the exergy balance method for aerodynamic performance evaluation[END_REF]. In particular, the present work aims at investigating metrics which are capable of identifying these errors, as well as at providing a clearer understanding of their sources. Sec. II describes the exergy balance formulation and the theoretical derivation of accuracy metrics. At a following step, Sec. III presents numerical applications on the inviscid flow around a NACA0012 airfoil and the viscous flow around the NASA Common Research Model.

II. Far-field exergy balance formulation

A. Exergy definition

The analysis is performed for a fluid volume surrounded by a thermodynamic reservoir, the two of which may exchange mechanical work, heat and mass. Without loss of generality, in the following we shall consider a case of external aerodynamics, performed in a reference frame 𝑅 attached to the aircraft.

Exergy is defined as the maximum mechanical work that can be recovered from the mechanical and thermal processes that the fluid undergoes during its evolution towards the dead state [START_REF] Çengel | Thermodynamics: An Engineering Approach[END_REF]. It corresponds to a maximal theoretically recoverable work in the sense that it corresponds to the complete recovery of mechanical energy and the optimal recovery of thermal energy by a Carnot machine.

Under consideration of a perfect gas and neglecting the gravitational potential energy, specific exergy is expressed by:

𝜒 = 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 -𝑇 ∞ 𝛿𝑠 + 1 2 (V -V ∞ ) 2 (1)
where 𝜌 is static density, 𝑒 is specific internal energy, 𝑇 is static temperature, 𝑝 is static pressure and 𝑠 is specific entropy. In addition, 𝛿 (•) = (•) -(•) ∞ is the perturbation of a quantity with respect to the reference state (denoted by the subscript ∞ ). Eq. ( 1) is a recently-proposed corrected adaptation of the exergy definition for aerodynamic flows [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF], concerning in particular its kinetic energy component. Regarding thermodynamic variables, the reference state quantities correspond to the reservoir conditions, which is commonly taken as that of the freestream flow in external aerodynamics applications. It is important to note that it has been chosen to define exergy for a flow that is at rest in the geocentric reference frame and not in the translating reference frame attached to the aircraft [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF]. The kinetic energy component in Eq. ( 1) thus corresponds to that in the geocentric reference frame, which in turn is viewed as a perturbation kinetic energy in the translating reference frame. Therefore, the non-zero freestream flow velocity V ∞ in the kinetic energy term actually corresponds to the opposite of the velocity of the translating reference frame attached to the aircraft (as in classical analyses in the field of applied aerodynamics). Finally, this quantity is always positive. In other words, a potential for mechanical work recovery always exists, given that the fluid is not at a thermodynamic equilibrium with its dead state [START_REF] Çengel | Thermodynamics: An Engineering Approach[END_REF].

When considering a steady stream of matter, the specific flow exergy definition can be introduced:

𝜒 𝑓 = 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 -𝑇 ∞ 𝛿𝑠 + 𝛿 𝑝 𝜌 + 1 2 (V -V ∞ ) 2 = 𝛿ℎ -𝑇 ∞ 𝛿𝑠 + 1 2 (V -V ∞ ) 2 (2) 
which includes the transfer power of the pressure forces driving the flow in motion. Above, ℎ denotes specific enthalpy. Note that flow exergy is not always positive, but depends on the above pressure difference (cf. Eq.( 2)).

B. Formulation of the exergy balance

A far-field balance of exergy was recently developed for aerodynamic performance assessment based on the analysis of flow solutions [START_REF] Arntz | Exergy-Based Formulation for Aircraft Aeropropulsive Performance Assessment: Theoretical Development[END_REF][START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF]. This method has been further investigated theoretically with a particular interest in wind-tunnel experiments [START_REF] Aguirre | Exergy analysis of innovative aircraft with aeropropulsive coupling[END_REF] or for the analysis of unsteady flows [START_REF] Ruscio | Unsteady exergy analysis of an airfoil (OAT15A) under transonic buffet condition[END_REF]. Further studies of this method have recently derived an unsteady exergy balance based on a corrected adaptation of the exergy definition in translating frames of reference (e.g. attached to an aircraft in motion) [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF]. In addition, this formulation has been extended to steady solutions in a rotating frame of reference for the investigation of rotating elements [START_REF] Berhouni | Exergy Balance Extension to Rotating Reference Frames: Application to a Propeller Configuration[END_REF][START_REF] Berhouni | Exergetic analysis of the NASA rotor 37 compressor test case[END_REF]. The present section briefly presents the derivation of the exergy balance, in order to introduce the terms presented in Sec. II.C. The derivation closely follows Ref. [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF] using the corrected exergy definition of Eq. ( 1), but directly in the translating reference frame attached to the aircraft.

The balance equations presented in the following sections are derived in an unsteady framework, including the presence of eventual discontinuities in the control volumes. So far, they have however only been numerically applied to the analysis of steady flows.

Conservation equations

The Navier-Stokes equations expressed in a reference frame 𝑅 attached to the aircraft can be written as:

∫ Ω 𝜕 𝜌 𝜕𝑡 𝑑Ω = - ∫ 𝜕Ω 𝜌V • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌W⟧ • n 𝑑𝑆 (3) ∫ Ω 𝜕 𝜌V 𝜕𝑡 𝑑Ω = - ∫ 𝜕Ω 𝜌V ⊗ V + ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌V ⊗ W⟧ • n 𝑑𝑆 (4) ∫ Ω 𝜕 𝜌𝐸 𝜕𝑡 𝑑Ω = - ∫ 𝜕Ω 𝜌𝐸V + 𝑝𝐼 -𝜏 • V + q • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌𝐸W⟧ • n 𝑑𝑆 (5) 
where 𝐸 = 𝑒 + V 2 /2 is the total energy defined using the velocity expressed in the reference frame 𝑅, q is the heat flux.

In addition, 𝑆 𝑤 denotes the discontinuous surface of a shockwave attached to the aircraft and moving at a velocity W, whereas ⟦•⟧ denotes the jump across the discontinuity surface. Note also that Ω = Ω(𝑡).

Using the mass conservation equation (3), Eq. ( 5) gives:

∫ Ω 𝜕 𝜌𝛿𝐸 𝜕𝑡 𝑑Ω = - ∫ 𝜕Ω 𝜌𝛿𝐸V + 𝑝𝐼 -𝜏 • V + q • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌𝛿𝐸W⟧ • n 𝑑𝑆 (6) 
Note that Eqs. ( 5) and ( 6) express the conservation of total energy defined using the velocity expressed in the reference frame 𝑅. Although the total energy defined in 𝑅 is not equal to that defined in the geocentric reference frame R ( Ẽ = 𝑒 + Ṽ2 /2 = 𝑒 + (V -V ∞ ) 2 /2), both are conserved. This aspect is important to note because exergy is defined for a dead state at rest in R and not in 𝑅 (cf. Eq. ( 1)). The same form of conservation equation can thus be written for total energy defined in R:

∫ Ω 𝜕 𝜌𝛿 Ẽ 𝜕𝑡 𝑑Ω = - ∫ 𝜕Ω 𝜌𝛿 ẼV + 𝑝𝐼 -𝜏 • (V -V ∞ ) + q • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌𝛿 ẼW⟧ • n 𝑑𝑆 (7) 
which in the above form is however written in the reference frame 𝑅. It should be noted that

𝛿 Ẽ = 𝛿𝑒 + Ṽ2 /2 = 𝛿𝑒 + (V + V 𝑅 ) 2 /2 = 𝛿𝑒 + (V -V ∞ ) 2 /2
(where V 𝑅 is the translation velocity of 𝑅) since the reference state in the exergy definition of Eq. ( 1) is at rest in R.

The compatibility equations across the shockwave for the above system can be written as:

⟦𝜌(V -W)⟧ • n = 0 (8) ⟦𝜌V ⊗ (V -W) + 𝑝𝐼 -𝜏⟧ • n = 0 (9) ⟦𝜌𝐸 (V -W) + 𝑝𝐼 -𝜏 • V + q⟧ • n = 0 (10)

Entropy balance

A balance equation for entropy can be obtained starting from the Gibbs equation, applied to a fluid element for a time variation 𝑑𝑡:

𝑇 𝑑𝑠 𝑑𝑡 = 𝑑𝑒 𝑑𝑡 - 𝑝 𝜌 2 𝑑𝜌 𝑑𝑡 (11) 
which may also be expressed as:

𝜌 𝑑𝑠 𝑑𝑡 = - 1 𝑇 ∇ • q + 1 𝑇 𝜏 • ∇ • V (12) 
An integration over a control volume then gives:

∫ Ω 𝜕 𝜌𝑠 𝜕𝑡 + ∇ • (𝜌𝑠V) 𝑑Ω = ∫ Ω - 1 𝑇 ∇ • q 𝑑Ω + ∫ Ω 1 𝑇 𝜏 • ∇ • V 𝑑Ω (13) 
Where we can introduce the Fourier law q = -𝑘∇𝑇 and 𝜙 = (𝜏 • ∇) • V, as well as multiply by 𝑇 ∞ to obtain the following form of the entropy equation:

𝑇 ∞ ∫ Ω 𝜕 𝜌𝑠 𝜕𝑡 + ∇ • (𝜌𝑠V) 𝑑Ω = - ∫ Ω ∇ • 𝑇 ∞ 𝑇 q 𝑑Ω + ∫ Ω 𝑇 ∞ 𝑇 2 𝑘 (∇𝑇) 2 𝑑Ω + ∫ Ω 𝑇 ∞ 𝑇 𝜙 𝑑Ω (14) 
which, using the divergence theorem and the mass conservation equation, can be rewritten as:

𝑇 ∞ ∫ Ω 𝜕 𝜌𝛿𝑠 𝜕𝑡 𝑑Ω = -𝑇 ∞ ∫ 𝜕Ω 𝜌𝛿𝑠V • n 𝑑𝑆 - ∫ 𝜕Ω 𝑇 ∞ 𝑇 q • n 𝑑𝑆 + ∫ Ω 𝑇 ∞ 𝑇 2 𝑘 (∇𝑇) 2 𝑑Ω + ∫ Ω 𝑇 ∞ 𝑇 𝜙 𝑑Ω + 𝑇 ∞ ∫ 𝑆 𝑤 ⟦ 1 𝑇 q + 𝜌𝛿𝑠V⟧ • n 𝑑𝑆 (15) 
Above, 𝑘 is thermal conductivity and 𝜙 is the rate of dissipation per unit volume, both of them corresponding to effective dynamic viscosity.

Exergy balance

On the basis of the exergy definition of Eq. ( 1), the variation of exergy in the control volume can be expressed as:

∫ Ω 𝜕 𝜌 𝜒 𝜕𝑡 𝑑Ω + ∫ 𝜕Ω 𝜌 𝜒V • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌 𝜒W⟧ • n 𝑑𝑆 = ∫ Ω 𝜕 𝜕𝑡 𝜌𝛿𝑒 -𝜌𝑇 ∞ 𝛿𝑠 + 1 2 𝜌 (V -V ∞ ) 2 𝑑Ω + ∫ 𝜕Ω 𝜌𝛿𝑒 -𝜌𝑇 ∞ 𝛿𝑠 + 1 2 𝜌 (V -V ∞ ) 2 V • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌 𝛿𝑒 -𝑇 ∞ 𝛿𝑠 + 1 2 (V -V ∞ ) 2 W⟧ • n 𝑑𝑆 + ∫ Ω 𝜕 𝜕𝑡 𝜌 𝑝 ∞ 𝛿 1 𝜌 𝑑Ω + ∫ 𝜕Ω 𝜌 𝑝 ∞ 𝛿 1 𝜌 V • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌 𝑝 ∞ 𝛿 1 𝜌 W⟧ • n 𝑑𝑆 (16) 
At this point, it is useful to consider a separation of exergy (cf. Eq. ( 1)) into a static and a dynamic component (i.e. perturbation kinetic energy):

𝜒 = 𝜒 𝑠 + 𝜒 𝑑 𝜒 𝑠 = 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 -𝑇 ∞ 𝛿𝑠 𝜒 𝑑 = 1 2 (V -V ∞ ) 2 (17) 
The left-hand side of Eq. ( 16) can be decomposed using Eq. ( 17), whereas its right-hand side can be expressed using Eqs. ( 3), ( 7) and ( 15) as follows:

∫ Ω 𝜕 𝜌( 𝜒 𝑠 + 𝜒 𝑑 ) 𝜕𝑡 𝑑Ω X(𝑡 ) = - ∫ 𝜕Ω 𝜌 𝜒 𝑑 V • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌 𝜒 𝑑 W⟧ • n 𝑑𝑆 - ∫ 𝜕Ω ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • (V -V ∞ ) • n 𝑑𝑆 X 𝑚 - ∫ 𝜕Ω 𝜌 𝜒 𝑠 V • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌 𝜒 𝑠 W⟧ • n 𝑑𝑆 X 𝑡 ℎ - ∫ 𝜕Ω 1 - 𝑇 ∞ 𝑇 q • n 𝑑𝑆 X 𝑞 - ∫ Ω 𝑇 ∞ 𝑇 𝜙 𝑑Ω A 𝜙 - ∫ Ω 𝑇 ∞ 𝑇 2 𝑘 (∇𝑇) 2 𝑑Ω A ∇𝑇 -𝑇 ∞ ∫ 𝑆 𝑤 ⟦ 1 𝑇 q + 𝜌𝛿𝑠(V -W)⟧ • n 𝑑𝑆 A 𝑤 (18) 
In the above balance, different terms have been regrouped with respect to their physical content. X(𝑡) is the unsteady rate of exergy change within the control volume. X 𝑚 , X 𝑡 ℎ and X 𝑞 respectively represent the fluxes of mechanical exergy, of thermocompressible (or static) exergy and of exergy transfer due to thermal conduction across the control volume boundaries. The mechanical exergy flux X 𝑚 is composed of the flux of perturbation kinetic energy and the transfer power of surface forces on the volume boundary associated to the velocity perturbation in the reference frame 𝑅. Note that as this term is of mechanical nature and therefore theoretically fully recoverable, the terms mechanical energy and mechanical exergy are interchangeable, i.e. X 𝑚 = 𝐸 𝑚 . Finally, the last three terms represent the anergy generation (i.e. irreversible loss, or destruction, of exergy) within the control volume, respectively due to viscous effects, thermal mixing and the presence of shockwaves. Further manipulations of Eq. ( 18) are interesting for practical applications. A first step is the decomposition of flux terms across the control volume boundary into the near-field boundary 𝑆 𝑏 (i.e. the aircraft skin and potentially the boundary surfaces of the propulsion system) and the far-field boundary 𝑆 𝑜 . This gives the following balance:

X 𝑏 𝑚 + X 𝑏 𝑡 ℎ + X 𝑏 𝑞 = X(𝑡) + X 𝑜 𝑚 + X 𝑜 𝑡 ℎ + X 𝑜 𝑞 + A 𝜙 + A ∇𝑇 + A 𝑤 ( 19 
)
where the superscripts 𝑏 and 𝑜 denote an integration across the corresponding boundary surface. Note that the sign convention of the integrands is reversed between these two surfaces, so that near-field fluxes correspond to an inflow and far-field fluxes correspond to an outflow (i.e. X (•) = X 𝑏 (•) -X 𝑜 (•) ). The following manipulation step concerns a decomposition of the near-field flux of exergy as: where:

X 𝑏 𝑚 + X 𝑏 𝑡 ℎ = X 𝑏 = X 𝑏 𝑡 𝑓 + X 𝑏 𝑡𝑟 ( 20 
) 𝑥 𝑧 𝑦 𝑆 𝑏 ì 𝑛 A 𝜙 , A ∇𝑇 A 𝜙 , A ∇𝑇 𝑉 ∞ 𝑉 ∞ 𝑆 𝑜 ì 𝑛 Ω 𝑤 A 𝑤 ì 𝑛 ì 𝑞 X 𝑏 𝑞 ì 𝑛 X 𝑏 𝑡 𝑓 𝐸 𝑢 𝑥 𝐸 𝑣𝑤 X 𝑜 𝑚 = 𝐸 𝑢 + 𝐸 𝑣𝑤 + 𝐸 𝑝 𝜏
X 𝑏 𝑡 𝑓 = - ∫ 𝑆 𝑏, 𝑝 𝜌 𝜒 𝑠 + 1 2 𝑉 2 V + ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • V • n 𝑑𝑆 (21) 
and:

X 𝑏 𝑡𝑟 = -V ∞ • ∫ 𝑆 𝑏 𝜌V ⊗ V + ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • n 𝑑𝑆 + ∫ 𝑆 𝑏, 𝑝 1 2 𝑉 2 ∞ 𝜌V • n 𝑑𝑆 = -V ∞ • ∫ 𝑆 𝑏, 𝑝 𝜌V ⊗ V + ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • n 𝑑𝑆 + ∫ 𝑆 𝑏, 𝑝 1 2 𝑉 2 ∞ 𝜌V • n 𝑑𝑆 -V ∞ • ∫ 𝑆 𝑏,𝑠 ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • n 𝑑𝑆 (22) 
In the above, the near-wall boundary is decomposed into permeable surfaces 𝑆 𝑏, 𝑝 (e.g. propulsion surface boundaries) 𝑆 and non-permeable solid surfaces 𝑆 𝑏,𝑠 (e.g. aircraft skin), i.e. 𝑆 𝑏 = 𝑆 𝑏, 𝑝 ∪ 𝑆 𝑏,𝑠 . The above decomposition is obtained by separating contributions related to the change of reference frame from R to 𝑅 (attached to the aircraft and translating at velocity V ∞ ). X 𝑏 𝑡 𝑓 is referred to as throughflow exergy and is the flux of flow exergy across permeable parts of 𝑆 𝑏 (but defined using a dead state at rest in 𝑅). Since this is defined in 𝑅, the difference between it and the real flux of flow exergy (defined with respect to a dead state at rest in the geocentric reference frame R) is X 𝑏 𝑡𝑟 . The above decomposition is practical because X 𝑏 𝑡𝑟 is equal to the rate of work of the overall streamwise forces (in R), plus an additional component related to kinetic energy variation which is non-zero in the case of a massflow rate variation along 𝑆 𝑏 . On the other hand, X 𝑏 𝑡 𝑓 corresponds to the flux of flow exergy perceived in the case where V ∞ = 0, i.e. R = 𝑅 (e.g. wind-tunnel testing). This aspect is thoroughly discussed in Ref. [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF].

We therefore obtain the following exergy balance:

X 𝑏 𝑡 𝑓 + X 𝑏 𝑞 = X(𝑡) + X 𝑏 𝑡𝑟 + X 𝑜 𝑚 + X 𝑜 𝑡 ℎ + X 𝑜 𝑞 + A 𝜙 + A ∇𝑇 + A 𝑤 ( 23 
)
in which the mechanical exergy flux can be decomposed into three components as follows:

X 𝑜 𝑚 = 𝐸 𝑢 + 𝐸 𝑣𝑤 + 𝐸 𝑝𝜏 ( 24 
)
𝐸 𝑢 = ∫ 𝑆 𝑜 𝜌 1 2 𝑢 2 V • n 𝑑𝑆 𝐸 𝑣𝑤 = ∫ 𝑆 𝑜 𝜌 1 2 (𝑣 2 + 𝑤 2 )V • n 𝑑𝑆 𝐸 𝑝 𝜏 = ∫ 𝑆 𝑜 ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • (V -V ∞ ) • n 𝑑𝑆 (25 
) where 𝑢, 𝑣, 𝑤 are the velocity perturbation components. The first terms are respectively the streamwise and transversal perturbation kinetic energy components, whereas the third is the rate of work of surface forces associated to these velocity perturbations. A schematic illustration of some of these components in a generic configuration is shown in Fig. 1.

C. Indicators of numerical accuracy

Although the exergy balance derived in Sec. II.B is exact at the continuous level, it is rarely exactly verified in the case of numerical simulations. The reason for this discrepancy is that errors associated to the numerical discretization lead to the continuous conservation equations not being exactly satisfied at the discrete level. As discussed in Sec. I, these sources of error can be diverse and often specific to the solver methods used to compute the flow solutions under investigation.

In particular, previous studies have identified that some components of the exergy balance may have a different sensitivity to numerical errors (e.g. insufficient convergence) than classical metrics such as residual norms and integral force coefficients [START_REF] Petropoulos | Numerical investigations of the exergy balance method for aerodynamic performance evaluation[END_REF]. As the exergy balance method is rather new in applied aerodynamics, the risk of drawing conclusions based on inaccurate solutions may therefore be notable in practice. On this basis, the objective of this section is to discuss ways to reliably identify the influence of these errors.

The main argument of this section is the fact that the exergy balance is composed on the basis of different balance equations and that, in practice, these may be affected by numerical errors in different ways. For example, total energy is a conservative variable of the state vector in most compressible CFD formulations. It is thus resolved directly by the solver. Other conservation or transport equations aren't however directly resolved, but computed a posteriori from the flow solution. A notable example of this type is vorticity, which is computed from primitive variable gradients and can be strongly affected by the grid density, the numerical dissipation, the gradient approximation scheme and the turbulence model, among others [START_REF] Petropoulos | Study of high-order vorticity confinement schemes[END_REF]. It seems therefore appropriate to consider appropriate metrics for the balance equation under investigation, rather than solely rely on metrics that might only be appropriate for classical force-based analyses.

Discrete anergy balance

In the particular case of exergy and flow exergy, no gradient computations are involved (cf. Eqs. ( 1) and ( 2)) but entropy is not resolved directly. This aspect is important especially due to the introduction of artificial dissipation for the stabilisation of the numerical scheme. This dissipation is generally built on a term which is non-consistent with respect to the continuous equations (i.e. tends to zero with mesh refinement), but which mimics a physical dissipative term. It thus results in the spurious generation of entropy in numerical solutions (cf. discussions as early as Ref. [START_REF] Rizzi | Spurious entropy production and very accurate solutions to the Euler equations[END_REF] for example).

A first and direct measure of the error of the entropy equation [START_REF] Tognaccini | Methods for Drag Decomposition, Thrust-Drag Bookkeeping from C.F.D. Calculations[END_REF], can be made by the discrete residual:

A * = 𝑇 ∞ ∫ Ω 𝜕 𝜌𝛿𝑠 𝜕𝑡 𝑑Ω + 𝑇 ∞ ∫ 𝜕Ω 𝜌𝛿𝑠V • n 𝑑𝑆 + ∫ 𝜕Ω 𝑇 ∞ 𝑇 q • n 𝑑𝑆 - ∫ Ω 𝑇 ∞ 𝑇 𝜙 𝑑Ω - ∫ Ω 𝑇 ∞ 𝑇 2 𝑘 (∇𝑇) 2 𝑑Ω -𝑇 ∞ ∫ 𝑆 𝑤 ⟦ 1 𝑇 q + 𝜌𝛿𝑠V⟧ • n 𝑑𝑆 (26) 
The reasoning behind this definition is that numerical generation leads to spurious entropy generation and therefore to the overestimation of the overall entropy outflow in the second right-hand side term. On the other hand, the local terms A 𝜙 and A ∇𝑇 correspond to the resolved part of irreversible losses, which is based on primitive variable gradients and thus generally underestimated by inadequate grid refinement in flow regions dominated by irreversible losses (e.g. boundary layers, shear layers, jets, wakes). It is therefore expected that, despite potential oscillations associated to the numerical discretization, A * will be generally positive.

A similar expression was also investigated in Ref. [START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF] (without the unsteady term and with different considerations for the heat-flux-associated anergy terms). The objective in that case was not the evaluation of numerical error, but rather the redistribution of the discrepancy to the viscous and thermal anergy terms (the redistribution ratio between them depending on an a priori computation of their contribution to overall anergy in boundary layers). This treatment was necessary in order to equilibrate the exergy balance and compute a corresponding exergy-based drag coefficient on unpowered cases. Despite fulfilling its purpose in terms of numerical exergy-balance-based drag evaluation, this redistribution is not a rigorous correction of the underlying discrepancy. Indeed, it redistributes the complete residual between A 𝜙 and A ∇𝑇 only, although in a grid-converged CFD simulation (with respect to entropy generation) it is not only A 𝜙 and A ∇𝑇 that would be higher, but the overall entropy flux is likely to be lower as well. Note that in Eq. [START_REF] Berhouni | Exergetic analysis of the NASA rotor 37 compressor test case[END_REF] no attempt is made to decompose the residual A * into the different physical components.

Discrete total energy balance

In contrast to the entropy balance, the discrete residual of the energy conservation equation is very often disregarded in the literature. This component is still affected by numerical dissipation, albeit less than entropy, and may also be sensitive to the solution quality. It will also be shown in the following that it can be particularly the case with respect to convergence.

Indicators of the error in the energy equation can be constructed through different manners. A direct way would be to consider the discrete residual of the conservation of total energy (in R), expressed in the reference frame 𝑅 (cf. Eq. ( 7)). A clearer link of this with exergy (cf. Eq. ( 1)) can be made by considering that, due to Eq. ( 3):

∫ Ω 𝜕 𝜕𝑡 𝜌 𝑝 ∞ 𝛿 1 𝜌 𝑑Ω + ∫ 𝜕Ω 𝜌 𝑝 ∞ 𝛿 1 𝜌 V • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌 𝑝 ∞ 𝛿 1 𝜌 W⟧ • n 𝑑𝑆 = ∫ 𝜕Ω 𝑝 ∞ V • n 𝑑𝑆 (27) 
which can be added to Eq. ( 7) and used to define:

𝐸 * = ∫ Ω 𝜕 𝜕𝑡 𝜌 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 + 1 2 (V -V ∞ ) 2 𝑑Ω + ∫ 𝜕Ω 𝜌 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 + 1 2 (V -V ∞ ) 2 V • n 𝑑𝑆 + ∫ 𝜕Ω ( 𝑝 -𝑝 ∞ )𝐼 -𝜏 • (V -V ∞ ) + q • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 + 1 2 (V -V ∞ ) 2 W⟧ • n 𝑑𝑆 (28) 
Another way to derive the same relation would have been to subtract Eq. ( 15) from Eq. ( 18).

Relation to the original definition of exergy

In the original works on the development of the exergy balance method, exergy was not defined using Eq. ( 1) or (2) (cf. Ref. [START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF] for example). In particular, the difference concerns the adaptation of the kinetic energy component, which in the original exergy definition is taken as

𝑉 2 /2 -𝑉 2 ∞ /2 instead of (V -V ∞ ) 2 /2 (cf.
Eq. ( 1) and in particular Ref. [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF] for a detailed discussion). This difference in the exergy definition has no impact on the anergy balance discussed in Sec. II.C.1, but it is not the case for the total energy balance. However, for steady flows, Eq. ( 28) can be simplified to:

𝐸 * = ∫ 𝜕Ω 𝜌𝛿 ℎ + 1 2 V 2 V • n 𝑑𝑆 - ∫ 𝜕Ω 𝜏 • V + q • n 𝑑𝑆 (29) 
which is the expression that would have been obtained if one were to use the exergy definition of Ref. [START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF] to construct 𝐸 * following a similar procedure as that of the above sections. The expression would not however be the same in the case of unsteady flows.

Rotating frame of reference

The above developments were carried out in a translating reference frame attached to the aircraft. The equivalent form of equations may be derived for the case of a frame of reference rotating around the 𝑥 axis at an entrainment velocity s e . This formulation has been specifically developed for the detailed analysis of flows around rotating elements (propellers, helicopters or turbomachinery components) [START_REF] Berhouni | Exergy Balance Extension to Rotating Reference Frames: Application to a Propeller Configuration[END_REF][START_REF] Berhouni | Exergetic analysis of the NASA rotor 37 compressor test case[END_REF]. The derivation process is the same as the one followed in the previous sections (omitted for brevity), the resulting expressions being:

𝐸 ′ * = ∫ Ω 𝜕 𝜕𝑡 ′ 𝜌 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 + 1 2 (V ′ -V ′ ∞ ) 2 𝑑Ω + ∫ 𝜕Ω 𝜌 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 + 1 2 (V ′ -V ′ ∞ ) 2 (V ′ -s e ′ ) • n ′ 𝑑𝑆 + ∫ 𝜕Ω ( 𝑝 -𝑝 ∞ )𝐼 ′ -𝜏 ′ • (V ′ -V ′ ∞ ) + q ′ • n ′ 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌 𝛿𝑒 + 𝑝 ∞ 𝛿 1 𝜌 + 1 2 (V ′ -V ′ ∞ ) 2 (W ′ -s e ′ )⟧ • n ′ 𝑑𝑆 (30) 
A ′ * = 𝑇 ∞ ∫ Ω 𝜕 𝜌𝛿𝑠 𝜕𝑡 ′ 𝑑Ω + 𝑇 ∞ ∫ 𝜕Ω 𝜌𝛿𝑠(V ′ -s e ′ ) • n ′ 𝑑𝑆 + ∫ 𝜕Ω 𝑇 ∞ 𝑇 q ′ • n ′ 𝑑𝑆 - ∫ Ω 𝑇 ∞ 𝑇 𝜙 ′ 𝑑Ω - ∫ Ω 𝑇 ∞ 𝑇 2 𝑘 (∇𝑇) ′2 𝑑Ω -𝑇 ∞ ∫ 𝑆 𝑤 ⟦ 1 𝑇 q ′ + 𝜌𝛿𝑠(V ′ -s e ′ )⟧ • n ′ 𝑑𝑆 (31) 
Above, (•) ′ denotes a quantity projected in the rotating frame of reference, given by (•) ′ = C 𝑇 (•) with C being the transformation matrix between the two reference frames.

Decomposition of the total energy balance

The discussion of Sec. II.C.2 was focused on the overall residual of the total energy balance. An alternative way to derive the same component would have been to consider the derivation at separate steps. We can first write a local expression for the kinetic energy component by taking the dot product of the momentum equation in divergence form with V. This gives:

𝜕 𝜕𝑡 1 2 𝜌𝑉 2 + ∇ • 1 2 𝜌𝑉 2 V = -∇ • 𝑝V -𝜏 • V + 𝑝∇ • V -𝜏 • ∇ • V ( 32 
)
The above is the kinetic energy conservation equation expressed in 𝑅, the steady version of which is also the basis of the power balance method [START_REF] Drela | Power balance in aerodynamic flows[END_REF]. An integration over a control volume gives:

∫ Ω 𝜕 𝜕𝑡 1 2 𝜌𝑉 2 𝑑Ω + ∫ 𝜕Ω 1 2 𝜌𝑉 2 V • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦ 1 2 𝜌𝑉 2 V⟧ • n 𝑑𝑆 = - ∫ 𝜕Ω 𝑝𝐼 -𝜏 • V • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦( 𝑝𝐼 -𝜏) • V⟧ • n 𝑑𝑆 + ∫ Ω 𝑝∇ • V 𝑑Ω - ∫ Ω 𝜏 • ∇ • V 𝑑Ω (33) 
The same form of equation can also be written for the kinetic energy defined in R, i.e. (V -V ∞ ) 2 /2:

∫ Ω 𝜕 𝜕𝑡 1 2 𝜌(V -V ∞ ) 2 𝑑Ω = - ∫ 𝜕Ω 1 2 𝜌(V -V ∞ ) 2 V • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦ 1 2 𝜌(V -V ∞ ) 2 V⟧ • n 𝑑𝑆 - ∫ 𝜕Ω 𝑝𝐼 -𝜏 • (V -V ∞ ) • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦( 𝑝𝐼 -𝜏) • (V -V ∞ )⟧ • n 𝑑𝑆 + ∫ Ω 𝑝∇ • V 𝑑Ω - ∫ Ω 𝜏 • ∇ • V 𝑑Ω (34) 
By a subtraction of Eq. ( 34) from Eq. ( 7) and taking advantage of the compatibility relation (expressed in R), we obtain an equation for the internal energy perturbation with respect to the reference state:

∫ Ω 𝜕 (𝜌𝛿𝑒) 𝜕𝑡 𝑑Ω = - ∫ 𝜕Ω (𝜌𝛿𝑒) V • n 𝑑𝑆 - ∫ 𝜕Ω q • n 𝑑𝑆 + ∫ 𝑆 𝑤 ⟦𝜌𝛿𝑒V + q⟧ • n 𝑑𝑆 - ∫ Ω 𝑝∇ • V 𝑑Ω + ∫ Ω 𝜏 • ∇ • V 𝑑Ω (35) 
Note the terms representing the exchanges between the internal and kinetic energy in the above equations. We can therefore use Eqs. ( 34)- [START_REF] Benoit | Cassiopee: a CFD pre-and post-processing tool[END_REF] to define:

𝐸 * ,𝑘 = ∫ Ω 𝜕 𝜕𝑡 1 2 𝜌(V -V ∞ ) 2 𝑑Ω + ∫ 𝜕Ω 1 2 𝜌(V -V ∞ ) 2 V • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦ 1 2 𝜌(V -V ∞ ) 2 V⟧ • n 𝑑𝑆 + ∫ 𝜕Ω 𝑝𝐼 -𝜏 • (V -V ∞ ) • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦( 𝑝𝐼 -𝜏) • (V -V ∞ )⟧ • n 𝑑𝑆 - ∫ Ω 𝑝∇ • V 𝑑Ω + ∫ Ω 𝜏 • ∇ • V 𝑑Ω (36) 
𝐸 * ,𝑖 = ∫ Ω 𝜕 (𝜌𝛿𝑒) 𝜕𝑡 𝑑Ω + ∫ 𝜕Ω (𝜌𝛿𝑒V + q) • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌𝛿𝑒V + q⟧ • n 𝑑𝑆 + ∫ Ω 𝑝∇ • V 𝑑Ω - ∫ Ω 𝜏 • ∇ • V 𝑑Ω (37)
where the expressions are significantly simplified in the case of steady flow. Note finally that:

𝐸 * = 𝐸 * ,𝑖 + 𝐸 * ,𝑘 (38) 
due to Eq. [START_REF] Denton | The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines[END_REF].

The above decomposition of the total energy equation is made in terms of internal and kinetic energy. It would however be interesting to pursue a further decomposition of the latter, since it is linked to different mechanical terms of the exergy balance. It is reminded that the decomposition of Eqs. ( 21)-( 22) is related to differences in perceived kinetic energy due to the change of reference frame from R to 𝑅. On this basis, we can use Eq. [START_REF] Rizzi | Spurious entropy production and very accurate solutions to the Euler equations[END_REF] to express an indicator 𝐸 𝑅 (for kinetic energy defined using the in R, cf. Eq. [START_REF] Artnz | On the use of exergy as a metric for performance assessment of CFD turbomachines flows[END_REF]. By subtraction of the first expression from the second we obtain:

𝐸 * ,𝑘𝑅 = 𝐸 * ,𝑘 -𝐸 𝑅 * ,𝑘 = -V ∞ • ∫ Ω 𝜕 𝜌V 𝜕𝑡 𝑑Ω + ∫ 𝜕Ω 𝜌V ⊗ V + 𝑝𝐼 -𝜏 • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌V ⊗ W⟧ • n 𝑑𝑆 + 1 2 V 2 ∞ ∫ Ω 𝜕 𝜌 𝜕𝑡 𝑑Ω + ∫ 𝜕Ω 𝜌V • n 𝑑𝑆 - ∫ 𝑆 𝑤 ⟦𝜌W⟧ • n 𝑑𝑆 = -V ∞ • R [𝜌V] + 1 2 V 2 ∞ R [𝜌] (39) 
where

R [𝜌] , R [𝜌V]
are respectively the residuals of the mass and momentum conservation equations. Note also that

-V ∞ • R [𝜌V] + 1 2 V 2 ∞ R [𝜌] = X 𝑜 𝑡𝑟 -X 𝑏
𝑡𝑟 for steady flow solutions. This is to be expected because the X 𝑡𝑟 component of the exergy balance represents exactly this difference between the two frames of reference (cf. Eq. ( 22) and the discussion of Sec. II.B.3).

The term X 𝑡𝑟 (or rather its equivalent corresponding to the definition of exergy of Ref. [START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF], previously referred to as 𝑊 Γ) is commonly associated to the momentum equation, due to its relation to the power of the overall streamwise force on cases with no massflow rate variation on the near-field boundary. Similarly to the continuous expression of Eq. ( 22), Eq. ( 39) on the other hand indicates that the discrete computation of this component is also linked to a coupled effect of the conservation equations and not to that of the momentum equation only. As such, this could be a basis for the investigation of the sensitivity of the X 𝑡𝑟 component to numerical error. Although the two last lines of the above equation cancel due to the conservation equations, they may therefore be interesting to monitor (e.g. during convergence or grid refinement) in order to assess the accuracy of the balance at the discrete level.

Discrete exergy balance

Note that the exergy balance of Eqs. ( 16) or ( 18) may be obtained by subtracting Eq. ( 15) from Eq. ( 7) (i.e. the equivalent of Eq. ( 6) defined using the velocity in R). As such, the discrete residual of the exergy balance is given by:

X * = 𝐸 * -A * (40) 
Finally, the same decompositions applied to the exergy balance equation (cf. Sec. II.B) may also be applied to the expressions of their discrete residuals. Otherwise they can be computed in a compact form if we are interested only in their value and not on the contribution of each particular component.

As discussed above, it is important to note that the exergy balance residual X * (as the exergy balance itself) may be derived from the subtraction of two balance equations. It is therefore possible that CFD solutions containing significant errors might potentially result in non-negligible 𝐸 * and A * values of the same magnitude, but a fortuitously low value of X * . Good solution quality can be easily ensured on academic configurations, but not always on cases of industrial complexity where grid quality is often locally degraded to accommodate geometrical details and where configurations are often investigated at the limit of the flight envelope where numerical methods and turbulence models are less robust. On such cases, investigating the two indicator terms separately may identify this error and prevent researchers/designers from drawing conclusions based on inaccurate flow solutions.

The indicators 𝐸 * and A * have already been employed in a number of test cases in order to evaluate the level of error in the CFD solutions under investigation (cf. Refs. [START_REF] Berhouni | Exergy Balance Extension to Rotating Reference Frames: Application to a Propeller Configuration[END_REF][START_REF] Petropoulos | Aerodynamic performance analysis of an isolated UHBR engine using a far-field exergy balance method[END_REF] for example). Other studies have however only focused on X * , which has commonly been referred to as the exergy balance residual in some previous works [START_REF] Petropoulos | Numerical investigations of the exergy balance method for aerodynamic performance evaluation[END_REF]. Overall, the indicators discussed in the present section aim at providing an evaluation of the influence of numerical error in the exergy balance. They are not however used to correct this error, or to attempt to retrieve an a posteriori corrected exergy balance (i.e. in the sense of the balance corresponding to the equivalent solution if it were free of numerical errors).

Relation to spurious anergy

Another approach in terms of evaluation of the influence of solution errors in the exergy balance results is the evaluation of the so-called spurious anergy [START_REF] Petropoulos | Numerical investigations of the exergy balance method for aerodynamic performance evaluation[END_REF]. In contrast to the indicators discussed in Secs. II.C.1-II.C.6, the purpose of this component is to isolate the generation of anergy purely due to spurious numerical effects. The two approaches are thus complementary, as will be discussed in the following. evaluation of the spurious anergy component is based on a domain decomposition approach. At a first step, the integration of viscous, thermal and wave anergy components (respectively A 𝜙 , A ∇𝑇 , A 𝑤 ) is not performed in the complete control volume, but in reduced integration volumes (respectively Ω 𝑣 , Ω 𝑡 , Ω 𝑤 ) defined using physical sensors. Naturally, this methodology relies on the definition of robust criteria for these sensors, which can ensure that physical anergy generation is negligible outside the reduced volumes. At a second step, the spurious anergy component is computed as the overall anergy generation in the part of the control volume that is not included in the previous reduced volumes (i.e. the part Ω \ (Ω 𝑣 ∪ Ω 𝑡 ∪ Ω 𝑤 )). As physical anergy (viscous/thermal effects, shockwaves and heat flux across the volume boundary, cf. Eq. ( 15)) is negligible in this volume, this anergy generation can be attributed to numerical entropy generation.

Generally, spurious anergy represents part of the entropy balance discrete residual, i.e. A 𝑠 𝑝 ≤ A * . The portion of A * that is isolated by A 𝑠 𝑝 strongly depends on grid refinement and the influence of numerical dissipation outside regions of physical irreversible losses (similarly to the production of spurious drag in the leading edge of an airfoil [START_REF] Destarac | Far-Field / Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF][START_REF] Destarac | Three-Component Breakdown of Spurious Drag in Computational Fluid Dynamics[END_REF]). The remaining part A 𝑟 𝑑 = A * -A 𝑠 𝑝 corresponds to the anergy balance discrepancy within the physical integration volumes. It is due to both an overestimation of entropy generation due to the numerical scheme's dissipation and an underestimation of velocity/temperature gradients due to inadequate grid refinement. If one were to follow a redistribution approach similar to the one of Ref. [START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF] for anergy components, it would therefore be preferable to base this on A 𝑟 𝑑 rather than A * . Such a redistribution approach is not however investigated in the present work.

D. Numerical implementation

FFX is a far-field exergy analysis software developed at ONERA. The code has a modular architecture with a higher level and an interface in Python, allowing significant flexibility in scripting and coupling. Internal lower-level operations are handled in a C++ level allowing to combine the flexibility with computational performance. A large part of functionalities is closely coupled with the ONERA Cassiopée pre-/post-processing library [START_REF] Benoit | Cassiopee: a CFD pre-and post-processing tool[END_REF]. The user interface is in the form of a Python module, with its data structure in the form of a CGNS/Python tree. The code can accurately analyse finite-volume CFD solutions on structured, unstructured or overset (Chimera) grids, with the solution computed at cell centers or at vertices. It can also analyse several models used in research or industrial studies, such as actuator disks, heat exchanger models, body-force source terms or complex boundary conditions (e.g. mixing-plane boundaries between turbomachinery rows). In addition to the validation of the prototype software methodology [START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF], FFX has since been continuously validated through application to the performance analysis of a number of academic [START_REF] Bailly | An Overview of ONERA Research Activities Related to Drag Analysis and Breakdown[END_REF][START_REF] Petropoulos | Numerical investigations of the exergy balance method for aerodynamic performance evaluation[END_REF] and more complex cases [START_REF] Berhouni | Exergy Balance Extension to Rotating Reference Frames: Application to a Propeller Configuration[END_REF][START_REF] Berhouni | Exergetic analysis of the NASA rotor 37 compressor test case[END_REF][START_REF] Petropoulos | Aerodynamic performance analysis of an isolated UHBR engine using a far-field exergy balance method[END_REF][START_REF] Artnz | On the use of exergy as a metric for performance assessment of CFD turbomachines flows[END_REF][START_REF] Wiart | Exploration of the Airbus "NAUTILIUS" engine integration concept[END_REF].

The previous sections have presented the exergy balance method and the definition of different indicators to analyse its sensitivity to numerical error. The developments were made considering the unsteady balance and the corrected adaptation of the exergy definition to translating frames of reference [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF]. In practice, the current version of the software is still based on the original exergy definition. This also implies that the term corresponding to the work of the overall streamwise force in the geocentric reference frame R does not correspond to Eq. ( 22), but rather to the term previously referred to as 𝑊 Γ (i.e. the far-field counterpart of the momentum equation and excluding the term related to massflow rate variation). Nonetheless, as discussed above, the resulting balance and the values of the numerical accuracy indicators are the same for steady flows without massflow rate variation in the near-field boundary, such as the ones investigated in Sec. III.

In practice, the control volume for the computation of the exergy balance extends far in the upstream and lateral directions, but is limited by a downstream transverse plane (its position noted as 𝑥 tp ). Integration regions (i.e. volumes or surfaces) are defined by appropriate physical sensors, often with the addition of a few layers to include eventual numerical oscillations [START_REF] Arntz | Civil Aircraft Aero-thermo-propulsive Performance Assessment by an Exergy Analysis of High-fidelity CFD-RANS Flow Solutions[END_REF][START_REF] Berhouni | Exergy Balance Extension to Rotating Reference Frames: Application to a Propeller Configuration[END_REF]. This is especially the case for the reduced physical volumes used in the evaluation of the spurious anergy term discussed in Sec. II.C.7. The resulting exergy balance terms are commonly presented in the form of non-dimensional coefficients 𝐶 (•) = (•)/(0.5𝜌 ∞ 𝑉 3 ∞ 𝑆 𝑟 𝑒 𝑓 ), with their values in power counts (10 -4 ). In the following, results are compared to those of a far-field decomposition of the drag force. These were performed with the FFD (Far-Field Drag) software developed at ONERA, based on an implementation of a thermodynamic far-field drag decomposition formulation [START_REF] Van Der Vooren | Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components[END_REF][START_REF] Destarac | Far-Field / Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF] on a similar software architecture with FFX . Although the two formulations are based on a different physical paradigm, the comparison of coefficient values against this reference method are interesting to investigate the sensitivity of the exergy balance to numerical errors. In the case of drag, non-dimensional coefficient values are computed as 𝐶 (•) = (•)/(0.5𝜌 ∞ 𝑉 2 ∞ 𝑆 𝑟 𝑒 𝑓 ) and presented in drag counts (×10 -4 ).

III. Numerical applications A. Inviscid flow a NACA0012 airfoil

The first case is the steady inviscid flow around a NACA0012 airfoil, at 𝑀 ∞ = 0.8, 𝛼 = 0 • , 𝑝 ∞ = 101325 𝑃𝑎, 𝑇 ∞ = 300 𝐾. The case is solved on a series of high-quality O-type analytical Euler grids composed of 128 × 128, 256 × 256 and 1024 × 1024 cells (denoted as 𝑛 𝑖 × 𝑛 𝑗 ), originating from the study presented in Ref. [START_REF] Vassberg | In pursuit of grid convergence for two-dimensional Euler solutions[END_REF]. A view of the three grids is shown in Fig. 2. The far-field extent is at approximately 150 𝑐, where 𝑐 is the airfoil chord. The solutions were computed with the elsA finite-volume compressible Navier-Stokes solver [START_REF] Cambier | The Onera elsA CFD software: input from research and feedback from industry[END_REF], using a convective flux discretization based on a second-order centered scheme employing a Jameson-type artificial dissipation term (𝑘 2 = 1/2, 𝑘 4 = 1/64). The grid dimensions are normalized with respect to the airfoil chord, with its leading edge being at 𝑥 = 0 and its trailing edge at 𝑥 = 1.

In this case, the overall net streamwise force acting on the airfoil is the drag force. The balance of Eq. ( 23) is simplified to:

0 = X 𝑏 𝑡𝑟 + X 𝑜 𝑚 + X 𝑜 𝑡 ℎ + A 𝑤 ( 41 
)
since viscous and heat transfer terms ( X 𝑞 , A ∇𝑇 , A 𝜙 ) are zero for solutions of the Euler equations. 

Influence of solution quality

The first part of the investigation concerns the influence of the solution quality on the resulting exergy balance coefficients. In particular, a first comparison is made on two different simulation results. The first is an insufficientlyconverged (IC) solution, whereas the other is a reference test case exhibiting a very good convergence. The aforementioned cases are computed on the 1024 × 1024 grid, but differ with respect to the solver parameters. In particular, the first case uses a lower CFL number and does not employ a multigrid method to accelerate convergence.

A comparison of the convergence history in terms of residual norms is shown in Fig. 3. In addition, Fig. 4 shows a comparison of the flow solution for these two cases, in terms of density, pressure and Mach number fields. The residual history of the first case clearly depicts an insufficient convergence (a similar behaviour is also visible in the integral force convergence history). Still, the IC computation is interesting because a visual inspection of the flowfield solution (cf. Fig. 4) does not allow one to identify any clear inaccuracy. It is thus conjectured that such a misinterpretation is not unlikely in more realistic computations. This is less probable in cases such as the one investigated in this section, where obtaining a solution of sufficient accuracy is a matter of performing sufficient iterations, as this is a subject that is easily resolved in practice. It could rather be the case where adequate solution accuracy relies on finer numerical aspects such as local grid density/quality or the parametrisation of specific boundary conditions, among others.

Indeed, some finer flow details for the same computations are illustrated in Fig. 5. Entropy is found to be rather robust with respect to convergence in this case, but on the other hand the stagnation enthalpy field exhibits fluctuations even away from the shockwave. Clearly, it is not evident to identify an a priori amplitude threshold for such numerical oscillations which allows an acceptable accuracy of specific analyses in general and especially in viscous cases. This is exactly where it is expected to be particularly useful to have access to numerical accuracy indicators that are specific to the analysis method.

Table 1 presents values of the exergy balance coefficients for both flow solutions. First of all, a discrepancy between a near-field and a far-field evaluation of the X 𝑡𝑟 component is notable on the IC solution, and the case is similar for the convergence of the near-field force coefficients. As mentioned above, the IC case is only investigated as a model for solutions which appear to be accurate for a qualitative analysis, but not in terms of fine flowfield investigations. It is interesting to note that several terms of the exergy balance are rather robust and at an order of magnitude that is in overall reasonable agreement with the reference solution. The numerical accuracy indicators A * or A 𝑠 𝑝 , which are both linked to the entropy balance (cf. Sec. II), are not found to be overly sensitive to convergence in this case. The 𝐸 * value on the other hand highlights a clear discrepancy in total energy conservation. In addition to classical metrics for force-based analysis (convergence of residual norms and integrated forces), such indicators may therefore be interesting to evaluate solution quality specifically for energy/exergy-based analyses.

Case 1 Exergy balance for the insufficiently-converged (IC) and the reference solution. NACA0012 case at 𝑀 ∞ = 0.8 on the 1024 × 1024 grid, for 𝑥 tp = 2. Coefficients are presented in power counts (×10 -4 ).

At a following step, the study focuses on the reference case, and in particular on the evolution of the exergy balance throughout its convergence history. Fig. 6 shows the convergence history of components associated to the convergence of the drag force, as well as others associated to the numerical accuracy of the solution. It is first of all interesting to note that the convergence of the X 𝑜 𝑡𝑟 component is significantly slower with respect to both the near-field and far-field drag coefficients. There exists therefore a convergence interval during which force integrals are converged but exergy balance components may not always be. This aspect will be further discussed in Sec. III.B. A very similar behaviour in terms of delayed convergence is portrayed in the 𝐸 * component. This is expected because both are linked to the total energy balance (cf. discussion of Sec. II.C.5). It is also important to note that 𝐸 * converges towards zero (albeit slower compared to 𝐶𝐷 𝑠 𝑝 and A 𝑠 𝑝 ) but A * does not. Although the present case involves an inviscid flow, the persisting non-zero value of A * is attributed to numerical entropy generation by the numerical scheme's dissipation (cf. discussion of Sec. II.C).

Influence of grid refinement

Next, results are compared on the three different grid levels. In these cases, convergence was sufficiently pursued to ensure a reduction of residuals by more than 13 orders of magnitude. Tables 2 and3 respectively show the values of far-field drag and exergy balance coefficients. In this inviscid two-dimensional flow, the total drag force corresponds to that of the wave drag component. In addition, the spurious drag component specifically corresponds to irreversible spurious drag, as the reversible spurious drag [START_REF] Destarac | Three-Component Breakdown of Spurious Drag in Computational Fluid Dynamics[END_REF] coefficient was found to be below 0.01 counts for all three grids. In terms of the exergy balance, grid refinement is shown to have a clear impact on accuracy at the discrete level. Exergy outflow components are found to be less influenced by grid density than anergy-related components. Wave anergy is indeed sensitive to grid density, but it is even more so the case for the A * and A 𝑠 𝑝 components, which are shown to be in excellent agreement in this case. This is because the flow is inviscid, therefore the entirety of purely spurious anergy is generated outside the shockwave integration volume (the current methodology giving no distinction between physical and numerical anergy generation within this volume).

The near-field and far-field computations of the 𝐶 X 𝑡𝑟 component are not found to be identical in practice, their difference in this case being found to be in the same order of magnitude as 𝐶 𝐸 * . A difference between 𝐶 X 𝑜 𝑡𝑟 and 𝐶 X 𝑏 𝑡𝑟 is generally to be expected at the discrete level, as the balance is computed from the numerical solution field. This does not satisfy the conservation equations in the same way as the numerical flux, which particularly includes the addition of numerical dissipation terms. The discrepancy between the two is thus at least partly related to the trace of numerical dissipation in the discrete solution. It is however found to be effectively reduced with mesh refinement, and of a much lower magnitude than the discrete residual of the anergy balance (i.e. A * ). 3 Exergy balance for the NACA0012 case at 𝑀 ∞ = 0.8, for 𝑥 tp = 2. Coefficients are presented in power counts (×10 -4 ). Fig. 7 shows the evolution of the 𝐸 * and A * indicators for the three grid levels, as the transverse plane limiting the control volume is extended downstream. It is important to remark that it is both components, and not only the anergy balance residual, that are influenced by grid refinement. As discussed in Sec. II.C, they are however linked to different balance equations and therefore influenced by numerical error by slightly different mechanisms. Both exhibit variations near the shockwave position, which are more significant for 𝐸 * . The 𝐸 * indicator is also shown to converge to zero with grid refinement. The case is however different for A * , which converges to non-zero values far downstream and whose values are even negative for the finest grid level. As discussed above, this is a purely numerical effect related to the spurious entropy generation of the numerical discretization scheme. 

Grid

B. NASA Common Research Model

The present section considers the flow around the NASA Common Research Model. In particular, the study is performed on the wing-body test case of the 5th Drag Prediction Workshop. The original version of the grids corresponds to the multi-block unified baseline grids of the 5th AIAA CFD Drag-Prediction Workshop (DPW-5) [START_REF] Vassberg | A Unified Baseline Grid About the Common Research Model Wing/Body for the Fifth AIAA CFD Drag Prediction Workshop[END_REF]. The current computations were performed on a series of grids adapted to the experimentally measured wing twist at the design point [START_REF] Hue | Fifth Drag Prediction Workshop: ONERA Investigations with Experimental Wing Twist and Laminarity[END_REF]. The number of cells for the L2 ′ /L3 ′ /L4 ′ //L5 ′ grid levels is 2,156,544 / 5,111,808 / 17,252,352 / 40,894,464 respectively (𝑌 + = 1.33/1.00/0.67/0.50). A view of the configuration and the L3 ′ grid is shown in Fig. 8. The conditions at the aerodynamic design point correspond to Mach number 𝑀 ∞ = 0.85, 𝐶 𝐿 = 0.5 and 𝑅𝑒 = 5 10 6 . The solutions were computed with the elsA solver [START_REF] Cambier | The Onera elsA CFD software: input from research and feedback from industry[END_REF], using a second-order centered scheme employing a Jameson-type artificial dissipation term (𝑘 2 = 1/2, 𝑘 4 = 0.016) and the Spalart-Allmaras turbulence model. 

Influence of solution quality

In analogy to the previous section, the sensitivity of exergy balance results is first investigated with respect to the quality of the CFD solution in the case of the L3 ′ grid. Fig. 9 shows the convergence history of residuals, as well as that of near-field/far-field computations of the drag coefficient and the X 𝑡𝑟 term of the exergy balance. The limit of the exergy balance control volume is set at a transverse plane positioned at 𝑥 𝑡 𝑝 = 90 m. Note that whereas 𝐶𝐷 𝑓 𝑓 is computed with a specific far-field drag decomposition formulation [START_REF] Van Der Vooren | Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components[END_REF][START_REF] Destarac | Far-Field / Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF], the computation of the X 𝑡𝑟 term is only modified with respect to the integration surface. These results show a very satisfactory convergence of the CFD computation. Once again however, the X 𝑜 𝑡𝑟 computation is found to require a finer convergence lever compared to the overall drag coefficient (𝐶𝐷 𝑓 𝑓 or 𝐶𝐷 𝑛 𝑓 ) or X 𝑏 𝑡𝑟 . X 𝑜 𝑡𝑟 and X 𝑏 𝑡𝑟 are theoretically identical due to the conservation equations (cf. Sec. II) but, as clearly portrayed by these results, it is not always the case in practice and in particular during convergence. This is a notable caveat, as by following convergence criteria based on force integrals one could choose to perform an energy/exergy-based analysis on a solution that may not be accurate enough for this purpose. Indeed, whereas fine drag analysis involves an accuracy within fractions of a drag count, the fluctuations of X 𝑜 𝑡𝑟 at around 5000 iterations continue to be significant (in the order of 3-4 counts). This could be more problematic in complex cases, where local insufficient grid refinement or local unsteadiness could create such a scenario that would be more difficult to identify compared to the present case (which is in cruise conditions, with a good quality grid and exhibits satisfactory convergence). In general, near-field boundaries involve imposed conditions in the CFD solution and are usually faster in terms of reaching convergence, at least as long as simple boundary conditions are concerned. On the other hand, the computation of X 𝑜 𝑡𝑟 is done on a surface away from the aircraft skin. The delay observed in the convergence of the latter is therefore likely linked to the propagation of information to this integration surface during the iterative convergence. Since the same sensitivity is not observed for other components calculated on the same integration surface (cf. following discussion), this could be attributed to the fact that the convergence of the X 𝑜 𝑡𝑟 component relies on the convergence of finer flow details on this surface.

Although X 𝑜 𝑡𝑟 and X 𝑏 𝑡𝑟 are equal in the continuous framework, it is important that they are computed using the expression derived in the formulation, in order to ensure the consistency of the balance and its indicators at the discrete level. This is considered important in the analysis of errors, since using near-field or far-field integrals interchangeably could lead to an inconsistency between the discrete errors of the balance (cf. Sec. II.C). Aside from providing a refined physical interpretation, the use of an exergy balance formulation based on the corrected definition of exergy (cf. discussion of Sec. II) could also be numerically advantageous, as the X 𝑡𝑟 component naturally appears with its near-field expression in the derivation [START_REF] Berhouni | On the adaptation of the exergy definition in the field of aerodynamics[END_REF].

In order to better investigate this sensitivity to convergence, Fig. 10 shows the convergence history of the far-field drag breakdown. These results indicate a satisfactory robustness of all near-field (pressure and friction drag) and far-field (viscous pressure / viscous, wave, induced and spurious drag) components with respect to convergence. A reason for this is likely the fact that the employed formulation is based on a thermodynamic method primarily focusing on irreversible drag components, which presents numerical advantages and in turn allows to perform far-field integrations in a relatively close distance from the aircraft skin [START_REF] Van Der Vooren | Drag/thrust analysis of jet-propelled transonic transport aircraft; definition of physical drag components[END_REF][START_REF] Destarac | Far-Field / Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF]. Similar results are shown in Fig. 11 for the convergence of exergy balance components. In contrast to the sensitivity of the X 𝑜 𝑡𝑟 component discussed above, the rest of the physical components of the exergy balance are found to be rather robust with respect to convergence. The values of the numerical accuracy indicators shown in Fig. 11 are consistent with these results. Similarly to the case of the previous section, the sensitivity of the X 𝑜 𝑡𝑟 is also identified on the 𝐸 * term (and thus on X * = 𝐸 * -A * ). Once again, we can observe a convergence interval during which force integrals and most exergy balance components are converged, but for which X 𝑜 𝑡𝑟 and 𝐸 * still exhibit a notably oscillatory behaviour.

Influence of grid refinement

Table 4 shows results of the far-field drag breakdown in the CRM case for the four different grid levels. These indicate that DPW-5 grids are accurate and quite robust in terms of drag prediction, with spurious drag being below one count already at the L3 ′ level. Results for the coefficients of the exergy balance are shown in Table 5. In contrast to drag decomposition, some of these are found to be more sensitive to grid refinement. This is because the exergy balance relies on the resolution of flow features and in this case particularly that of wake resolution, which is degraded in O-type grids such as the ones used in the present study. The effects of numerical dissipation due to this aspect are observed in terms of diffusion of the wing wake and that of the wing-tip vortex. Within the exergy balance framework, these are depicted as an underestimation of exergy outflow and anergy terms on coarser grids.

Near 5 Exergy balance for the CRM case, for 𝑥 tp = 90.0 m. Coefficients are presented in power counts (×10 -4 ).

In general, it can be difficult to estimate the level of inaccuracy in a given solution without an a priori estimate of results in a grid converged solution. These effects are however also clearly depicted in terms of the numerical accuracy indicators 𝐸 * and A * . The first is shown to be of a lower magnitude but not negligible, whereas the second is shown to be significant due to the grid coarsening in the wake (leading to an overestimation of the overall entropy flux and an underestimation of primitive variable gradients in the resolved anergy terms).

Finally, Fig. 12 shows the evolution of 𝐸 * and A * by the downstream variation of the control volume transverse plane limit. 𝐸 * exhibits local variations near shockwaves, as well as beyond the fuselage trailing edge, but tends to zero on finer grid levels. The behaviour of A * is different, since this component is shown to continuously increase as the wake and wing-tip vortex are diffused by excessive numerical dissipation on coarser grids. This is partly due to the coarsening of the O-type grids used in the present study and partly due to the consideration of a control volume limited by a constant transverse plane position which is far downstream of the wing. The A * value depicts the discrete residual of the anergy balance due to numerical dissipation and inadequate grid resolution. It would thus be lower if the control volume was limited by a transverse plane positioned closer to the trailing edge in the region downstream of the wing. Furthermore, its reduction is found to be of a similar order of magnitude for the first two refinements (L2 ′ → L3 ′ and L3 ′ → L4 ′ ) but roughly halved for the last refinement step (L4 ′ → L5 ′ ). It is shown that this component does not reach grid convergence even on grids that may be adequate for drag prediction, as long as they are not sufficiently refined in flow regions where significant irreversible exergy losses take place. Nonetheless, it provides an interesting evaluation of this error for practical applications, with its value being directly linked to the performance evaluation using the exergy balance.

Another interesting aspect is the evaluation of A 𝑠 𝑝 , which is able to isolate a non-negligible part of the overestimation of the entropy flux. This is found to be significantly lower than A * in the present cases due to the fact that, as discussed above, significant numerical errors take place within the wing wake region. As discussed in Sec. II.C, grid refinement results to both increased values of resolved anergy losses (i.e. A 𝜙 , A ∇𝑇 , A 𝑤 , A 𝑞 ) and a reduced overestimation of the overall entropy flux due to the numerical scheme dissipation (referred to as A 𝑜 , second right-hand-side term in Eq. ( 26)). This is clearly portrayed in Fig. 13, where the overall reduction of A * with grid refinement is shown to be the combined result of the two aforementioned contributions (which are of a similar order of magnitude). It is therefore difficult to rigorously decompose the part attributed to numerical entropy generation from the scheme's dissipation and that attributed to viscous and thermal anergy underestimation in a given flow solution. In the present test case, results indicate that a significant portion of numerical error leading to the discrete residual A * takes place in the region of the wing and its wake region. Furthermore, the reduction of the overall entropy flux with mesh refinement takes place over a wider streamwise region compared to the resolved anergy terms. Finally, it is interesting to note that the discrepancy of 𝐶 X 𝑏 𝑡𝑟 and 𝐶 X 𝑜 𝑡𝑟 due to the trace of numerical dissipation in the solution (cf. above discussion) is found to be in the order of magnitude of 𝐸 * but much lower than the overall discrete residual of the exergy balance X * . This highlights the importance of considering appropriate numerical indicators to evaluate the exergy balance accuracy at the discrete level, instead of its overall residual.

Overall, both the 𝐸 * and A * components are considered to be useful indicators of numerical accuracy in both research and industrial studies. Alternatively to 𝐸 * , one could consider the agreement of 𝐶 X 𝑜 𝑡𝑟 or 𝐶 X 𝑏 𝑡𝑟 with the overall near-field streamwise force to be of similar use in a case with no massflow rate variation in the near-field boundary. This however is prone to sensitivity with respect to solution quality (including grid refinement). So, whereas it may be an adequate indication of satisfactory iterative convergence, it may not be the case in terms of grid convergence or other numerical discretisation parameters and turbulence modelling aspects. On the other hand, the above numerical results confirm a different numerical behaviour of the 𝐸 * and A * indicators, which when investigated separately give a clearer insight into numerical error than the overall exergy balance residual X * . Although both are affected by numerical error in general (e.g. grid convergence), their derivation and results from numerical applications indicate that A * is affected at first order by numerical entropy generation and the resolution of anergy losses, whereas 𝐸 * may be more sensitive to aspects such as iterative convergence (cf. Secs. II.C and III). Whereas an overall accurate solution is expected to result in a low value of 𝐸 * using standard practice (i.e. force-based analyses), it is not often the case for A * which would require a fine resolution in regions of irreversible exergy loss. Still, A * gives a clear indication of the effect of this error on the exergy balance results. On the other hand, an oscillatory value of 𝐸 * could provide an indication of insufficient convergence, whereas a non-oscillatory but increased value could provide an indication of an inaccurate solution (e.g. grid refinement). It could also be that some cases including significant imprecisions in each of the discrete equation residuals represented by 𝐸 * and A * lead to a fortuitously lower value of X * (as X * = 𝐸 * -A * ). As such imprecisions may not be straightforward to identify in practice, investigating the different indicators separately could be a more appropriate means of assessing the accuracy of a given solution, specifically for energy or exergy-based analyses.

IV. Conclusive remarks

The present work has consisted in an investigation of metrics aiming at the accurate evaluation of the discrete error of the exergy balance method in the case of numerical solutions. Discrete errors in analyses of this type may be acceptable in early design stages, usually performed on lower-fidelity numerical computations in order to identify qualitative trends. They cannot however be ignored in the frame of accurate performance analysis. For this purpose, the developed indicators are derived from the flow equations and allow to decompose the overall error into different components. Results confirm that these indicators are not influenced by numerical error via the same mechanisms. The complementarity with the overall exergy balance discrete residual and with previously investigated approaches (such as the purely spurious anergy generation) has also been discussed. Generally, the developed indicators are believed to be useful in practice since, although they do not represent a correction of numerical discrepancies, they are constructed specifically for the exergy balance method and therefore directly linked to its accuracy. Numerical results have shown that they can indeed be more appropriate than common methods of evaluating solution quality for force-based analyses (e.g. residual norm and integral force convergence). In addition, it is believed that such indicators would also be interesting for other families of far-field methods (such as the power balance [START_REF] Drela | Power balance in aerodynamic flows[END_REF]). Future studies should be able to provide a finer understanding of their sensitivity to error and of the underlying mechanisms involved therein. These may be found to be quite different in numerical methods of a different type than the finite-volume compressible Navier-Stokes solver used in the present study. Finally, future investigations could also consider the further decomposition of the developed indicators (as already carried out at the theoretical level in Sec. II.C.5) and their application to complex cases. This could provide an improved insight on the sensitivity of individual exergy balance components to specific types of numerical error.
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 910 Fig. 9 Convergence history of the CRM case on the L3 ′ grid. Values of aerodynamic performance coefficients are shown in drag/power counts (×10 -4 ).

Fig. 11

 11 Fig. 11 Convergence history of exergy balance components on the CRM case (L3 ′ grid).

Fig. 12

 12 Fig. 12 Evolution of numerical accuracy indicators by the variation of the control volume downstream limit for the CRM case.

Fig. 13

 13 Fig.13Influence of grid refinement on the different components of A * for the CRM case.

  𝐶 𝐸 𝑢 𝐶 𝐸 𝑣𝑤 𝐶 𝐸 𝑝 𝐶 X 𝑡 ℎ 𝐶 A 𝑤 𝐶 𝐸 *

	𝑛 𝑖	𝐶 X 𝑏 𝑡𝑟	𝐶 X 𝑜 𝑡𝑟	𝐶 A *	𝐶 X *	𝐶 A 𝑠 𝑝
	IC	-81.48 -75.16 5.00 1.32 -8.43 2.50 86.08 10.57 -0.74 11.32 -0.74
	Ref.	-83.53 -83.53 5.03 1.31 -8.12 2.30 83.83 -0.00 -0.82 0.82	-0.82
	Table					

Table 2 Far-field drag breakdown for the NACA0012 case at

 2 𝑛 𝑖 𝐶 𝐷,𝑛 𝑓 𝐶 𝐷, 𝑓 𝑓 𝐶 𝐷,𝑠 𝑝 (𝑖𝑟𝑟 .) 𝑀 ∞ = 0.8. Coefficients are presented in drag counts (×10 -4 ).𝐶 𝐸 𝑢 𝐶 𝐸 𝑣𝑤 𝐶 𝐸 𝑝 𝐶 X 𝑡 ℎ 𝐶 A 𝑤 𝐶 𝐸 *

			128	92.84	84.74	8.09
			256	85.60	83.75	1.85
			1024	83.53	83.55	-0.02
	Grid 𝑛 𝑖	𝐶 X 𝑏 𝑡𝑟	𝐶 X 𝑜 𝑡𝑟			𝐶 A *	𝐶 X *	𝐶 A 𝑠 𝑝
	128	-92.84 -92.96 5.30 1.29 -8.22 2.33 82.37 -0.17 9.72 -9.89 9.72
	256	-85.60 -85.61 5.07 1.31 -8.13 2.30 82.97 -0.02 2.06 -2.08 2.06
	1024	-83.53 -83.53 5.03 1.31 -8.12 2.30 83.83 -0.00 -0.82 0.82 -0.82
	Table					

Table 4 Far-field drag breakdown for the CRM case. Coefficients are presented in drag counts (×10 -4 ).

 4 𝐶 𝐸 𝑢 𝐶 𝐸 𝑣𝑤 𝐶 𝐸 𝑝 𝐶 X 𝑚 𝐶 X 𝑡 ℎ 𝐶 A 𝜙 𝐶 A ∇𝑇 𝐶 A 𝑤 𝐶 𝐸 * 𝐶 A * 𝐶 X * 𝐶 A 𝑠 𝑝 L2 ′ -258.25 -257.97 6.40 83.43 -1.98 87.86 1.84 122.72 11.96 4.37 0.48 29.70 -29.22 2.41 L3 ′ -256.27 -256.18 6.25 84.82 -1.95 89.13 1.82 125.86 12.51 4.73 0.17 22.32 -22.14 2.27 L4 ′ -254.67 -254.63 6.42 86.34 -1.99 90.77 1.86 128.89 13.03 5.22 0.06 14.92 -14.86 2.17 L5 ′ -254.34 -254.35 6.42 87.35 -1.93 91.85 1.87 130.59 13.32 5.49 -0.03 11.21 -11.23 1.86 Table

						-Field Drag	Far-Field Drag
			Grid level	𝐶 𝐿	𝐶 𝐷, 𝑝	𝐶 𝐷, 𝑓	𝐶 𝐷,𝑛 𝑓	𝐶 𝐷,𝑣 𝑝 𝐶 𝐷,𝑤 𝐶 𝐷,𝑖	𝐶 𝐷, 𝑓 𝑓 𝐶 𝐷,𝑠 𝑝
			L2 ′	0.4997 144.71 113.61 258.32	43.57	5.91 93.66 256.76	1.56
			L3 ′	0.4999 142.36 114.00 256.35	42.41	5.83 93.43 255.66	0.69
			L4 ′	0.4995 140.23 114.47 254.71	41.35	5.77 92.92 254.52	0.19
			L5 ′	0.4996 139.68 114.68 254.36	40.93	5.82 92.86 254.30	0.06
	Grid	𝐶 X 𝑏 𝑡𝑟	𝐶 X 𝑜 𝑡𝑟				
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