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PREDICTING CNN LEARNING ACCURACY USING CHAOS MEASUREMENT

Rémi Piau, Thomas Maugey, Aline Roumy

INRIA, Rennes, France
name.surname@inria.fr

ABSTRACT

Learning on entropy coded data has many benefits. First, it avoids
decoding, but also it allows one to process compact data. However,
this type of learning has been overlooked due to the chaos introduced
by entropy coding functions. Indeed, convolution widely used in
learning algorithm requires that the encoding function preserves the
distance between pixel positions (spatial closeness), and the distance
between pixel values (semantic closeness). Even if these two prop-
erties are not satisfied by entropy coding, we had shown previously
that learning on entropy coded data is possible and that the accuracy
depends on spatial and semantic closeness. In this paper, we quan-
tify this dependence, and introduce a new metric, that measures the
chaos in the data representation. This measure is easy to compute as
it depends on the encoded data only. Moreover, this measures allows
one to predict the accuracy of the learning algorithm, that process
entropy coded data.

Index Terms— Image and Video Coding for Machine, Deep-
learning, CNN, Entropy coding.

1. INTRODUCTION

Due to their exploding amount, the visual data created everyday
are mostly meant to be processed by machines rather than only
be watched by users [1]. A first consequence is that, in this new
paradigm, one has to revisit image and video compression, as for
instance in [2, 3]. Another interesting consequence is that we may
wonder if decoding is really necessary before machine’s processing.
Indeed, when a user watches an image or a video, the decoding
operation, i.e., the mapping between the compressed and spatial
domains, is obviously inevitable. As a machine does not have our
visual priors, we may wonder if one can train it to analyze the vi-
sual data in the compressed domain directly. In doing so, we could
avoid decoding and save on storage, since one does not need to keep
decoded data while the analyzer could process such data in a more
compact form. Some works have tackle this question by showing
that deep learning algorithms are able to learn in the compressed
domain [2–7]. However, the compressed domain they all consider
does not include the entropy coding step, whereas this step is crucial
and systematically included in image/video coders to efficiently
compact the information.

The reason why the question of learning on the entropy coded
domain has been overlooked in the literature is simple. Contrary
to transform or quantization operations, the entropy coding intro-
duces a complete disorganization in the data representation that is
hardly compatible with the learning architecture. Indeed, in order to
work properly, the convolution operation (that is massively deployed
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in deep neural architecture such as convolutional Neural Networks
(CNN)) needs that the encoding function preserves the distance be-
tween the pixel positions and between the pixel values. We refer
to these two properties as spatial and semantic closeness, which we
define more formally in the rest of the paper. These properties are
however not satisfied in the case of an entropy coder. Indeed, the
data representation is only based on the probability distribution, so
two close pixel values can be assigned to two drastically different
coded values. Moreover, entropy coder have variable length output.
Therefore, pixels with close position, have after decoding distance,
which is variable and depends on the value.

In [8], we have shown that, to our surprise, learning in the en-
tropy coded domain is still possible with convolutional Neural Net-
work (CNN). Still, there is a drop in performance, and we have
shown a link between the learning performance and the two data
properties we introduced: spatial and semantic closeness. Finally,
we have shown that arithmetic entropy coding [9] leads to lower per-
formance than Huffman entropy coding [10] without having a quan-
titative explanation for this.

To tackle this lack of explanation, we propose, in this work, a
metric to measure the impact of an entropy coding function on the
learning performance. More precisely, we propose to measure the
level of chaos introduced by an encoding function f . First, the ra-
tionale behind this chaos measurement is related to the closeness
assumptions that the encoding function must satisfy, for a convolu-
tion based learning algorithm to perform well. Moreover, we show
that this chaos measurement is directly linked to the learning accu-
racy when done in the compressed domain. Finally, we show that
the proposed metric is able to predict the learning performance for a
given entropy coding algorithm. For instance, for the set of Huffman
coding algorithm parameterized by the length of the input vector,
the learning accuracy is a monotonic function of the proposed chaos
measure.

2. LEARNING IN THE ENTROPY CODED DOMAIN

In this paper we use the same theoretical and practical framework as
in [8]. For the sake of completeness, we review this framework in
this section.

2.1. In theory

The usual way to learn on coded data is to decode them before learn-
ing: this is the (a) Classical learning pipeline of Figure 2. In this
figure, X denotes respectively the original data and Y the label. In
this paper instead, we consider the scheme learning (b) in the coded
domain of Figure 2, where we bypass the decoding step (decoder
g) and directly learn on the encoded data. In both schemes, the en-
coder/decoder pair (f, g) is fixed in advance and can not be opti-
mized for better learning. This corresponds to the use case of signif-
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Fig. 1. Experimental pipeline for learning on coded data (figure from [8]).

icant practical interest, where data have been acquired by a classical
image/video codecs, and where the learning task is not known upon
acquisition.
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Fig. 2. Classical learning (a) vs learning in the coded domain (b)
(figure from [8]).

More formally, given a training set Ttrain composed of pairs im-
age/label (X,Y ) and a pairwise distance D, learning in the entropy
coded domain looks for an estimator ϕ′, and solves (1):

min
ϕ′

∑
(X,Y )∈Ttrain

D(ϕ′ ◦ f(X), Y ) (1)

where, in our case, the encoder/decoder pair (f, g) is respectively
composed of the entropy encoder and its associated decoder.

On one hand, entropy coding is lossless. Therefore, we do not
lose any information between X and f(X). As such, our theoretical
learning accuracy should not be lower when learning on the coded
data f(X) than when learning on non-coded data X . But, on the
other hand, this statement does not take into account the characteris-
tics of a practical estimator: in our case CNN. This type of networks
seeks pattern in the input data they train on, but entropy coding dis-
turbs these patterns by shifting data distribution toward an indepen-
dent and uniform one. Learning in case (b) is thus harder than in
case (a), but is still possible as shown by experiments from [8].

2.2. In practice

In our experiments, we reuse the same pipeline as in [8]. Following
Figure 1, we learn coded data by first taking a grayscale 8 bits/pixel
image and splitting it into bitplanes. Then, we run an entropy coder
on each bitplane and pad each coded bitplane to a fixed size to finally
train the CNN on this transformed data. Each coded and padded
bitplane vector is passed to the CNN as a channel.

Table 1 shows the learning accuracy of UVGG11 (Unidimen-
sional VGG-11), a CNN specially designed for one-dimensional bi-
nary input data. Results are reported for two entropy coders (arith-
metic and Huffman), where the input symbol size is 8 bits for each.
Two data sets are also considered.
We observe that learning on entropy coded data leads to a loss in
accuracy, and conjecture that this loss is related to the amount of
perturbation introduced in the original (uncoded) data. To verify
this conjecture, we first review in the next section the qualitative
characteristics a sequence data must satisfy for a CNN to perform

Coding Type
Dataset None Huffman Arithmetic
MNIST 0.98911 0.83234 0.63130

YCIFAR-10 0.56573 0.36062 0.29762

Table 1: UVGG11 Network accuracy on entropy coded data (data
from [8]).

well. More importantly, we introduce a new quantitative measure of
chaos in order to be able to predict the learning performance, when
learning is performed on entropy coded data.

3. CHAOS MEASUREMENT

3.1. Closeness properties

For the sake of completeness, we review the two following closeness
properties, introduce in our previous paper [8], that data must satisfy
for a CNN to work well:

(i) Spatial closeness: two neighboring pixels on the pixel grid
should, in the representation, be placed at adjacent and iden-
tifiable positions,

(ii) Semantic closeness: neighbor data cell values (pixel values)
that are close in terms of meaning (e.g., close in terms of per-
ceived physical color) should be close in terms of representa-
tion (integer color value).

First note that these properties are in practice linked. Indeed,
changes in semantic closeness can induce changes in spatial close-
ness and vice-versa. Moreover and more importantly, both properties
have similar effects on the entropy coded data: whatever the prop-
erty, when it is not satisfied, patterns are difficult to identify. So,
when observing the entropy coded data, these properties are not dis-
tinguishable. Therefore, in the following subsection, we introduce a
new metric that measure the perturbations of both properties at once,
allowing for accuracy loss prediction.

3.2. Proposed metric

Measuring the accuracy loss caused by entropy coding on a given
CNN model, requires heavy simulation. Indeed, for each entropy
coding function f , training (1) has to be performed. This can be
cumbersome, especially when the parameter space to be tested for a
given entropy coding function is large. An example of such param-
eter is the vector length at the input of the entropy coder function.
By introducing a chaos measurement metric, we can avoid costly re-
training, and rely on this metric to gauge the accuracy degradation
induced by the encoding function.

To introduce our metric, we consider 2 binary vectors:

• X the original data,

• Y = f(X) the entropy coded data.



Our CNN takes bit-planes as input (but it works the same when tak-
ing non-binary symbols). There is b bit-planes where b is the size in
bits of the number represented in binary vector X . We number the
bit-planes such as bit-plane 0 corresponds to the most-significant-bit
(MSB) plane and bit-plane b−1 corresponds to the least-significant-
bit (LSB) plane. We note Bi{0, 1}∗ → {0, 1}∗ the function ex-
tracting the bit plane i (i ∈ {0, . . . b − 1}) from a sequence of bits.
We also note ApEnm,r : {0, 1}∗ → N the function computing the
Approximate Entropy [11] on a sequence of bits. This Approximate
Entropy function is compute for a given window size m and a given
threshold r.

Given a function f (our coder) and an input X , we propose to
measure the chaos introduced in the sequence by Df (X):

Df (X) =

B∑
i=0

ApEnm,r(f(Bi(X)))

B∑
i=0

ApEnm,r(Bi(X))

(2)

In this metric we compute the sum of the Approximate Entropy
of each bitplane for the coded data. Intuitively, when the chaos of
the sequence increase, this same sequence becomes more difficulte
to predict, thus the approximate entropy increases. It means the se-
quence nears a random one and as such it becomes more difficult to
find patterns to use for classification.

Secondly, the number of patterns can be linked to a specific input
sequence X that contains less information before coding. Thus, we
have to compare the sum of the bitplanes approximate entropy for
the coded data to the one for the non-coded data. Finally, to ensure
stability the final measure is an average over the dataset.

Fig. 3. Accuracy of VGG11 on YCIFAR-10 in function of Df (X)
for several transform f (Huffman and arithmetic coding with input
symbol size 2, 4, 6, 8)

4. EXPERIMENTS

4.1. Setup

We base our experimental setup on [8] as described in Subsec-
tion 2.2. For a given entropy coder, we train a CNN on the encoded
data that we pad if needed. The evaluation of the trained CNN gives
us its accuracy. On the other-hand, we compute our metric Df .

Fig. 4. Accuracy of VGG11 on MNIST in function of Df (X) for
several transform f (Huffman and arithmetic coding with input sym-
bol size 2, 4, 6, 8)

We then search for a correlation between the accuracy loss and our
metric.

4.2. Results

In this experiment we use UVGG11 [8] (Unidimensional
VGG11 [12]) as the CNN. We train the network using stochastic
gradient descent (ADAM [13]) with a learning rate of 10−4. This
give us the respective accuracy for several transforms: Huffman cod-
ing [10] and arithmetic coding [9] with sizes of 2,4,6,8.

Figure 3 plots the accuracy evaluated on the trained CNN ver-
sus the proposed chaos measurement metric, for the YCIFAR-10
dataset [8] (the grayscale version of CIFAR-10 [14]), a dataset con-
taining realistic images with 10 classes. For Huffman entropy cod-
ing, the input length varies from 2 to 8, and we observe a good
correlation between the true accuracy and the proposed metric. For
arithmetic coding, the tested entropy coders with their various input
symbol sizes have little influence on the chaos metric and the accu-
racy. The introduced chaos is greater with arithmetic coding. Thus,
the accuracy is worse than Huffman. At the same time the metric
is also greater than Huffman, sign of a good correlation. The accu-
racy of Figure 4 draws the same features, but for a different dataset:
MNIST [15]. Here, the correlation between the proposed metric and
the accuracy is also good.

5. CONCLUSION

In this paper, we tackled the difficult problem of learning on entropy
coded data. In particular, we introduced a new chaos measurement
metric in order to quantitatively measure the effect of an entropy
coder on the learning performance. We find interesting that simula-
tions show a good correlation between the proposed metric and the
accuracy of the learning algorithm.
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