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ABSTRACT

We propose an empirical study to see whether learning with convo-
lutional neural networks (CNNs) on entropy coded data is possible.
First, we define spatial and semantic closeness, two key properties
that we experimentally show to be necessary to guarantee the effi-
ciency of the convolution. Then, we show that these properties are
not satisfied by the data processed by an entropy coder. Despite this,
our experimental results show that learning in such difficult condi-
tions is still possible, and that the performance are far from a ran-
dom guess. These results have been obtained thanks to the construc-
tion of CNN architectures designed for 1D data (one based on VGG,
the other on ResNet). Finally, we propose some experiments that
explain why CNN are still performing reasonably well on entropy
coded data.

Index Terms— Image and Video Coding for Machine, Deep-
learning, CNN, Entropy coding.

1. INTRODUCTION

There is now evidence that visual data will mostly be processed by
machines [1]. To this end, the classical overall scheme consists in
first compressing the data, and then decompressing them before be-
ing analyzed. Decompression before processing is a classical setup,
as visual data analysis is usually performed on the 2D images, in
the pixel domain. However, one can ask whether these two tasks,
compression and analysis, can be efficiently combined.

There are several ways to achieve this. A common approach
consists in designing a new codec optimized for both human and ma-
chine consumption [1, 2]. Note that it is then assumed that the task
is known a priori (e.g., face coding [2]). But there are many cases,
where the task is not known beforehand or video is recorded with-
out any automatic analysis intent (e.g., TV recordings). Therefore,
in this work, we assume that the video is compressed with an algo-
rithm optimized for human vision, and that, afterwards, an analysis
is performed on the data. But, as visualization is not needed when
processing the data, we can wonder whether learning directly in the
coded domain is possible without a need to decode.

Learning without decoding would however require analyzing the
entropy coded stream directly. Indeed, entropy coding is ubiquitous
in image and video standards such as JPEG [3], AVC [4], HEVC [5],
and the more recent VVC [6]. Likewise, in deep learning based im-
age compression [7], the latent representation provided by a vari-
ational autoencoder is entropy encoded, which leads to the com-
pressed file. Learning on entropy coded data is difficult due to the
loss of structure and variable length of this type of coding. There-
fore, several contributions study learning on partially decoded data.
In fact, learning on coded data has been studied under the condition
that entropy decoding is performed. For instance, the analysis is per-
formed either on the JPEG coefficients [8], or on the meta-data of the

coded bitstream. For example, intra-coded prediction mode, inter-
coded frame block mode, and block size can be used to detect scene
changes [9]. Other methods, use both coefficients and metadata to
perform analysis. For instance, intra-coded frame DCT coefficients
and inter-coded frames motion vectors are used for video saliency
detection in [10]. Similarly, the fusion of some fully decoded frames
and entropy decoded motion vectors information allows CNN to
achieve high-speed video classification [11]. More recently, a real-
time video segmentation method that uses classical segmentation on
intra-coded frames while computing inter-coded frame segmentation
from both motion vectors and an embedding of last frame segmenta-
tion was proposed in [12]. Another method [13] use codec specific
knowledge to align encoded JPEG block which can be done by pars-
ing the file without decoding per se.

However, all these methods still require entropy decoding or at
least parsing and as such, loose the benefits of analyzing the bit-
stream directly. In this paper, we rather propose to study whether
CNN based learning directly on entropy coded data is possible. The
question is of scientific interest, as it would allow one to measure the
impact of the variable length data format on the analysis accuracy.
Besides, learning on the coded domain would provide many poten-
tial advantages: first decoding is avoided, and second, since the data
have a compact representation, a faster processing can be expected.
Indeed, modern image/video codecs, entropy coding is the final step
that really reduces the size of the data. All previous steps such as
transforms, prediction, mostly prepare the entropy coding step by
exploiting correlation between data. But the number of coefficients
during these previous steps remains the same or even increases, due
to the use of metadata.

We first study the convolution, a key step in CNN, and identify
two properties, that data format should satisfy. More precisely, to be
processed by a convolution, the data fed to a CNN should be spa-
tially but also semantically close. We then confirm these statements
experimentally. Subsequently, we explain why and how the classi-
cal processing of entropy coding does not preserve these properties.
For the sake of the study, we introduce two architectures, designed
to process 1D vector data, with which we learn on both arithmetic
and Huffman coded data. Surprisingly, we observe that analysis with
CNN on entropy coded data is still possible, and that the accuracy
are even far from a random guess. Finally, we propose to explain
such good CNN performance with complementary experiments.

2. PROBLEM DEFINITION

We want to evaluate if a CNN can directly learn in the coded domain.
To do so, we first present the joint coding and learning scheme, and
compare the different setups: (a) classical, when learning is per-
formed on the decoded data, and (b) in the coded domain, when
learning is done directly on entropy coded data (see Fig. 1).

An imageX is stored and transmitted in a compressed formX ′.
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Ỹ

(a)

(b)

Fig. 1. Classical learning (a) vs learning in the coded domain (b).

The function f refers to the entropy coder that mapsX to its compact
description X ′. In particular, f is controlled by a frequency table
that determines the output length of each input symbol. The decoder
g retrieves the image X from X ′. Since we study entropy coding,
the encoder decoder pair is lossless i.e., g ◦ f = Id. To evaluate
compression we define the mean compression ratio as:

r(X) = |X|
|f(X)|

(1)

where |X| stands for the average length of X (|.| the length in bits),
computed over a set of images.

We denote Y the label associated with the image X , and model
the relationship between Y and X as a probability distribution
PX|Y , as shown in Fig. 1.

In the classical setting (see Fig. 1(a)), a learning algorithm takes
as input the image X , i.e., after the decoding step g. In this case, the
learner determines the estimator φ, by solving the following opti-
mization problem, with D a pairwise distance and Ttrain the training
data:

min
φ

∑
(X,Y )∈Ttrain

D(φ ◦ g ◦ f(X), Y ). (2)

In the "learning in the coded domain" setup, the label Y is es-
timated from the coded data X ′, as shown in Fig. 1(b). More pre-
cisely, the learner determines φ′, and solves the optimization prob-
lem:

min
φ′

∑
(X,Y )∈Ttrain

D(φ′ ◦ f(X), Y ). (3)

Note that the estimators φ and φ′ differ through their input spaces.
Since f is zero-error, we do not lose any information by encod-

ingX . Thus, at first sight, we may expect the same performances for
both learning algorithms: classical and in the coded domain. How-
ever, as stated in the next two sections, there are some incompatibili-
ties between the data format needed to insure good performance of a
learning algorithm, and the format of the data after entropy coding.
The next section starts with a review of two key properties for CNNs
that are not preserved after entropy coding. Which might cause some
performance degradation, when learning is performed in the com-
pressed domain.

3. LEARNING WITH CNN: REQUIREMENTS

3.1. Required properties: spatial and semantic closeness

When using CNN, the main tool of the feature extraction layers is
convolution. A key ingredient of the convolution is a weighted av-
erage function performed on a neighbourhood, at a given position of
a fixed and regular grid. Therefore, the format of the data fed to a
CNN should satisfy the following properties:

Properties lost Accuracy
None 0.62098
(i) 0.38089± 0.00505
(ii) 0.24406± 0.01656
(i) and (ii) 0.12392± 0.02151

Table 1: VGG11 network mean accuracy on YCIFAR-10 when
breaking closeness properties via random permutations (95% con-
fidence interval).

(i) Spatial closeness: two neighboring pixels on the pixel grid
should, in the representation, be placed at adjacent and iden-
tifiable positions,

(ii) Semantic closeness: neighbor data cell values (pixel values)
that are close in terms of meaning (e.g., close in terms of per-
ceived physical color) should be close in terms of representa-
tion (integer color value).

In order to check the impact of these properties, we introduce
lossless perturbations that alter the aforementioned properties:

• A permutation on positions that shuffles the pixel’s location
(i.e., we lose spatial closeness (i)).

• A permutation on values in this case the pixel value range
({0, . . . 255}) (i.e., we lose semantic closeness (ii)).

Next, we apply these permutations on the data and perform learning
on the permuted data. Table 1 shows the accuracy of the classifi-
cation network VGG11 [14] on the uncoded greyscale YCIFAR-10
dataset (see 4.2).

Interestingly, the permutation on positions, which breaks the
spatial closeness property (i), and the permutation on values, which
breaks the semantic closeness property (ii), both create a drop in
learning accuracy. Moreover, applying both permutations at the
same time leads to a total learning failure as accuracy (0.12) be-
comes close to a random guess (0.1, for 10 classes).

Although CNNs have demonstrated to be a powerful tool, we
show here that some properties on the input data have to be respected
for them to work well.

3.2. The challenge to learn on entropy coded data

Entropy coding modifies significantly the structure of the input data
for two reasons. First, the encoder maps a vector of symbols to an
encoded representation. So, within a vector, no clear delimitation be-
tween encoded pixels are present. Therefore, one can not determine
pixels representation boundaries, and decide whether two pixels are
neighbors, unless decoding is performed. Second, the encoded rep-
resentation (of a vector) is variable length. Therefore, the boundaries
between encoded vectors is not fixed, and can only be retrieved upon
decoding. As a consequence, we loose the spatial closeness property
(i) needed for convolution to work well.

Moreover, during encoding, we also obfuscate the individual
values of each pixel. Indeed, the coded output of a given pixel de-
pends on its occurrence frequency thus two similar pixels may be
mapped to wildly different outputs thus breaking the semantic close-
ness property (ii). For example, two different shades of red, one
occurring frequently and one sparsely occurring, may be close in the
pixel domain but will be mapped to strongly different outputs by the
entropy coder as it only takes into account the frequencies, not the
semantic.

For all these reasons, we conclude that learning with CNN on
entropy coded data is a priori a difficult (nearly impossible) task,
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Fig. 2. Experimental pipeline for learning on coded data.

since the entropy coded format does not satisfy the key properties
(i) and (ii).

4. EXPERIMENTAL SETUP

In this section, we present our experimental pipeline for learning on
entropy coded data. We will also present some intermediary results
that validate key choices. Our experimental pipeline has the follow-
ing outline (see Fig. 2). Using grey level images (luminance) with
8 bits/pixel (see Section 4.2) as input data, the bitplane constructor
first splits the images into bitplanes. Then the vectorizer transforms
the square bitplanes of the image into 1D vectors. Afterwards, the
encoder encodes each bitplane vector separately. More precisely,
there is one coder per bitplane with its associated frequency table
computed over the training set bitplanes. Finally, after padding en-
coded vectors to fixed length, the CNN can learn on them.

During the training phase, one wants to optimize the weights of
the network such as it minimizes the empirical risk. The network
takes as input a tensor in RBin×Cin×Oin where Bin is the batch size,
Cin the number of channel that is the number of bitplanes, Oin the
original size of a decoded bitplane vector (as encoded vectors are
padded to this length).

Meanwhile, the output of the network is a vector of probability
of length C, with C being the number of classes we want to dis-
tinguish. Each the value of each coordinate i ∈ {0, . . . C} is the
probability of the input being in classified as in class i by the net-
work. For classification one can get the class as the indices of the
max coordinate of the output vector (argmax) as we have mutually
exclusive classes in our dataset.

To optimize the weights of our network we use backpropagation
with the cross entropy loss. Moreover, we use a validation set: a 10%
subset of our training set to avoid over-fitting. This validation subset
is thus not used during backpropagation. Lastly, we keep the model
with the lowest validation score as the optimal model and use it for
testing. We train all networks using a stochastic gradient descent
(ADAM) [15] with a learning rate of 10−4.

4.1. Unidimensional VGG & Resnet

We choose a commonly used architectures that represent well con-
volutional networks successfully used for 2D image classification:

• VGG [14] that is composed of 2 parts: first an interleaved
convolutional and maxpooling layer, second a fully connected
layer to reduce extracted features to label,

• RESNET [16] a well performing widely used convolutional
network with skip layer connections.

Our encoded data is of variable size and cannot be meaningfully
put back in the form of a matrix as vertical correlations may not be
preserved as rows alignments and boundaries are lost during coding.

We want similar networks to work on 1D data instead of 2D im-
ages. As such we re-implement VGG11 and Resnet18 using only

1D convolutions. This gives rise to the Unidimensional-VGG11
(UVGG11) and Unidimensional-RESNET18 (URESNET18) net-
works. As input of these networks there is Cin bitplanes. That is
Cin 1D vectors fed into a channel each.

4.2. Input data: greyscale matrix dataset

For our experiments, we consider three 8 bits greyscale datasets with
growing complexity. The first dataset is MNIST [17]. Its images are
handwritten digits on a uniform background. It thus has 10 classes.

The second one is Fashion-MNIST [18] where the images depict
10 different types of clothing on a uniform background.

The last dataset we use is an adaptation of CIFAR-10 [19]. As
we learn on greyscale images in these experiments CIFAR-10 is
transformed into YCIFAR-10 by converting the images to greyscale
(full swing BT.601 RGB to YUV conversion [20]). Images of
YCIFAR-10 are more complex than Fashion-MNIST ones but also
possess a non-uniform background, making class discrimination
more complex.

4.3. Coding bitplanes

Before tackling learning (on coded data or not) we want to briefly
discuss the effect of coding on each bitplane. In Table 2 we show the
mean compression ratio r for each bitplane p for the entropy coded
YCIFAR-10 dataset. We can see that most significant bits are more
correlated and as such their bitplane is more compressed (higher ra-
tio). The least significant the bit position is, the least its value is
correlated with its neighbors thus the lower its bitplane compres-
sion is. This holds true for all coding methods and dataset used in
this study. This method of compression leads to better compression
efficiency while further breaking the spatial closeness property (i)
between bitplanes.

The compression ratio for Fashion-MNIST and MNIST are re-
spectively higher and much higher. Indeed, the compression ratio
increases as the complexity of the database decreases.

On all datasets, Huffman coding leads to relatively smaller com-
pression ratios compared to arithmetic coding. This is expected as
by construction, Huffman coding [21, Chap. 3] cannot account for
previously encoded data by itself whereas arithmetic coding can [21,
Chap. 4].

Bitplane r
(MSB) 1 1.9884

2 1.4095
3 1.1732
4 1.0695

Bitplane r
5 1.0256
6 1.0085
7 1.0030

(LSB) 8 1.0016

Table 2: Example of mean compression ratio per bitplane for arith-
metic coded YCIFAR-10.



Coding Type
Dataset Network None Huffman Arithmetic JPEG
MNIST UVGG11 0.98911 0.83234 0.63130 -

URESNET18 0.98753 0.74503 0.59498 -
Fashion-MNIST UVGG11 0.90189 0.76347 0.68987 -

URESNET18 0.84972 0.68620 0.61162 -
YCIFAR-10 UVGG11 0.56573 0.36062 0.29762 0.32459

URESNET18 0.38368 0.25913 0.24325 -

Table 4: 1D-Network accuracy on entropy coded data.

Network Type
VGG11 RESNET18

Dataset 2D 1D+Bitplanes 2D 1D+Bitplanes
MNIST 0.99188 0.98911 0.99328 0.98753

Fashion-MNIST 0.90433 0.90189 0.89373 0.84972
YCIFAR-10 0.66489 0.56573 0.53206 0.38368

Table 3: Accuracy of 2D Networks and binary 1D Networks.

4.4. From 2D networks with pixel input to 1D networks with
binary input

In this section, we evaluate the impact of representing a 2D grid of
pixels by a set of 1D binary vectors. We perform experiments with-
out any entropy coding. Binarization and above all vectorization
modify the spatial closeness property, such that the accuracy of the
classification could decrease. Interestingly, we observe in Table 3
that the accuracy remain quite stable. This might be explained by
the efficiency of the pooling/unpooling, that still succeeds into ex-
tracting information positioned further away.

One might think that using larger kernel for the first layer of the
network would capture enough bits as once to capture several coded
symbols, but our testing shows that it just lead to a slight accuracy
degradation.

5. EXPERIMENTAL RESULTS AND ANALYSIS

Our main experimental results can be found in Table 4. In this Table,
we compare the accuracy achieved by three 1D-networks, that differ
through the representation of the input data. In the first column, no
entropy coding is performed (i.e, as if the learning is done after de-
coding), whereas in the second and third columns, the input data are
compressed with a Huffman and an Arithmetic encoder, respectively
and not decoded before learning.

Interestingly, despite the fact that the two key properties of the
convolution (spatial (i) and semantic (ii) closeness) are not pre-
served, we can observe that the CNN can still learn on entropy coded
data. Indeed, the accuracy is far from a random guess (which is
10% since, in all datasets used here, there are 10 classes). We also
observe that it is easier to differentiate between Huffman encoded
data than with arithmetic encoded data. This might be explained
by the fact that, in our implementation, Huffman processes data of
length 8, whereas the arithmetic processes a bitplane of length equals
to the whole image. Therefore, and for the reasons explained in
Sec.3.2, the Huffman encoder better preserves the spatial closeness
property than the Arithmetic encoder. We use the best performing
1D-network (UVGG11) on the hardest dataset considered (YCIFAR-
10), to learn directly on the bitstream of JPEG coded images. It is
less accurate than learning on Huffman coded data but more than
learning on arithmetic coded data for the same dataset. This stems

Accuracy Increase
Huffman 0.05663
JPEG to JPEG-DC 0.00956

Table 5: VGG11 network accuracy increase when learning on
YCIFAR-10 with coded data aligned on 2D grid compared the ac-
curacy of 1D unaligned data of Table 4.

from the fact a JPEG coder first performs a transform, which further
breaks the spatial closeness property (i), and then apply an entropy
coder, similar to Huffman coding. Therefore, the accuracy decreases
with respect to Huffman coding only. However, learning on JPEG
encoded data still outperforms learning on Arithmetic encoded data.

We can regain accuracy by aligning coded data on the image grid
by aligning each coded pixel on the 2D grid using one channel per
coded pixel bit. Arithmetic coded data is not separable per symbol
but Huffman coded data is. Although one need to separate and align
symbols during encoding as symbol boundaries are lost when cod-
ing. On the other hand JPEG coded DC coefficients can easily be
extracted from file with a simple parsing and their order being fixed
by the standard make them easy to map onto a grid. Table 5 contains
the results of such experiments using UVGG11 on YCIFAR-10. The
observed accuracy for aligned Huffman coded data aligned on 2D
grid is greater than the one from 1D unaligned Huffman coded data.
This is expected as we are recovering the spatial closeness property
(i). But the increase is not that great, showing again that entropy
coding does not disturb spatial closeness (i) as much as we though.
Learning on only aligned JPEG DC coefficients on a 2D grid leads to
a slightly better accuracy than learning on JPEG as a 1D bitstream.
This can be explained as we both recover some spatial closeness (i)
but as the same time we lose data as we are now working on a grid
downscaled by 8 compared to the size of the original image. In [13]
they try to learn on the whole JPEG coded block (DC+AC coeffi-
cients) after aligning them on the grid. This approach also suffers
from an accuracy loss of about 15% compared to the baseline which
is in line with what we obtain here.

6. CONCLUSION

In this paper, we introduced two data properties necessary for CNN
to work well and validated them experimentally. Indeed, as entropy
coded data lose these properties, we studied the impact of learning
with such coded data onto the classification accuracy of a CNN net-
work. For this purpose, 1D-binary input CNN have been designed.
Surprisingly, even if the structure of the data processed by the net-
work have been significantly modified, the CNN can still learn on
these data. Entropy coding does not impact these properties as much
as we though proving learning on entropy coded data feasible.
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