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Abstract

We study non-parametric density estimation for densities in Lipschitz and Sobolev spaces,
and under central privacy. In particular, we investigate regimes where the privacy budget is
not supposed to be constant. We consider the classical definition of central differential pri-
vacy, but also the more recent notion of central concentrated differential privacy. We recover
the result of Barber & Duchi (2014) stating that histogram estimators are optimal against
Lipschitz distributions for the L2 risk and, under regular differential privacy, we extend it
to other norms and notions of privacy. Then, we investigate higher degrees of smoothness,
drawing two conclusions: First, and contrary to what happens with constant privacy budget
(Wasserman & Zhou, 2010), there are regimes where imposing privacy degrades the regular
minimax risk of estimation on Sobolev densities. Second, so-called projection estimators are
near-optimal against the same classes of densities in this new setup with pure differential
privacy, but contrary to the constant privacy budget case, it comes at the cost of relaxation.
With zero concentrated differential privacy, there is no need for relaxation, and we prove
that the estimation is optimal.

1 Introduction

The communication of information built on users’ data leads to new challenges, and notably privacy con-
cerns. It is now well documented that the release of various quantities can, without further caution, have
disastrous repercussions (Narayanan & Shmatikov, 2006; Backstrom et al., 2007; Fredrikson et al., 2015;
Dinur & Nissim, 2003; Homer et al., 2008; Loukides et al., 2010; Narayanan & Shmatikov, 2008; Sweeney,
2000; Gonon et al., 2023; Wagner & Eckhoff, 2018; Sweeney, 2002). In order to address this issue, differ-
ential privacy (DP) (Dwork et al., 2006b) has become the gold standard in privacy protection. The idea
is to add a proper layer of randomness in order to hide each user’s data. It is notably used by the US
Census Bureau (Abowd, 2018), Google (Erlingsson et al., 2014), Apple (Thakurta et al., 2017) and Mi-
crosoft (Ding et al., 2017), among many others.

As with other forms of communication or processing constraints (Barnes et al., 2019; 2020; Acharya et al.,
2021a;b;c;d), privacy recently gained a lot of attention from the statistical and theoretical machine learn-
ing communities. At this point, the list of interesting publications is far too vast to be exhaustive, but
here is a sample : Wasserman & Zhou (2010) is the first article to consider problems analogous to the ones
presented in this article. It notably studies the problem of nonparametric density estimation, to which
we provide many complements. Duchi et al. (2014; 2013; 2016); Barber & Duchi (2014); Acharya et al.
(2021e); Lalanne et al. (2023a) present general frameworks for deriving minimax lower-bounds under pri-
vacy constraints. Many parametric problems have already been studied, notably in Acharya et al. (2018;
2021e); Karwa & Vadhan (2018); Kamath et al. (2019); Biswas et al. (2020); Lalanne et al. (2022; 2023b);
Kamath et al. (2022); Singhal (2023). Recently, some important contributions were made. For instance,
Asi et al. (2023) sharply characterized the equivalence between private estimation and robust estimation
with the inverse sensitivity mechanism (Asi & Duchi, 2020a;b), and Kamath et al. (2023) detailed the bias-
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variance-privacy trilemma, proving in particular the necessity of adding bias, even on distributions with
bounded support, for many private estimation problems.

We address here the problem of privately estimating a probability density, which fits in this line of work.
Given X := (X1, . . . , Xn) ∼ P⊗n

π , where Pπ refers to a distribution of probability that has a density π
with respect to the Lebesgue measure on [0, 1], how to estimate π privately? Technically, what metrics or
hypothesis should be set on π? What is the cost of privacy? Are the methods known so far optimal? Such
are the questions that are investigated in the rest of this article.

1.1 Related work

Non-parametric density estimation has been an important topic of research in statistics for many decades
now. Among the vast literature on the topic, let us just mention the important references Györfi et al.
(2002); Tsybakov (2009).

Recently, the interest for private statistics has shone a new light on this problem. Remarkable early con-
tributions (Wasserman & Zhou, 2010; Hall et al., 2013) adapted histogram estimators, so-called projection
estimators and kernel estimators to satisfy the privacy constraint. They conclude that the minimax rate of
convergence, n−2β/(2β+1), where n is the sample size and β is the (Sobolev) smoothness of the density, is
not affected by central privacy (also known as global privacy). However, an important implicit hypothesis in
this line of work is that ǫ, the parameter that decides how private the estimation needs to be, is supposed
not to depend on the sample size. This hypothesis may seem disputable, and more importantly, it fails to
precisely characterize the tradeoff between utility and privacy.

Indeed, differential privacy gives guarantees on how hard it is to tell if a specific user was part of the dataset.
Despite the fact that one could hope to leverage the high number of users in a dataset in order to increase the
privacy w.r.t. each user, previous studies (Wasserman & Zhou, 2010; Hall et al., 2013) cover an asymptotic
scenario with respect to the number of samples n, for fixed ǫ. In contrast, our study highlights new behaviors
for this problem. For each sample size, we emphasize the presence of two regimes: when the order of ǫ is
larger than some threshold (dependent on n) that we provide, privacy can be obtained with virtually no
cost; when ǫ is smaller than this threshold, it is the limiting factor for the accuracy of estimation.

To the best of our knowledge, the only piece of work that studies this problem under central privacy when ǫ is
not supposed constant is Barber & Duchi (2014). They study histogram estimators on Lipschitz distributions
for the integrated risk. They conclude that the minimax risk of estimation is max

(

n−2/3 + (nǫ)−1
)

, showing
how small ǫ can be before the minimax risk of estimation is degraded. Our article extends such results to
high degrees of smoothness, to other definitions of central differential privacy, and to other risks.

In the literature, there exist other notions of privacy, such as the much stricter notion of local differential
privacy. Under this different notion of privacy, the problem of non-parametric density estimation has already
been extensively studied. We here give a few useful bibliographic pointers. A remarkable early piece of
work Duchi et al. (2016) has brought a nice toolbox for deriving minimax lower bounds under local privacy
that has proven to give sharp results for many problems. As a result, the problem of non-parametric
density estimation (or its analogous problem of non-parametric regression) has been extensively studied under
local privacy. For instance, Butucea et al. (2019) investigates the elbow effect and questions of adaptivity
over Besov ellipsoids. Kroll (2021) and Schluttenhofer & Johannes (2022) study the density estimation
problem at a given point with an emphasis on adaptivity. Universal consistency properties have recently
been derived in Györfi & Kroll (2023). Analogous regression problems have been studied in Berrett et al.
(2021) and in Györfi & Kroll (2022). Finally, the problem of optimal non-parametric testing has been studied
in Lam-Weil et al. (2022).

1.2 Contributions

In this article, we investigate the impact of central privacy when the privacy budget is not constant. We
treat multiple definitions of central privacy and different levels of smoothness for the densities of interest.

In terms of upper-bounds, we analyze histogram and projection estimators at a resolution that captures
the impact of the privacy and smoothness parameters. We also prove new lower bounds using the classical
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packing method combined with new tools that characterize the testing difficulty under central privacy from
Acharya et al. (2021e); Kamath et al. (2022); Lalanne et al. (2023a).

In particular, for Lipschitz densities and under pure differential privacy, we recover the results of
Barber & Duchi (2014) with a few complements. We then extend the estimation on this class of distri-
butions to the context of concentrated differential privacy (Bun & Steinke, 2016), a more modern definition
of privacy that is compatible with stochastic processes relying on Gaussian noise. We finally investigate
higher degrees of smoothness by looking at periodic Sobolev distributions. The main results are summarized
in Table 1.2.

ǫ-DP Equation (1) ρ-zCDP Equation (2)

Lipschitz

Equation (4)

Upper-bound:
O
(

max
{

n−2/3, (nǫ)−1
})

(Barber & Duchi, 2014) & Theorem 1

Lower-bounds:
-Pointwise: Ω

(

max
{

n−2/3, (nǫ)−1
})

Theorem 2 & Corollary 1
-Integrated: Ω

(

max
{

n−2/3, (nǫ)−1
})

(Barber & Duchi, 2014) & Theorem 3

Upper-bound:
O
(

max
{

n−2/3, (n
√

ρ)−1
})

Theorem 1

Lower-bounds:
-Pointwise: Ω

(

max
{

n−2/3, (n
√

ρ)−1
})

Theorem 2 & Corollary 1
-Integrated: Ω

(

max
{

n−2/3, (n
√

ρ)−1
})

Theorem 3

Periodic Sobolev

Smoothness β
Equation (9)

Upper-bounds:

-Pure DP: O
(

max
{

n− 2β
2β+1 , (nǫ)− 2β

β+3/2

})

Theorem 4

-Relaxed: max

{

n− 2β
2β+1 ,

(

nǫ√
ln(1.25/δ)

)− 2β
β+1

}

Section 4.4

Lower-bound:

Ω
(

max
{

n− 2β
2β+1 , (nǫ)− 2β

β+1

})

Theorem 5

Upper-bound:

O
(

max
{

n− 2β
2β+1 , (n

√
ρ)− 2β

β+1

})

Theorem 4

Lower-bound:

Ω
(

max
{

n− 2β
2β+1 , (n

√
ρ)− 2β

β+1

})

Theorem 5

Table 1: Summary of the results

The paper is organized as follows. The required notions regarding central differential privacy are recalled in
Section 2. Histogram estimators and projection estimators are respectively studied in Section 3, on Lipschitz
densities, and in Section 4, on periodic Sobolev densities. A short conclusion in provided in Section 5.

2 Central Differential Privacy

We recall in this section some useful notions of central privacy. Here, X and n refer respectively to the
sample space and to the sample size.

Given two datasets X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) ∈ X n, the Hamming distance between X and Y is
defined as

dham (X, Y) =
n
∑

i=1

1Xi 6=Yi .

Given ǫ > 0 and δ ∈ [0, 1), a randomized mechanism M : X n → codom (M) (for codomain or image of M)
is (ǫ, δ)-differentially private (or (ǫ, δ)-DP) (Dwork et al., 2006b;a) if for all X, Y ∈ X n and all measurable
S ⊆ codom (M):

dham (X, Y) ≤ 1 =⇒ PM (M(X) ∈ S) ≤ eǫPM (M(Y) ∈ S) + δ , (1)

where dham (·, ·) denotes the Hamming distance on X n.

In order to sharply count the privacy of a composition of many Gaussian mechanisms (see Abadi et al.
(2016)), privacy is also often characterized in terms of Renyi divergence (Mironov, 2017). Nowadays, it
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seems that all these notions tend to converge towards the definition of zero concentrated differential privacy
(Dwork & Rothblum, 2016; Bun & Steinke, 2016). Given ρ ∈ (0, +∞), a randomized mechanism M : X n →
codom (M) is ρ-zero concentrated differentially private (ρ-zCDP) if for all X, Y ∈ X n,

dham (X, Y) ≤ 1 =⇒ ∀1 < α < +∞, Dα (M(X)‖M(Y)) ≤ ρα (2)

where Dα ( ·‖ ·) denotes the Renyi divergence of level α, defined when α > 1 as

Dα (P‖ Q) :=
1

α − 1
ln
∫ (

dP

dQ

)α−1

dQ .

For more details, we recommend referring to the excellent article van Erven & Harremoës (2014).

There are links between (ǫ, δ)-DP and ρ-zCDP. For instance, if a mechanism is ρ-zCDP, then (Bun & Steinke,
2016, Proposition 3) it is (ǫ, δ)-DP for a collection of (ǫ, δ)’s that depends on ρ. Conversely, if a mechanism
is (ǫ, 0)-DP, then (Bun & Steinke, 2016, Proposition 4) it is also ǫ2/2-zCDP.

Given a deterministic function f mapping a dataset to a quantity in Rd, the Laplace mechanism (Dwork et al.,
2006b) and Gaussian mechanism (Bun & Steinke, 2016) are two famous ways to turn f into a private
mechanism. Defining the l1 sensitivity of f as

∆1f := sup
X,Y∈X n:dham(X,Y)≤1

∥

∥f(X) − f(Y)
∥

∥

1
,

the Laplace mechanism instantiated with f and ǫ > 0 is defined as

X 7→ f(X) +
∆1f

ǫ
L(Id) ,

where L(Id) refers to a random vector of dimension d with independent components that follow a centered
Laplace distribution of parameter 1. Notice that we took the liberty to use the same notation for the random
variable and for its distribution. We made this choice for brevity, and because it does not really create any
ambiguity. It is (ǫ, 0)-DP (simply noted ǫ-DP) (Dwork et al., 2006a;b). Likewise, defining the L2 sensitivity
of f as

∆2f := sup
X,Y∈X n:dham(X,Y)≤1

∥

∥f(X) − f(Y)
∥

∥

2
,

the Gaussian mechanism instantiated with f and ρ > 0 is defined as

X 7→ f(X) +
∆2f√

2ρ
N (0, Id) ,

where N (0, Id) refers to a random vector of dimension d with independent components that follow a centered
Normal distribution of variance 1. It is ρ-zCDP (Bun & Steinke, 2016).

A quick word on local privacy. Central privacy comes with the hypothesis of a trusted aggregator (also
known as a curator, hence the alternative name a "trusted curator model" for central privacy, which is also
known under the name global privacy) that sees the entire dataset, and builds an estimator with it. Only
the produced estimator is private. In order to give an example, this is like having a datacenter that stores
all the information about the users of a service, but only outputs privatized statistics.

Local privacy on the other hand does not make that hypothesis. Each piece of data is anonymized locally
(on the user’s device) and then it is communicated to an aggregator. Any locally private mechanism is also
centrally private, but the converse is not true.

At first, local privacy can seem more appealing : it is indeed a stronger notion of privacy. However, it
degrades the utility much more than central privacy. As a result, both notions are interesting, and the use
of one or the other must be weighted for a given problem. This work focuses on the central variant.
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3 Histogram Estimators and Lipschitz Densities

Histogram estimators approximate densities with a piecewise continuous function by counting the number of
points that fall into each bin of a partition of the support. Since those numbers follow binomial distributions,
the study of histogram estimators is rather simple. Besides, they are particularly interesting when privacy
is required, since the sensitivity of a histogram query is bounded independently of the number of bins. They
were first studied in this setup in Wasserman & Zhou (2010), while Barber & Duchi (2014) provided new
lower-bounds that did not require a constant privacy budget.

As a warm-up, this section proposes a new derivation of known results in more modern lower-bounding
frameworks (Acharya et al., 2021e; Kamath et al., 2022; Lalanne et al., 2023a), and then extends these
upper-bounds and lower-bounds to the case of zCDP. Furthermore, it also covers the pointwise risk as
well as the infinite-norm risk.

Let h > 0 be a given bandwidth or binsize. In order to simplify the notation, we suppose without loss of
generality that 1/h ∈ N \ {0} (if the converse is true, simply take h′ = 1/ ⌈1/h⌉ where ⌈x⌉ refers to the
smallest integer bigger than x). [0, 1] is partitioned in 1

h sub-intervals of length h, which are called the bins
of the histogram. Let Z1, . . . , Z1/h be independent and identically distributed random variables with the
same distribution as a random variable Z that is supposed to be centered and to have a finite variance.
Given a dataset X = (X1, . . . , Xn), the (randomized) histogram estimator is defined for x ∈ [0, 1] as

π̂hist(X)(x) :=
∑

b∈bins

1b(x)
1

nh

(

n
∑

i=1

1b(Xi) + Zb

)

. (3)

We indexed the Z’s by a bin instead of an integer without ambiguity. Note that by taking Z almost-surely
constant to 0, one recovers the usual (non-private) histogram estimator of a density.

3.1 General utility of histogram estimators

Characterizing the utility of (3) typically requires assumptions on the distribution π to estimate. The class
of L-Lipschitz densities is defined as

ΘLip
L :=

{

π ∈ C0([0, 1], R+)

∣

∣

∣

∣

∣

{

∀x, y ∈ [0, 1], |π(y) − π(x)| ≤ L|y − x| ,
∫

[0,1] π = 1 .

}

. (4)

The following general-purpose lemma gives an upper-bound on the error that the histogram estimator makes
on Lipschitz distributions:

Lemma 1 (General utility of (3)). There exists CL > 0, a positive constant that only depends on L, such
that

sup
x0∈[0,1]

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂hist

(

(

π̂hist(X)(x0) − π(x0)
)2
)

≤ CL

(

h2 +
1

nh
+

V(Z)
n2h2

)

.

The proof is given in Appendix C. The term h2 corresponds to the bias of the estimator. The variance
term 1

nh + V(Z)
n2h2 exhibits two distinct contributions : the sampling noise 1

nh and the privacy noise V(Z)
n2h2 . In

particular, the utility of π̂hist changes depending whether the variance is dominated by the sampling noise
or by the privacy noise.

3.2 Privacy and bin size tuning

π̂hist(X) is a simple function of the bin count vector f(X) :=
(
∑n

i=1 1b1(Xi), . . . ,
∑n

i=1 1b1/h
(Xi)

)

. In
particular, since the bins form a partition of [0, 1], changing the value of one of the X ’s can change the values
of at most two components of f(X) by at most 1. Hence, the l1 and l2 sensitivities of f are respectively 2
and

√
2. By a direct application of the Laplace or Gaussian mechanisms, and by choosing the binsize that

minimizes the variance, we obtain the following privacy-utility result :

Theorem 1 (Privacy and utility of (3) - DP case). Given ǫ > 0, using π̂hist with h = max(n−1/3,
(nǫ)−1/2) and Z = 2

ǫ L(1), where L(1) refers to a random variable following a Laplace distribution of param-
eter 1, leads to an ǫ-DP procedure. Furthermore, in this case, there exists CL > 0, a positive constant that
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only depends on L, such that

sup
x0∈[0,1]

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂hist

(

(

π̂hist(X)(x0) − π(x0)
)2
)

≤ CL max
{

n−2/3, (nǫ)−1
}

.

Furthermore, given ρ > 0, using π̂hist with h = max(n−1/3, (n
√

ρ)−1/2) and Z =
√

1
ρN (0, 1), where N (0, 1)

refers to a random variable following a centered Gaussian distribution of variance 1, leads to a ρ-zCDP
procedure. Furthermore, in this case, there exists CL > 0, a positive constant that only depends on L, such
that

sup
x0∈[0,1]

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂hist

(

(

π̂hist(X)(x0) − π(x0)
)2
)

≤ CL max
{

n−2/3, (n
√

ρ)−1
}

.

Note that this bound is uniform in x0, which is more general than the integrated upper-bounds presented in
Barber & Duchi (2014). In particular, by integration on [0, 1], the same bound also holds for the integrated
risk (in L2 norm), which recovers the version of Barber & Duchi (2014). As expected, the optimal bin size
h depends on the sample size n and on the parameter (ǫ or ρ) tuning the privacy. Also note that ρ-zCDP
version may also be obtained by the relations between ǫ-DP and ρ-zCDP (see Bun & Steinke (2016)).

3.3 Lower-bounds and minimax optimality

All lower-bounds will be investigated in a minimax sense. Given a class Π of admissible densities, a semi-
norm ‖ · ‖ on a space containing the class Π, and a non-decreasing positive function Φ such that Φ(0) = 0,
the minimax risk is defined as

inf
π̂ s.t. C

sup
π∈Π

E
X∼P

⊗n
π ,π̂Φ(‖π̂(X) − π‖) ,

where C is a condition that must satisfy the estimator (privacy in our case).

General framework. A usual technique for the derivation of minimax lower bounds on the risk uses a
reduction to a testing problem (see Tsybakov (2009)). Indeed, if a family Π′ := {π1, . . . , πm} ⊂ Π of cardinal
m is an Ω-packing of Π (that is if i 6= j =⇒ ‖πi − πj‖ ≥ 2Ω), then a lower bound is given by

inf
π̂ s.t. C

sup
π∈Π

E
X∼P

⊗n
π ,π̂Φ(‖π̂(X) − π‖)

≥ Φ(Ω) inf
π̂ s.t. C

Ψ:codom(π̂)→{1,...,m}

max
i∈{1,...,m}

P
X∼P

⊗n
πi

,π̂ (Ψ (π̂(X)) 6= i) . (5)

For more details, see Duchi et al. (2016); Acharya et al. (2021e); Lalanne et al. (2023a). The right-hand
side characterizes the difficulty of discriminating the distributions of the packing by a statistical test. Inde-
pendently on the condition C, it can be lower-bounded using information-theoretic results such a Le Cam’s
lemma (Rigollet & Hütter, 2015, Lemma 5.3) or Fano’s lemma (Giraud, 2021, Theorem 3.1). When C is a
local privacy condition, Duchi et al. (2016) provides analogous results that take privacy into account. Re-
cent work (Acharya et al., 2021e; Kamath et al., 2022; Lalanne et al., 2023a) provides analogous forms for
multiple notions of central privacy. When using this technique, finding good lower-bounds on the minimax
risk boils down to finding a packing of densities that are far enough from one another without being too easy
to discriminate with a statistical test.

It is interesting to note that for the considered problem, this technique does not yield satisfying lower-bounds
with ρ-zCDP every time Fano’s lemma is involved. Systematically, a small order is lost. To circumvent that
difficulty, we had to adapt Assouad’s technique to the context of ρ-zCDP. Similar ideas have been used in
Duchi et al. (2016) for lower-bounds under local differential privacy and in Acharya et al. (2021e) for regular
central differential privacy. To the best of our knowledge, such a technique has never been used in the
context of central concentrated differential privacy, and is presented in Appendix D. In all the proofs of the
lower-bounds, we systematically presented both approaches whenever there is a quantitative difference. This
difference could be due to small suboptimalities in Fano’s lemma for concentrated differential privacy, or
simply to the use of a suboptimal packing.
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3.3.1 Pointwise lower-bound

The first lower-bound that will be investigated is with respect to the pointwise risk. Pointwise, that is to
say given x0 ∈ [0, 1], the performance of the estimator π̂ is measured by how well it approximates π at x0

with the quadratic risk E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

. Technically, it is the easiest since it requires a
"packing" of only two elements, which gives the following lower-bound:

Theorem 2 (Pointwise lower-bound). There exists CL > 0, a positive constant depending only on L such
that, for any x0 ∈ [0, 1], there exist n0(x0, L) ∈ N and c0(x0, L) > 0 such that for any n ≥ n0, and any
α ≥ c0/n

inf
π̂s.t.C

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

≥ C−1
L max

{

n−2/3, (nα)−1
}

, (6)

where α = ǫ when the condition C is the ǫ-DP condition and α =
√

ρ when C is ρ-zCDP.

Proof idea. Let x0 ∈ [0, 1]. As explained above, finding a "good" lower-bound can be done by finding and
analyzing a "good" packing of the parameter space. Namely, in this case, we have to find distributions on
[0, 1] that have a L-Lipschitz density (w.r.t. Lebesgue’s measure) such that the densities are far from one
another at x0, but such that it is not extremely easy to discriminate them with a statistical test. We propose
to use a packing {Pf , Pg} of two elements where g is the constant function on [0, 1] (hence Pg is the uniform
distribution) and f deviates from g by a small triangle centered at x0. The two densities are represented in
??.

After analyzing various quantities about these densities, such as their distance at x0, their KL divergences
or their TV distance, we leverage Le Cam-type results to conclude.

The full proof can be found in Appendix E.

Additionally, we can notice that, when applied to any fixed x0 ∈ [0, 1], Theorem 2 immediately gives the
following corollary for the control in infinite norm :

Corollary 1 (Infinite norm lower-bound). There exists CL > 0, a positive constant depending only on L
such that there exist n0(L) ∈ N and c0(L) > 0 such that for any n ≥ n0, and any α ≥ c0/n

inf
π̂s.t.C

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂‖π̂(X) − π‖2

∞ ≥ C−1
L max

{

n−2/3, (nα)−1
}

, (7)

where α = ǫ when the condition C is the ǫ-DP condition and α =
√

ρ when C is ρ-zCDP.

On the optimality and on the cost of privacy. Theorem 1, Theorem 2 and Corollary 1 give the
following general result : Under ǫ-DP or under ρ-zCDP, histogram estimators have minimax-optimal rates
of convergence against distributions with Lipschitz densities, for the pointwise risk or the risk in infinite
norm. In particular, in the low privacy regime (“large” α), the usual minimax rate of estimation of n− 2

3 is
not degraded. This includes the early observations of Wasserman & Zhou (2010) in the case of constant α
(ǫ or

√
ρ). However, in the high privacy regimes (α ≪ n− 1

3 ), these results prove a systematic degradation
of the estimation. Those regimes are the same as in Barber & Duchi (2014), the metrics on the other hand
are different.

3.3.2 Integrated lower-bound

The lower-bound of Theorem 2 is interesting, but its pointwise (or in infinite norm in the case of Corollary 1)
nature means that much global information is possibly lost. Instead, one can look at the integrated risk
E

X∼P
⊗n
π ,π̂‖π̂(X) − π‖2

L2 . Given Lemma 1 and the fact that we work on probability distributions with a
compact support, upper-bounding this quantity is straightforward.

The lower-bound for the integrated risk is given by :
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Theorem 3 (Integrated lower-bound). There exists CL > 0, a positive constant depending only on L such
that, there exist n0(L) ∈ N and c0(L) > 0 such that for any n ≥ n0, and any α ≥ c0/n

inf
π̂ s.t. C

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂‖π̂(X) − π‖2

L2 ≥ C−1
L max

{

n−2/3, (nα)−1
}

where α = ǫ when C is the ǫ-DP condition, and α =
√

ρ when C is the ρ-zCDP condition.

Proof idea. If we were to use the same packing (see ??) as in the proof of Theorem 2, the lower-bounds
would not be good. Indeed, moving from the pointwise difference to the L2 norm significantly diminishes the
distances in the packing. Instead, we will use the same idea of deviating from a constant function by triangles,
except that we authorize more than one deviation. More specifically, we consider a packing consisting of
densities fω’s where the ω’s are a well-chosen family of {0, 1}m (m is fixed in the proof) (Van der Vaart,
1998). Then, for a given ω ∈ {0, 1}m, fω has a triangle centered on i

m+1 iff wi 6= 0.

We then leverage Fano-type inequalities, and we use Assouad’s method in order to find the announced
lower-bounds.

The full proof is in Appendix F.

Since the lower-bounds of Theorem 3 match the upper-bounds of Theorem 1, we conclude that the corre-
sponding estimators are optimal in terms of minimax rate of convergence.

4 Projection Estimators and Periodic Sobolev Densities

The Lipschitz densities considered in Section 3 are general enough to be applicable in many problems.
However, this level of generality becomes a curse in terms of rate of estimation. Indeed, as we have seen,
the optimal rate of estimation is max

(

n−2/3, (nǫ)−1
)

. To put it into perspective, for many parametric
estimation procedures, the optimal rate of convergence usually scales as max

(

n−1, (nǫ)−2
)

(Acharya et al.,
2021e). This section studies the estimation of smoother distributions, for different smoothness levels, at
the cost of generality. In particular, it establishes that the smoother the distribution class is, the closer
the private rate of estimation is to max

(

n−1, (nǫ)−2
)

. In other words, it means that the more regular the
density is supposed to be, the closer we get to the difficulty of parametric estimation.

When the density of interest π is in L2([0, 1]), it is possible to approximate it by projections. Indeed,
L2([0, 1]) being a separable Hilbert space, there exists a countable orthonormal family (φi)i∈N\{0} that is a
Hilbert basis. In particular, if θi :=

∫

[0,1]
π φi then

N
∑

i=1

θiφi

L2

−→
N→+∞

π .

Let N be a positive integer, Z1, . . . , ZN be independent and identically distributed random variables with
the same distribution as a centered random variable Z having a finite variance. Given a dataset X =
(X1, . . . , Xn), that is also independent of Z1, . . . , ZN , the (randomized) projection estimator is defined as

π̂proj(X) =
N
∑

i=1

(

θ̂i +
1
n

Zi

)

φi where θ̂i :=
1
n

n
∑

j=1

φi(Xj) . (8)

The truncation order N and the random variable Z are tuned later to obtain the desired levels of privacy
and utility. L2([0, 1]) has many well known Hilbert bases, hence multiple choices for the family (φi)i∈N\{0}.
For instance, orthogonal polynomials, wavelets, or the Fourier basis, are often great choices for projection
estimators. Because of the privacy constraint however, it is better to consider a uniformly bounded Hilbert
basis (Wasserman & Zhou, 2010), which is typically not the case with a polynomial or wavelet basis. From
now on, this work will focus on the following Fourier basis :

φ1(x) = 1

φ2k(x) =
√

2 sin (2πkx) k ≥ 1

φ2k+1(x) =
√

2 cos (2πkx) k ≥ 1 .
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Note that we used the upper notation π to refer to the real number 3, 14 . . . , which is not to be mistaken
for the lower notation π, which is reserved for the density of the distribution of interest. This shouldn’t
introduce any ambiguity since π is only used locally when looking at Fourier coefficients, and is often simply
hidden in the constants.

4.1 General utility of projection estimators

By the Parseval formula, the truncation resulting of approximating the density π on a finite family of N
orthonormal functions induces a bias term that accounts for

∑

i≥N+1 θ2
i in the mean square error. Charac-

terizing the utility of π̂proj requires controlling this term, and this is usually done by imposing that π is in
a Sobolev space. We recall the definition given in Tsybakov (2009): given β ∈ N \ {0} and L > 0, the class
ΘSob

L,β of Sobolev densities of parameters β and L is defined as

ΘSob
L,β :=











π ∈ Cβ([0, 1], R+)

∣

∣

∣

∣

∣

∣

∣











π(β−1) is absolutely continuous ,
∫

[0,1]

(

π(β)
)2 ≤ L2 ,

∫

[0,1] π = 1 .











.

For a function f , we used the notation f (β) to refer to its derivative of order β. In addition, the class ΘPSob
L,β

of periodic Sobolev densities of parameters β and L is defined as

ΘPSob
L,β :=

{

π ∈ ΘSob
L,β

∣

∣

∣∀j ∈ {0, . . . , β − 1}, π(j)(0) = π(j)(1)
}

. (9)

Finally, we recall the following general-purpose lemma (Tsybakov, 2009) that allows controlling the truncation
bias :

Fact 1 (Ellipsoid reformulation (Tsybakov, 2009)). A non-negative function π with integral 1 belongs to

ΘPSob
L,β if and only if

∞
∑

i=1

a2β
i θ2

i ≤ L2

π
2β

, where aj := j if j is even and aj := j − 1 if j is odd.

In this class, one can characterize the utility of projection estimators with the following lemma:

Lemma 2 (General utility of (8)). There is a constant CL,β > 0, depending only on L, β, such that

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂proj‖π̂proj(X) − π‖2

L2 ≤ CL,β

(

1
N2β

+
N

n
+

NV(Z)
n2

)

.

The proof can be found in Appendix G

4.2 Privacy and bias tuning

The estimator π̂proj(X) is a function of the sums
(

∑n
j=1 φ1(Xj), . . . ,

∑n
j=1 φN (Xj)

)

. In particular, it is
possible to use Laplace and Gaussian mechanisms on this function in order to obtain privacy. Since the
functions |φi| are bounded by

√
2 for any i, the l1 sensitivity of this function is 2

√
2N and its l2 sensitivity

is 2
√

2
√

N . Applying the Laplace and the Gaussian mechanism and tuning N to optimize the utility of
Lemma 2 gives the following result:

Theorem 4 (Privacy and utility of (8)). Given any ǫ > 0 and truncation order N , using π̂proj with Z =
2N

√
2

ǫ L(1), where L(1) refers to a random variable following a Laplace distribution of parameter 1, leads to
an ǫ-DP procedure. Moreover, there exists CL,β > 0, a positive constant that only depends on L and β, such

that if N is of the order of min
(

n
1

2β+1 , (nǫ)
1

β+3/2

)

,

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂proj‖π̂proj(X) − π‖2

L2 ≤ CL,β max
{

n− 2β
2β+1 , (nǫ)− 2β

β+3/2

}

.

Furthermore, given any ρ > 0, and truncation order N , using π̂proj with Z = 2
√

N√
ρ N (0, 1), where N (0, 1)

refers to a random variable following a centered Gaussian distribution of variance 1, leads to a ρ-zCDP
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procedure. Moreover, there exists CL,β > 0, a positive constant that only depends on L and β, such that, if

N is of the order of min
(

n
1

2β+1 ,
(

n
√

ρ
)

1
β+1

)

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂proj‖π̂proj(X) − π‖2

L2 ≤ CL,β max
{

n− 2β
2β+1 , (n

√
ρ)− 2β

β+1

}

.

We now discuss these guarantees depending on the considered privacy regime.

Low privacy regimes. According to Theorem 4, when the privacy-tuning parameters are not too small
(i.e. when the estimation is not too private), the usual rate of convergence n− 2β

2β+1 is not degraded. In
particular, for constant ǫ or ρ, this recovers the results of Wasserman & Zhou (2010).

High privacy regimes. Furthermore, Theorem 4 tells that in high privacy regimes (ǫ ≪ n− β−1/2
2β+1 or

ρ ≪ n− 2β+2
2β+1 ), the provable guarantees of the projection estimator are degraded compared to the usual rate

of convergence. Is this degradation constitutive of the estimation problem, or is it due to a suboptimal
upper-bound? Section 4.3 shows that this excess of risk is in fact almost optimal.

4.3 Lower-bounds

As with the integrated risk on Lipschitz distributions, obtaining lower-bounds for the class of periodic Sobolev
densities is done by considering a packing with many elements. The idea of the packing is globally the same
as for histograms, except that the uniform density is perturbed with a general C∞ kernel with compact
support instead of simple triangles. In the end, we obtain the following result:

Theorem 5 (Integrated lower-bound). Given L, β > 0 there exists constants CL,β > 0, n0(L, β) ∈ N, and
c0(L, β) > 0, such that for any n ≥ n0, and any α ≥ c0/n

inf
π̂ s.t. C

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂‖π̂(X) − π‖2

L2 ≥ C−1
L,β max

{

n− 2β
2β+1 , (nα)− 2β

β+1

}

where α = ǫ when C is the ǫ-DP condition, and α =
√

ρ when C is the ρ-zCDP condition.

Proof idea. As with the proof of Theorem 3, this lower-bound is based on the construction of a packing of
densities fω’s where the ω’s are a well-chosen family of {0, 1}m (m is fixed in the proof). Then, for a given
ω ∈ {0, 1}m, fω deviates from a constant function around i

m+1 if, and only if, wi 6= 0. Contrary to the
proof of Theorem 3 however, the deviation cannot be by a triangle : Indeed, such a function wouldn’t even
be differentiable. Instead, we use a deviation by a C∞ kernel with compact support. Even if the complete
details are given in the full proof, ?? gives a general illustration of the packing.

Again, Fano-type inequalities (for the ǫ-DP case), and Assouad’s lemma (for the ρ-zCDP case) are used to
conclude.

The full proof can be found in Appendix H. In comparison with the upper-bounds of Theorem 4, for ǫ-DP
the lower-bound almost matches the guarantees of the projection estimator. In particular, the excess of risk
in the high privacy regime is close to being optimal. Section 4.4 explains how to bridge the gap even more,
at the cost of relaxation.

Under ρ-zCDP, the lower-bounds and upper-bounds actually match. We conclude that projection estimators
with ρ-zCDP obtain minimax-optimal rates of convergence.

4.4 Near minimax optimality via relaxation

An hypothesis that we can make on the sub-optimality of the projection estimator against ǫ-DP mechanisms
is that the l1sensitivity of the estimation of N Fourier coefficients scales as N whereas its l2 sensitivity scales
as

√
N . Traditionally, the Gaussian mechanism (Dwork et al., 2006a;b) has allowed to use the l2 sensitivity

instead of the l1 one at the cost of introducing a relaxation term δ in the privacy guarantees, leading to
(ǫ, δ)-DP.
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A direct application of the Gaussian mechanism Dwork & Roth (2014) thus tells that π̂proj with Z =
4
√

ln (1.25/δ)
√

N

ǫ N (0, 1) is (ǫ, δ)-DP and, by Lemma 2, has an error bounded as

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂proj ‖π̂proj(X) − π‖2

L2 ≤ CL,β

(

1
N2β

+
N

n
+

16N2 ln (1.25/δ)
ǫ2n2

)

.

Thus, choosing N of the order of min

(

n
1

2β+1 ,

(

nǫ√
ln(1.25/δ)

)
1

β+1

)

leads to a general error as

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂proj ‖π̂proj(X) − π‖2

L2 ≤ CL,β max







n− 2β
2β+1 ,

(

nǫ
√

ln (1.25/δ)

)− 2β
β+1







.

Finally, it can be interesting to look at prescribed rates for δ as a function of n.

Corollary 2 (Privacy and utility of (8) with relaxation). Consider γ > 0, n and integer, and 0 < ǫ ≤
8 ln nγ. Defining ρ̃ := 1

16
ǫ2

ln(nγ ) and using π̂proj with Z = 2
√

N√
ρ̃

N (0, 1), where N (0, 1) refers to a random

variable following a centered Gaussian distribution of variance 1, leads to an
(

ǫ, 1
nγ

)

-DP procedure. there
exists CL,β > 0, a positive constant that only depends on L and β, such that if N is of the order of

min
(

n
1

2β+1 ,
(

n√
ln n

· ǫ√
γ

)
1

β+1

)

then

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂proj‖π̂proj(X) − π‖2

L2 ≤ CL,β max
{

n− 2β
2β+1 , Pβ,γ(ln(n))(nǫ)− 2β

β+1

}

,

where Pβ,γ is a polynomial expression depending on β and γ.

Proof. Since ǫ ≤ 8 ln (nγ), we have ρ̃ ≤ 2
√

ρ̃ ln(nγ). By Theorem 4 the mechanism is ρ̃-zCDP, and satisfies
the claimed upper bounds for N on the considered order. By Bun & Steinke (2016) (that states that if a

mechanism M is ρ-zCDP, then it is
(

ρ + 2
√

ρ ln(1/δ), δ
)

-DP for any δ > 0) it is thus
(

4
√

ρ̃ ln(nγ), 1
nγ

)

-
DP.

In order to understand the implications of this result, one must understand the role of δ in (ǫ, δ)-differential
privacy. It is usually interpreted as the probability of the procedure not respecting the ǫ-DP condition
(Dwork & Roth, 2014). Hence, with probability δ, the result is not guaranteed to be private. A general rule
of thumb for choosing δ is to take it much smaller than 1/n so that each individual of the database only
has a small chance of seeing its data leak (Dwork & Roth, 2014). Choosing δ = 1/nγ for γ > 1 is hence
considered a good choice for δ.

With this relaxation, the upper-bound of Corollary 2 matches the lower-bound of Theorem 5 for ǫ-DP up to
polylog factors.

5 Conclusion

As we have seen throughout this article, under central privacy, one can usually distinguish two estimation
regimes. In the low privacy regime, on the one hand, the estimation rate is not degraded compared to its
non-private counterpart. This notably covers the early observation of Wasserman & Zhou (2010) for constant
privacy budget. In the high privacy regime on the other hand, a provable degradation is unavoidable, and
we extended the study of such regimes beyond the cases covered in Barber & Duchi (2014).

Besides examples in which the estimation is sharp in both regimes, we also presented some example in which
there are small gaps between the proved upper-bounds and lower-bounds. These gaps are nevertheless very
small, especially for high degrees of smoothness, and they can be bridged up to logarithmic factors with a
reasonable and quite standard relaxation.
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A Useful results from the litterature

Fact 2 (Neyman-Pearson & Le Cam’s lemma (Rigollet & Hütter, 2015, Lemma 5.3)). Let P1,
P2 be two probability distributions on a measure space E, then

inf
Ψ:E→{1,2}

max
i∈{1,2}

PX∼Pi (Ψ (X) 6= i) ≥ 1
2

inf
Ψ:E→{1,2}

2
∑

i=1

PX∼Pi (Ψ (X) 6= i)

=
1
2

(1 − TV (P1, P2)) .

(10)

Fact 3 (Fano’s lemma (Giraud, 2021, Theorem 3.1)). Let (Pi)i∈{1,...,N} be a family of probability distributions
on a measure space E. For any probability distribution Q on E such that Pi ≪ Q for all i, and for any test
function Ψ : X n → {1, . . . , N},

max
i∈{1,...,N}

PX∼Pi (Ψ (X) 6= i) ≥ 1
N

N
∑

i=1

PX∼Pi (Ψ (X) 6= i)

≥ 1 − 1 + 1
N

∑N
i=1 KL (Pi‖ Q)
ln(N)

.

(11)

Often Q is set to 1
N

∑N
i=1 Pi.

Fact 4 (Le Cam’s lemma for differential privacy (Lalanne et al., 2023a, Theorem 1)). If a randomized
mechanism M satisfies (ǫ, δ)-DP, then for any test function Ψ : codom (M) → {1, 2} and any probability
distributions P1 and P2 on X we have

max
i∈{1,2}

P
X∼P

⊗n
i

,M (Ψ (M (X)) 6= i)

≥ 1
2

((

1 −
(

1 − e−ǫ
)

TV (P1, P2)
)n − 2ne−ǫδTV (P1, P2)

)

.

Fact 5. Le Cam’s lemma for concentrated differential privacy (Lalanne et al., 2023a, Theorem 2)] If a
randomized mechanism M satisfies ρ-zCDP, then for any test function Ψ : codom (M) → {1, . . . , N} and
any probability distributions P1 and P2 on X ,

max
i∈{1,2}

P
X∼P

⊗n
i

,M (Ψ (M (X)) 6= i) ≥ 1
2

(

1 − n
√

ρ/2TV (P1, P2)
)

.

Fact 6 (Fano’s lemma for differential privacy (Lalanne et al., 2023a, Theorem 3)). If a randomized mech-
anism M satisfies ǫ-DP, then for any test function Ψ : codom (M) → {1, . . . , N}, any family of probability
distributions (Pi)i∈{1,...,N} on X ,

max
i∈{1,...,N}

P
X∼P

⊗n
i

,M (Ψ (M(X)) 6= i) ≥ 1 −
1 + nǫ

N2

∑

i,j
2TV(Pi,Pj)

1+TV(Pi,Pj)

ln(N)
.

Fact 7 (Fano’s lemma for differential privacy (Lalanne et al., 2023a, Theorem 4)). If a randomized mech-
anism M satisfies ǫ-DP, then for any test function Ψ : codom (M) → {1, . . . , N}, any family of probability
distributions (Pi)i∈{1,...,N} on X ,

max
i∈{1,...,N}

P
X∼P

⊗n
i

,M (Ψ (M(X)) 6= i) ≥ 1 −
1 + n2ρ

N2

∑

i,j
1
n

2TV(Pi,Pj)
1+TV(Pi,Pj) +

(

2TV(Pi,Pj)
1+TV(Pi,Pj)

)2

ln(N)
.
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C Proof of Lemma 1

Let π ∈ ΘLip
L , x0 ∈ [0, 1]. The classical bias-variance decomposition gives that

E
(

(

π̂hist(X)(x0) − π(x0)
)2
)

=
(

E
(

π̂hist(X)(x0)
)

− π(x0)
)2

+ V
(

π̂hist(X)(x0)
)

.

For any x ∈ [0, 1], we note bin(x) the bin of the histogram in which x falls into. Notice that, for any
x0 ∈ [0, 1] and any integer i, the random variable 1bin(x0)(Xi) follows a Bernoulli distribution of probability
of success

∫

bin(x0) π. Let us first study the bias, using the definition (3) of π̂hist

∣

∣E
(

π̂hist(X)(x0)
)

− π(x0)
∣

∣ =

∣

∣

∣

∣

∣

1
nh

n
∑

i=1

E
(

1bin(x0)(Xi)
)

− π(x0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∫

bin(x0) π(x)dx

nh
− π(x0)

∣

∣

∣

∣

∣

=
1
h

∣

∣

∣

∣

∣

∫

bin(x0)

(π(x) − π(x0))dx

∣

∣

∣

∣

∣

≤ 1
h

∫

bin(x0)

|π(x) − π(x0)| dx ≤ L

h

∫

bin(x0)

|x − x0| dx ≤ Lh

2
.

Let us now look at the variance. By independence of Xi’s and Zj’s,

V
(

π̂hist(X)(x0)
)

=
1

n2h2

(

n
∑

i=1

V
(

1bin(x0)(Xi)
)

+ V
(

Zbin(x0)

)

)

=
1

n2h2

(

n

(

∫

bin(x0)

π

)(

1 −
∫

bin(x0)

π

)

+ V (Z)

)

≤ 1
nh2

(

∫

bin(x0)

π

)

+
V (Z)
n2h2

.

Since π is L-Lipschitz on [0, 1] and has to integrate to 1 (because it is a density), π is uniformly bounded
from above by L + 1 on [0, 1]. Hence,

∫

bin(x0) π ≤ (L + 1)h and the result follows.

D Assouad’s lemma with concentrated differential privacy.

As the reduction to a testing problem between multiple hypotheses, Assouad’s lemma relies on similar ideas,
where the packing has to be parametrized by a hypercube. Its advantage over tools like Fano’s lemma is
that it only makes tests between pairs of hypotheses (instead of all of them at the same time). The cost of
this is that the control of the packing is slightly more difficult.

Suppose that the set of distributions of interest P contains a family of distributions (Pω)ω∈{0,1}m for a certain
positive integer m. If the loss function (taken quadratic for simplicity) can be decomposed as

∀ω, ω′ ∈ {0, 1}m, ‖fω − fω′‖2
L2 ≥ 2τ

m
∑

i=1

1ωi 6=ω′
i

= 2τdham (ω, ω′) , (12)

where for any ω, fω represents the density of Pω, then the minimax risk can be lower-bounded as (the proof
is classical and can be found in Acharya et al. (2021e, Section 5.4))

inf
π̂ s.t. C

sup
P∈P

EX∼P,π̂(‖π̂(X) − π‖2
L2)

≥ τ

16

m
∑

i=1

inf
M s.t. C

Ψ:codom(M)→{0,1}

P
X∼P

⊗n

ωi,0 ,M (Ψ (M(X)) 6= 0) + P
X∼P

⊗n

ωi,1 ,M (Ψ (M(X)) 6= 1) .
(13)

where Pωi,0 and Pωi,1 are the mixture distributions

Pωi,0 :=
1

2m−1

∑

ω∈{0,1}m|ωi=0

Pω and Pωi,0 :=
1

2m−1

∑

ω∈{0,1}m|ωi=1

Pω . (14)
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The term
P

X∼P
⊗n

ωi,0
,M (Ψ (M(X)) 6= 0) + P

X∼P
⊗n

ωi,1
,M (Ψ (M(X)) 6= 1)

characterizes the testing difficulty between Pωi,0 and Pωi,1 . It can be controlled by Le Cam’s lemma, and
by its variants when working under privacy (see Acharya et al. (2021e); Lalanne et al. (2023a) for differen-
tial privacy and Lalanne et al. (2023a) for concentrated differential privacy). Such results are reminded in
Appendix A.

E Proof of Theorem 2

Let x0 ∈ (0, 1). As explained in the sketch of the proof, we build a packing consisting of two elements, and
after controlling quantities such as their KL divergences or their TV distances, we leverage Le Cam-type
inequalities in order to obtain lower-bounds.

Packing construction. We define the functions fL,x0,h, ∀h > 0 as

∀x ∈ [0, 1], fL,x0,h(x) :=











1 − Lh2 if x ∈ [0, x0 − h) ∪ [x0 + h, 1],
1 − Lh2 + Lh + L(x − x0) if x ∈ [x0 − h, x0) .

1 − Lh2 + Lh − L(x − x0) if x ∈ [x0, x0 + h)

(15)

Note that as soon as h ≤ min{x0, 1 − x0}, fL,x0,h ∈ ΘLip
L . The case x0 ∈ {0, 1} is treated in the exact same

fashion, but by considering functions that only contain "half of a spike" centered on x0. Furthermore, let us
note g the function that is constant to 1 on [0, 1] (we have g ∈ ΘLip

L ).

We start by recalling the total variation distance between two probability distributions, and we recall some
useful alternative expressions that are used in the proofs of this article. Given (U , T ) a set U equipped with
a σ-algebra T , and two probability measures P1 and P2 two probability distributions on U , and compatible
with T , the total variation distance TV (·, ·) between P1 and P2 is defined as

TV (P1, P2) := sup
S∈T

|P1(S) − P2(S)| .

Furthermore, when P1, P2 are dominated by a common σ-finite measure µ on (U , T ), by noting p1 := dP1

dµ

and p2 := dP2

dµ , the Radon-Nikodym derivatives of P1 and P2 with respect to µ, the following alternative
expressions to the total variation can be useful :

TV (P1, P2) := sup
S∈T

|P1(S) − P2(S)| = P1({p1 > p2}) − P2({p1 > p2})

=
∫

{p1>p2}
(p1 − p2) dµ =

∫

{p2≥p1}
(p2 − p1) dµ

=
1
2

∫

U
|p1 − p2|dµ = 1 −

∫

U
min(p1, p2)dµ .

These expressions simply come from considering the events {p1 > p2} and {p2 ≥ p1} that form a partition
of U , and from the relation |a − b| = a + b − 2 min(a, b) for any real numbers a and b.

Jumping back to our original proof, when fL,x0,h ∈ ΘLip
L , we can compute the total variation between PfL,x0,h

and Pg the distributions of probability with densities fL,x0,h and g with respect to Lebesgue’s measure on
[0, 1],

TV
(

PfL,x0,h
, Pg

)

= 1 −
∫

[0,1]

min (fL,x0,h, g)
Constant part

≤ 1 −
∫

[0,1]

1 − Lh2dx = Lh2 . (16)

Another important measure of discrepancy between probability distributions is the so-called Kullback-Leibler
(KL) divergence. For two probability distributions P and Q such that P ≪ Q (absolute continuity), it is
defined as

KL (P‖ Q) =
∫

ln
(

dP

dQ

)

dP .
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Back to our problem, for h in a neighborhood of 0, we also have the following Taylor expansion on their KL
divergence:

KL
(

Pg‖ PfL,x0,h

)

=
∫

[0,1]

ln
(

g

fL,x0,h

)

g = ln
(

1
1 − Lh2

)

(1 − 2h) + 2
∫ h

0

ln
(

1
1 − Lh2 + Lt

)

dt

≤ C
(

h3 + O(h4)
)

,

(17)

where C is a positive constant depending only on L the O only hides constant factors. Furthermore,
|g(x0) − fL,x0,h(x0)| = L|h2 − h| and {g, fL,x0,h} is thus a L

2 |h2 − h| packing of ΘLip
L w.r.t the seminorm

f, g 7→ ‖f − g‖ := |f(x0) − g(x0)|.
Recovering the usual lower-bound By the classical minimax reduction as hypothesis testing Equa-
tion (5),

inf
π̂ s.t. C

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

≥ L2

4

(

h2 − h
)2

inf
π̂ s.t. C

inf
Ψ:ΘLip

L
→{0,1}

max
{

P
X∼P

⊗n
g ,π̂ (Ψ(π̂(X)) 6= 0) ,

P
X∼P

⊗n
fL,x0,h

,π̂ (Ψ(π̂(X)) 6= 1)
}

Fact 2
≥ L2

8
h2(1 − h)2

(

1 − TV
(

P⊗n
g , P⊗n

fL,x0,h

))

Pinsker
≥ L2

8
h2(1 − h)2

(

1 −
√

KL
(

P⊗n
g

∥

∥P⊗n
fL,x0,h

)

/2

)

Tensorization=
L2

8
h2(1 − h)2

(

1 −
√

nKL
(

Pg‖ PfL,x0,h

)

/2
)

(17)

≥ L2

8
h2(1 − h)2

(

1 −
√

n

2

(

h3L2

3
+ O(h4)

)

)

.

(18)

The second inequality comes from the so-called Le Cam’s lemma Rigollet & Hütter (2015) that lower-bounds
the testing difficulty (without further constraints) between two distributions. The next inequality comes from
the so-called Pinsker’s inequality Tsybakov (2009), that states that for two probability distributions P and
Q, TV (P, Q) ≤

√

KL (P‖ Q) /2. The last inequality is the result of the so-called tensorization property of
the KL divergence that states that for two probability distributions P and Q, and for an integer n ≥ 1,
KL (P⊗n‖ Q⊗n) ≤ nKL (P‖ Q).

When possible (i.e. when n is big enough), setting h =
(

1
4nL2

)1/3
leads to, for n big enough (so that

1 − h ≥ 1/2 and |O(h4)| ≤ h3L2

3 ),

inf
π̂ s.t. C

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

≥ L2

64

(

1
4L2

)2/3

n−2/3 .

This implies the first lower bound.

ǫ-DP overhead. By Equation (18) and by Le Cam’s lemma for differential privacy on product distributions
(Fact 4),

inf
π̂ ǫ-DP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

≥ L2

8
h2(1 − h)2e

−nǫTV
(

PfL,x0,h
,Pg

)

(16)

≥ L2

8
h2(1 − h)2e−Lnǫh2

.
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When possible (i.e. when nǫ is big enough), setting h = 1/
√

nǫ leads to, when nǫ is large enough to ensure
1 − h ≥ 1/2,

inf
π̂ ǫ-DP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

≥ L2e−L

32
(nǫ)−1 .

ρ-zCDP overhead. By Le Cam’s lemma for zero-concentrated differential privacy on product distributions
(Fact 5) in (18),

inf
π̂ ǫ-DP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

≥ L2

8
h2(1 − h)2

(

1 − n
√

ρ/2TV
(

PfL,x0,h
, Pg

)

)

(16)

≥ L2

8
h2(1 − h)2

(

1 − n
√

ρ/2Lh2
)

.

When possible (i.e. when n
√

ρ is large enough), setting h =
(

1√
2Ln

√
ρ

)1/2

leads to, when n
√

ρ is large

enough (so that 1 − h ≥ 1/2 ),

inf
π̂ ρ-zCDP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

(π̂(X)(x0) − π(x0))2
)

≥ L

64
(n

√
ρ)−1 .

F Proof of Theorem 3

Let m ∈ N \ {0} that will be fixed later in the proof. As explained in the sketch of the proof, we build a
packing consisting of functions that are parametrized by a vector ω ∈ {0, 1}m. After controlling quantities
such as their pairwise TV distances, and their KL divergences to the uniform distribution, we leverage
Fano-type inequalities in order to obtain lower-bounds.

Packing construction. For any ω ∈ {0, 1}m different from 0 and any h > 0, we define the function gL,ω,h

as

gL,ω,h :=
1

‖ω‖1

m
∑

i=1

ωif‖ω‖1L, i
m+1 ,h , (19)

where the functions f are defined in (15). Note that gL,ω,h is L-Lipschitz and that as soon as h ≤ hm :=
1

2(m+1) it is also a valid density so that gL,ω,h ∈ ΘLip
L . Notice that the function gL,ω,h is constant to

1 − ‖ω‖1Lh2 everywhere except on each interval
[

i
m+1 − h, i

m+1 + h
]

with i such that ωi 6= 0, on which it
deviates by a triangle of slopes +L and −L.

By denoting by K the triangle kernel such that K(t) =
∫ t

−∞ L1[−h,0](t′) − L1(0,h](t′)dt′, it might be easier
to visualize gL,ω,h as

∀t ∈ [0, 1], gL,ω,h(t) = 1 − ‖ω‖1

∫

K +
m
∑

i=1

ωiK

(

t − i

m + 1

)

, (20)

where
∫

K = Lh2.
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For ω, ω′ ∈ {0, 1}m and for h small enough (i.e. h ≤ hm), we can bound the total variation between PgL,ω,h

and PgL,ω′,h
as

TV
(

PgL,ω,h
, PgL,ω′,h

)

=
1
2

∫

|gL,ω,h − gL,ω′,h|

(20)
=

1
2

∫

∣

∣

∣

∣

∣

‖(ω′‖1 − ‖ω‖1)
∫

K +
m
∑

i=1

(ω′
i − ωi)K

(

· − i

m + 1

)

∣

∣

∣

∣

∣

≤ 1
2

∫

|‖ω′‖1 − ‖ω‖1|
∫

K +
m
∑

i=1

|ω′
i − ωi| K

(

· − i

m + 1

)

=
1
2

(

|‖ω′‖1 − ‖ω‖1| + dham (ω, ω′)
)∫

K (21)

≤ mLh2 . (22)

The KL divergence between PgL,ω,h
and Pg, with g the density constant equal to 1 on [0, 1], satisfies

KL
(

PgL,ω,h

∥

∥Pg

)

=
∫

[0,1]

ln (gL,ω,h) gL,ω,h

= ln
(

1 − ‖ω‖1Lh2
) (

1 − ‖ω‖1Lh2
)

(1 − ‖ω‖12h)

+ 2‖ω‖1

∫ h

0

ln
(

1 − ‖ω‖1Lh2 + Lt
) (

1 − ‖ω‖1Lh2 + Lt
)

dt

ln(1+·)≤·
≤

(

−‖ω‖1Lh2
) (

1 − ‖ω‖1Lh2
)

(1 − ‖ω‖12h)

+ 2‖ω‖1

∫ h

0

(

−‖ω‖1Lh2 + Lt
) (

1 − ‖ω‖1Lh2 + Lt
)

dt

Calculus
=

L2

3
‖ω‖1h3(2 − 3‖ω‖1h) .

(23)

Finally, we lower bound the squared L2 distance between gL,ω,h and gL,ω′,h:

∫

[0,1]

(gL,ω,h − gL,ω′,h)2

=
m
∑

i=1

1ωi 6=ω′
i

∫ i
m+1 +h

i
m+1 −h

(

(‖ω′‖1 − ‖ω‖1)
∫

K + (ωi − ω′
i)K

(

t − i

m + 1

))2

dt

≥
m
∑

i=1

1ωi 6=ω′
i

∫ i
m+1 +h

i
m+1 −h

(

K

(

t − i

m + 1

)

− |‖ω‖1 − ‖ω′‖1|
∫

K

)2

dt

≥
m
∑

i=1

1ωi 6=ω′
i

∫ i
m+1 +h

i
m+1 −h

{

(

K

(

t − i

m + 1

))2

−2K

(

t − i

m + 1

)

|‖ω‖1 − ‖ω′‖1|
∫

K

}

dt

≥ dham (ω, ω′)

(

∫

K2 − 2m

(∫

K

)2
)

≥ 2dham (ω, ω′) L2

(

h3

3
− mh4

)

=
2dham (ω, ω′) L2h3 (1 − 3mh)

3
.

(24)
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By the Varshamov-Gilbert theorem (Tsybakov, 2009, Lemma 2.7), as long as m ≥ 8, there exist M ∈ N

and ω(0), . . . , ω(M) ∈ {0, 1}m such that M ≥ 2m/8, ω(0) = {0}m and i 6= j =⇒ dham

(

ω(i), ω(j)
)

≥ m/8.

According to (24), the family
(

gL,ω(i),h

)

i=1,...,M
is then an Ω := 1

2

√

mL2(h3−3mh4)
12 packing of ΘLip

L for the

L2 distance.

Recovering the usual lower-bound. By Equation (5) with Φ(·) := (·)2 and ‖ · ‖ the L2 norm,

inf
π̂ s.t. C

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

∫

[0,1]

(π̂(X) − π)2

)

≥ mL2h3 (1 − 3mh)
48

inf
π̂ s.t. C

inf
Ψ:ΘLip

L
→{0,1}

max
i=1,...,M

P
X∼P

⊗n
g

L,ω(i),h
,π̂ (Ψ(π̂(X)) 6= i)

Fact 3
≥ mL2h3 (1 − 3mh)

48



1 −
1 + 1

M

∑

1≤i≤M KL
(

P⊗n
g

L,ω(i),h

∥

∥

∥
P⊗n

g

)

ln(M)





Tensorization=
mL2h3 (1 − 3mh)

48



1 −
1 + n

M

∑

1≤i≤M KL
(

Pg
L,ω(i),h

∥

∥

∥Pg

)

ln(M)





(23)&‖ω‖1≤m,M≥2m/8

≥ mL2h3 (1 − 3mh)
48

(

1 − 1 + L2

3 nmh3(2 − 3mh)
ln(2)m/8

)

.

(25)

So, by choosing m =
⌈

n1/3
⌉

and h = c
m where c is a positive constant small enough we get, for n big enough,

inf
π̂ ǫ-DP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

∫

[0,1]

(π̂(X) − π)2

)

≥ C−1(n)−2/3 ,

where C is a positive constant depending only on L.

ǫ-DP overhead. By the same reduction and Fano’s lemma for differential privacy on product distributions
(Fact 6), we get for any h ≤ hm,

inf
π̂ ǫ-DP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

∫

[0,1]

(π̂(X) − π)2

)

≥ mL2h3 (1 − 3mh)
48



1 −
1 + nǫ

M2 2
∑

1≤i,j≤M TV
(

Pg
L,ω(i),h

, Pg
L,ω(j),h

)

ln(M)





(22)&M≥2m/8

≥ mL2h3 (1 − 3mh)
48

(

1 − 1 + 2nǫmLh2

ln(2)m/8

)

.

So, by choosing m = ⌈√
nǫ⌉ and h = c

m where c is small enough a positive constant (depending only on L),
we get, as soon as min(n, nǫ) is big enough,

inf
π̂ ǫ-DP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

∫

[0,1]

(π̂(X) − π)2

)

≥ C′−1(nǫ)−1 ,

where C′ is a positive constant depending only on L.

ρ-zCDP overhead. For ρ-zCDP, we present the proof using both Fano’s lemma and Assouad’s method.
We will see that Assouad gives better results
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Fano version. By again the same reduction and Fano’s lemma for zero-concentrated differential privacy
(Fact 7), denoting ti,j := TV

(

Pg
L,ω(i),h

, Pg
L,ω(j) ,h

)

, we get for any h ≤ hm,

inf
π̂ ρ-zCDP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

∫

[0,1]

(π̂(X) − π)2

)

≥ mL2h3 (1 − 3mh)
48

(

1 −
1 + n2ρ

M2 4
∑

1≤i,j≤M

(

1
n ti,j + t2

i,j

)

ln(M)

)

(22)

≥ mL2h3 (1 − 3mh)
48



1 −
1 + n2ρ4

(

mLh2

n + m2L2h4
)

ln(2)m/8



 .

So, by choosing m =
⌈

(

n
√

ρ
)

2
3

⌉

and h = c
m for c small enough (depending only on L), if n

ρ is big enough,
we get that

inf
π̂ s.t. ρ-zCDP

sup
π∈ΘLip

L

E
X∼P

⊗n
π ,π̂

(

∫

[0,1]

(π̂(X) − π)2

)

≥ C′′−1(n
√

ρ)−4/3

where C′′ is a positive constant depending only on L.

Assouad version. From Equation (24), we can see that when h := c
m for a positive c that is small enough,

the condition expressed in Equation (12) is satisfied for τ = Ω(h3). To apply (14), the only missing ingredient
is to bound the testing difficulties between the mixtures on the hypercube.

In the sequel, Pω is used as a short for PgL,ω,h
. We need to bound the total variation between the mixtures

on the hypercube (see (14)) as

TV (Pωi,0 , Pωi,1 ) = TV





1
2m−1

∑

ω∈{0,1}m|ωi=0

PgL,ω,h
,

1
2m−1

∑

ω∈{0,1}m|ωi=1

PgL,ω,h





=
1
2

1
2m−1

∫

∣

∣

∣

∣

∣

∣

∑

ω∈{0,1}m|ωi=0

gL,ω,h −
∑

ω∈{0,1}m|ωi=1

gL,ω,h

∣

∣

∣

∣

∣

∣

=
1

2m

∫

∣

∣

∣

∣

∣

∑

ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

(

gL,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,(ω1,...,ωi−1,1,ωi+1...,ωm),h

)

∣

∣

∣

∣

∣

≤ 1
2m

∑

ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

∫

∣

∣

∣

∣

∣

gL,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,(ω1,...,ωi−1,1,ωi+1...,ωm),h

∣

∣

∣

∣

∣

(21)

≤ 1
2m

∑

ω1,...,ωi−1,ωi+1...,ωm∈{0,1}
2Lh2

= O
(

h2
)

.

Here and in the sequel, the asymptotic comparators only hide constants and terms that depend on L. All
in all, by using Le Cam’s lemma for product distribution and ρ-zCDP Fact 5, and by Equation (13), since
τ = Ω(h3) we obtain

inf
π̂ ρ-zCDP

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

(

∫

[0,1]

(π̂(X) − π)2

)

= Ω
(

mh3
) (

1 − n
√

ρO
(

h2
))

. (26)
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Setting h ≈
(

n
√

ρ
)

−1
2 concludes the proof.

G proof of Lemma 2

Let π ∈ ΘPSob
L,β . We have,

E

(

∫

[0,1]

(

π̂proj(X) − π
)2

)

Parseval= E

(

N
∑

i=1

(

θ̂i − θi +
1
n

Zi

)2

+
+∞
∑

i=N+1

θ2
i

)

=
N
∑

i=1

E

(

(

θ̂i − θi +
1
n

Zi

)2
)

+
+∞
∑

i=N+1

θ2
i .

Furthermore, for any i, since Z is centered

E
(

θ̂i

)

= E





1
n

n
∑

j=1

φi(Xj)



 =
1
n

n
∑

j=1

E (φi(Xj))
Xj i.i.d.

= E
X∼P

⊗n
π

φi(X1) =
∫

πφi = θi

Hence, for any i, since Zi is independent from the dataset

E

(

(

θ̂i − θi +
1
n

Zi

)2
)

= V
(

θ̂i

)

+
1
n2

V (Zi)
Independence of Xj

=
1
n2

n
∑

j=1

V (φi (Xj)) +
1
n2

V (Zi)

|φi|≤
√

2

≤ 2
n

+
1
n2

V (Z) .

Finally, with aj := j − 1, Fact 1 allows bounding
∑+∞

i=m+1 θ2
i as

+∞
∑

i=N+1

θ2
i ≤ 1

N2β

+∞
∑

i=N+1

a2β
i θ2

i ≤ 1
N2β

+∞
∑

i=1

a2β
i θ2

i

F act 1
≤ 1

N2β

L2

π
2β

.

This yields the conclusion with CL,β := max(2, L2/π2β).

H Proof of Theorem 5

Let us consider the following well-known function :

∀x ∈ R, K0(x) := e
− 1

1−x2
1(−1,1)(x) .

We can notice that for any β > 0 there exists ν > 0 such that the kernel K(x) := νK0(2x) satisfies
K ∈ C∞(R, [0, +∞)),

∫ (

K(β)
)2 ≤ 1 and K(x) > 0 iff x ∈ (−1/2, 1/2). Furthermore, for any i ∈ N,

K(i)(x) = 0 for every x ∈ (−∞, −1/2] ∪ [1/2, +∞).

Packing construction. Let m ∈ N \ {0} that will be fixed later. For any h > 0, and ω ∈ {0, 1}m, we
define the function gL,β,ω,h as,

∀x ∈ [0, 1], gL,β,ω,h(x) := 1 − ‖ω‖1Lhβ+1

∫

K + Lhβ
m
∑

i=1

ωiK

(

x − i
m+1

h

)

. (27)

Note that when h < 1
m+1 we have

∫ 1

0 gL,β,ω,h = 1; when mh
∫ (

K(β)
)2 ≤ 1, we have gL,β,ω,h ≥ 0; and when

both hold we have gL,β,ω,h ∈ ΘPSob
L,β (see Equation (9)). Indeed, under these hypotheses, the periodicity

conditions are immediate (the function is constant on neighborhoods of 0 and 1, with the same value). The
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energy of the βth derivative can be bounded as

∫

(

g
(β)
L,β,ω,h

)2

=
∫



Lhβ
m
∑

i=1

ωi

(

x 7→ K

(

x − i
m+1

h

))(β)




2

=
∫

(

L

m
∑

i=1

ωiK
(β)

(

· − i
m+1

h

))2

disjoint support
= L2

m
∑

i=1

ωi

∫

(

K(β)

(

· − i
m+1

h

))2

≤ L2mh

∫

(

K(β)
)2

≤ L2 .

In the sequel of this proof, this hypothesis will always be satisfied asymptotically for all the values of m and
h that will be considered. From now on, we may consider it valid.

Given h > 0 and ω, ω′ ∈ {0, 1}m, when gL,β,ω,h, gL,β,ω′,h ∈ ΘPSob
L,β , we can bound the total variation between

PgL,β,ω,h
and PgL,β,ω′,h

as,

TV
(

PgL,β,ω,h
, PgL,β,ω′,h

)

=
1
2

∫

|gL,β,ω,h − gL,β,ω′,h|

=
1
2

∫

∣

∣

∣

∣

∣

‖(ω′‖1 − ‖ω‖1)Lhβ+1

∫

K +
m
∑

i=1

(ω′
i − ωi)LhβK

(

· − 1
m+1

h

)∣

∣

∣

∣

∣

≤ 1
2

∫

‖|ω′‖1 − ‖ω‖1|Lhβ+1

∫

K +
m
∑

i=1

|ω′
i − ωi|LhβK

(

· − 1
m+1

h

)

=
1
2

(

|‖ω′‖1 − ‖ω‖1| + dham (ω, ω′)
)

Lhβ+1

∫

K (28)

≤ mLhβ+1 . (29)
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The KL divergence between PgL,β,ω,h
and Pg, the uniform distribution on [0, 1], is bounded as

KL
(

PgL,β,ω,h

∥

∥Pg

)

=
∫

[0,1]

ln (gL,β,ω,h) gL,β,ω,h

=
∫

[0,1]\∪i:ωi 6=0[ i
m+1 − h

2 , i
m+1 + h

2 ]
ln
(

1 − ‖ω‖1Lhβ+1

∫

K

)(

1 − ‖ω‖1Lhβ+1

∫

K

)

dt

+ ‖ω‖1

∫ h
2

− h
2

ln
(

1 − ‖ω‖1Lhβ+1

∫

K + LhβK

(

t

h

))

(

1 − ‖ω‖1Lhβ+1

∫

K + LhβK

(

t

h

))

dt

ln(1+·)≤·
≤ (1 − ‖ω‖1h)

(

−‖ω‖1Lhβ+1

∫

K

)(

1 − ‖ω‖1Lhβ+1

∫

K

)

+ ‖ω‖1

∫ h
2

− h
2

(

−‖ω‖1Lhβ+1

∫

K + LhβK

(

t

h

))

(

1 − ‖ω‖1Lhβ+1

∫

K + LhβK

(

t

h

))

dt

Calculus= ‖ω‖1L2h2β+1

∫

K2 − ‖ω‖2
1L2h2β+2

∫

K

≤ ‖ω‖1L2h2β+1

∫

K2 ≤ mL2h2β+1

∫

K2 .

(30)

Finally, the squared L2 distance between gL,β,ω,h and gL,β,ω′,h can be lower bounded as,

∫

[0,1]

(gL,β,ω,h − gL,β,ω′,h)2

=
m
∑

i=1

1ωi 6=ω′
i

∫ i
m+1 + h

2

i
m+1 − h

2

(

Lhβ+1 (‖ω′‖1 − ‖ω‖1)
∫

K + (ωi − ω′
i)LhβK

(

t − i
m+1

h

))2

dt

≥
m
∑

i=1

1ωi 6=ω′
i

∫ i
m+1 + h

2

i
m+1 − h

2

(

LhβK

(

t − i
m+1

h

)

− Lhβ+1 |‖ω‖1 − ‖ω′‖1|
∫

K

)2

dt

≥
m
∑

i=1

1ωi 6=ω′
i

∫ i
m+1 + h

2

i
m+1 − h

2







(

LhβK

(

t − i
m+1

h

))2

−2LhβK

(

t − i
m+1

h

)

Lhβ+1 |‖ω‖1 − ‖ω′‖1|
∫

K

}

dt

≥ dham (ω, ω′) L2h2β+1

(

∫

K2 − 2mh

(∫

K

)2
)

.

(31)

By the Varshamov-Gilbert theorem (Tsybakov, 2009, Lemma 2.7), as long as m ≥ 8, there exist M ∈ N

and ω(0), . . . , ω(M) ∈ {0, 1}m such that M ≥ 2m/8, ω(0) = {0}m and i 6= j =⇒ dham

(

ω(i), ω(j)
)

≥ m/8.

According to (31), the family
(

gL,β,ω(i),h

)

i=1,...,M
is then a Ω = 1

2

√

m
8 L2h2β+1

(

∫

K2 − 2mh
(∫

K
)2
)

packing

of ΘPSob
L,β for the L2 distance.
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Recovering the usual lower-bound. By Equation (5) with Φ(·) := (·)2 and ‖ · ‖ the L2 norm,

inf
π̂ s.t. C

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

∫

[0,1]

(π̂(X) − π)2

≥ L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)

inf
π̂ s.t. C

inf
Ψ:ΘPSob

L,β
→{0,1}

max
i=1,...,M

P
X∼P

⊗n
g

L,β,ω(i),h
,π̂ (Ψ(π̂(X)) 6= i)

Fact 3
≥ L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)



1 −
1 + 1

M

∑

1≤i≤M KL
(

P⊗n
g

L,β,ω(i),h

∥

∥

∥P⊗n
g

)

ln(M)





Tensorization=
L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)



1 −
1 + n

M

∑

1≤i≤M KL
(

Pg
L,β,ω(i),h

∥

∥

∥Pg

)

ln(M)





(30)&M≥2m/8

≥ L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)

(

1 − 1 + nmL2h2β+1
∫

K2

ln(2)m/8

)

.

(32)

Finally, setting m =
⌈

n
1

2β+1

⌉

and h = c
m for c small enough gives that, for n big enough,

inf
π̂ ǫ-DP

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

∫

[0,1]

(π̂(X) − π)2 ≥ C−1n− 2β
2β+1 ,

where C is a positive constant depending only on L and β.

ǫ-DP overhead. By the same reduction and Fano’s lemma for differential privacy on product distributions
(Fact 6), we get

inf
π̂ ǫ-DP

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

∫

[0,1]

(π̂(X) − π)2

≥ L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)



1 −
1 + nǫ

M2 2
∑

1≤i,j≤M TV
(

Pg
L,β,ω(i),h

, Pg
L,β,ω(j),h

)

ln(M)





(29)

≥ L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)

(

1 − 1 + 2nǫmLhβ+1
∫

K

ln(2)m/8

)

.

Setting m =
⌈

(nǫ)
1

β+1

⌉

and h = c
m for c small enough leads to, for nǫ big enough,

inf
π̂ ǫ-DP

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

∫

[0,1]

(π̂(X) − π)2 ≥ C′−1 (nǫ)− 2β
β+1 ,

where C′ is a constant depending only on L and β.
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ρ-zCDP overhead. For ρ-zCDP, we present the proof using both Fano’s lemma and Assouad’s method.
We will see that Assouad gives better results.

Fano version. By again the same reduction and Fano’s lemma for zero-concentrated differential privacy
(Fact 7), denoting ti,j := TV

(

Pg
L,β,ω(i),h

, Pg
L,β,ω(j) ,h

)

, we get

inf
π̂ ρ-zCDP

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

∫

[0,1]

(π̂(X) − π)2

≥ L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)

(

1 −
1 + n2ρ

M2 4
∑

1≤i,j≤M
1
n ti,j + t2

i,j

ln(M)

)

(29)

≥ L2

32
mh2β+1

(

∫

K2 − 2mh

(∫

K

)2
)









1 −
1 + 4n2ρ

(

mLhβ+1
∫

K

n +
(

mLhβ+1
∫

K
)2
)

ln(2)m/8









.

So, by choosing m =
⌈

(

n
√

ρ
)

2
2β+1

⌉

and h = c
m for c small enough, if n

√
ρ and n

(n
√

ρ)
2β

2β+1

=
(

n
√

ρ
)

1
2β+1 /

√
ρ

are big enough,

inf
π̂ ǫ-DP

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

∫

[0,1]

(π̂(X) − π)2 ≥ C′′−1 (n
√

ρ)− 2β
β+1/2 ,

where C′′ is a constant depending only on L and β.

Assouad version. From Equation (31), we can see that when h := c
m for a positive c that is small

enough, the condition expressed in Equation (12) is satisfied for τ = Ω(h2β+1). To apply (14), the only
missing ingredient is to bound the testing difficulties between the mixtures on the hypercube.
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In the sequel, Pω is used as a short for PgL,β,ω,h
. We need to bound the total variation between the mixtures

on the hypercube (denoted Pωi,0 and Pωi,1 , cf (14)) as

TV (Pωi,0 , Pωi,1)

=
1
2

1
2m−1

∫

∣

∣

∣

∣

∣

∣

∑

ω∈{0,1}m|ωi=0

gL,β,ω,h −
∑

ω∈{0,1}m|ωi=1

gL,β,ω,h

∣

∣

∣

∣

∣

∣

=
1

2m

∫

∣

∣

∣

∣

∣

∑

ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

(

gL,β,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,β,(ω1,...,ωi−1,1,ωi+1...,ωm),h

)

∣

∣

∣

∣

∣

≤ 1
2m

∑

ω1,...,ωi−1,ωi+1...,ωm∈{0,1}

∫

∣

∣

∣

∣

∣

gL,β,(ω1,...,ωi−1,0,ωi+1...,ωm),h−

gL,β,(ω1,...,ωi−1,1,ωi+1...,ωm),h

∣

∣

∣

∣

∣

(28)

≤ 1
2m

∑

ω1,...,ωi−1,ωi+1...,ωm∈{0,1}
2Lhβ+1

∫

K

= O
(

hβ+1
)

.

Here and in the sequel, the asymptotic comparators only hide constants (such as
∫

K or
∫

K2) and terms
that depends on L and β. All in all, by using Le Cam’s lemma for product distribution and ρ-zCDP (Fact 5),
and by leveraging Equation (13), with τ = Ω(h2β+1),

inf
π̂ ρ-zCDP

sup
π∈ΘPSob

L,β

E
X∼P

⊗n
π ,π̂

∫

[0,1]

(π̂(X) − π)2 = Ω
(

mh2β+1
) (

1 − n
√

ρO
(

hβ+1
))

. (33)

Setting h ≈
(

n
√

ρ
)

−1
β+1 and m = c/h for c small enough concludes the proof by yielding a lower bound

Ω
(

(

n
√

ρ
)− 2β

2β+1

)

.
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