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Abstract: We study the infinite trees that arise, first as complete un-
foldings of finite weighted directed graphs, and second, as universal
coverings of finite weighted undirected graphs. They are respectively
the regular rooted trees and the strongly regular trees, a new notion.
A rooted tree is regular if it has finitely many subtrees up to isomor-
phism. A tree (without root) is strongly regular if it has only finitely
many rooted trees, up to isomorphism, obtained by taking each of
its nodes as a root. We prove the first-order definability of each reg-
ular or strongly regular tree with respect to the class of trees (that is
not itself first-order definable). We characterize the strongly regular
trees among the regular ones and we establish several decidability
results.

Key words: graph unfolding, graph covering, universal covering, regular tree,
strongly regular tree, weighted graph, automorphism, first-order logic.

Introduction

Unfolding and covering are graph theoretical notions that arise in several areas
of the Theory of Programming. We studied them in [11] by highlighting their
similarities. Here,we continue this research by focusing on the infinite trees that
are the complete unfoldings of finite directed graphs and the universal coverings
of finite undirected graphs. They are all regular which means that they have
finitely many subtrees, u.t.i., i.e., up to isomorphism. Precise definitions will
be given soon.

Infinite trees arise frequently in semantics of programs. One occurrence is
in the study of recursive program schemes [6, 7]: regular and algebraic trees
give syntactic formalizations of their semantics. Different notions of trees are
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associated with different types of higher-order recursive program schemes [14, 15,
19], and they have been studied by tools of logic and automata theory. Another
occurrence concerns the study of certain abstract programs called transition
systems. They can be seen as directed graphs equipped with edge and vertex
labels holding semantical information. The complete unfolding of such a directed
graph from a distinguished vertex representing an initial state, defines a rooted
and directed tree that is infinite if the graph has directed cycles. This tree
captures all possible computations, hence its semantics [3, 9, 12]. If the graph
is finite, its complete unfolding is a regular rooted tree.

Independently, the theory of distributed computing uses the notion of cov-
ering of an undirected graph that represents a network. This notion makes it
possible to identify what is possible to compute or not in the considered network
[1]. The universal covering of a finite graph is a regular tree of a special form
that we call strongly regular.

Unfoldings and coverings are defined as surjective graph homomorphisms
that induce bijections between the neighbourhoods of vertices related by the
homomorphism. The notion of neighboorhoud is a parameter that gives rise
to unfoldings, coverings and yet other notions [12]. For unfoldings of directed
graphs, the neighbourhood of a vertex x is the set of directed edges (that we call
arcs) outgoing from x. For coverings of undirected graphs, it is the set of edges
incident to x.

In [11], we studied these two notions in parallel. Furthermore, we generalized
them to weighted graphs. A weighted directed graph has a weight on each
arc belonging to N+ ∪ {ω}, hence, that is a positive integer or the infinite
cardinal ω. An arc of weight 3 (resp. ω) unfolds into 3 arcs (resp. countably
many) originating from a same node. In this way, we can obtain regular trees
having nodes of infinite (countable) degree. We call complete unfolding what is
usually called the unfolding [12], and we define as an unfolding of a weighted
directed graph H a weighted directed graph that lies inbetween H itself and
its complete unfolding. "Inbetween" is formally defined in terms of surjective
homomorphisms that are locally bijective as explained above.

The complete unfoldings of finite weighted and directed graphs are the regu-
lar rooted trees. The regularity of a rooted tree means that it has finitely many
subtrees (rooted trees issued from nodes) u.t.i.. We obtain trees of infinite de-
gree, arising from directed edges of weight ω, which provides an extension of
the usual notion. Each regular rooted tree T is the complete unfolding Unf (H)
of a finite unique canonical weighted directed graph H, somewhat analogous to
a minimal deterministic automaton on words. It can be used as a finitary de-
scription of it as it can be computed from any other finite and weighted directed
graph G such that T = Unf (G). Hence, this finitary description is effective.

In [11], we have also extended the notion of covering to weighted undirected
graphs. In this case, weights in N+ ∪ {ω} are attached to half-edges : an edge
that is not a loop has two weights. Each such graph H has, u.t.i., a unique
universal covering that is a tree without root. If H is finite, this tree is strongly
regular. This means that it yields finitely many regular rooted trees, u.t.i.,
by taking its different nodes as roots. This is a new notion of which we give
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equivalent characterizations. Each strongly regular tree is the universal covering
of a canonical finite weighted graph (of minimal size), and thus, also has a
finitary, computable description.

By using results from [11] that generalize one by Norris for coverings of
unweighted graphs [16, 18], we prove the first-order definability of each regular
tree with respect to the classes of trees. As the class of trees is not first-order
definable1 , our definability result must be relative to the class of trees, and
not to the class of graphs. We have a similar definability result for strongly
regular trees. For handling trees having nodes of infinite degree, we use an
extension of first-order logic denoted by FOω allowing generalized quantifiers
∃ωx... expressing that "there exist infinitely x such that...".

Main new results :
(1) Equivalent characterizations of the strongly regular trees among regular

trees.
(2) Classification of their automorphisms in relation with the finiteness of

the diameter.
(3) First-order definability of each regular or strongly regular tree with re-

spect to trees.
(4) Decidability of the strong regularity of a regular tree.

Summary of the article: Basic definitions are in Section 1. Unfoldings of finite
and weighted directed graphs and the associated regular trees that are their
complete unfoldings, are studied in Section 2. Coverings of weighted undirected
graphs are studied in Section 3. The strongly regular trees that are the universal
coverings of these finite graphs are studied in Section 4, which contains the main
difficult results. Section 5 is a conclusion and presents open problems.

1 Basic definitions

This section reviews notation and some easy lemmas. Definitions for graphs and
trees are standard, but we make precise some possibly ambigous terminological
points.

Sets, multisets and weighted sets.
All sets, graphs and trees are finite or countably infinite (of cardinality ω).

The cardinality of a set X is denoted by |X| ∈ N ∪ {ω}. This latter set is
equipped with an addition + that is the standard one on N together with the
rule ω + x = x+ ω = ω for all x in N ∪ {ω}. We denote by [p] the set {1, ..., p}
and by N+ the set of positive integers.

A weighted set is a pair (X,λ) where X is a set and λ is a mapping X →
N+ ∪ {ω}. We call λ(x) the weight of x, and, for Y ⊆ X, we define2 λ(Y ) :=
Σ{λ(x) | x ∈ Y }. A weighted set can be seen as a multiset, where λ(x) is the

1 It is however monadic second-order definable.
2For typographical reasons, we use the notation Σ{λ(x) | x ∈ Y } rather than

�
x∈Y

λ(x)
and we will do the same below.
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number of occurrences of x in X. From a set X, we get a weighted set denoted
by (X,1) with all weights equal to 1.

We denote by ⊎ the union of multisets, equivalently of weighted sets: (X,λ)⊎
(Y, λ′) := (X ∪ Y, λ′′) where λ′′(x) is λ(x) + λ′(x) if x ∈ X ∩ Y and is λ(x) or
λ′(x) otherwise.

Let (X,λ) and (Y, λ′) be weighted sets. A surjective mapping κ : X → Y is
a weighted surjection or a surjection of multisets : (X,λ)→ (Y, λ′) if, for every
y ∈ Y , we have λ′(y) = λ(κ−1(y)).

Graphs
By a graph we mean an undirected graph, and we call digraph a directed

graph, for shortness sake.
A graph is defined as a triple G = (V,E, Inc) where V is the set of vertices,

E is the set of edges, and Inc is the incidence relation. The notation e : x− y
indicates that edge e links vertices x and y, equivalently, that (e, x) and (e, y)
belong to the set Inc ⊆ E × V . A pair in Inc is called an half-edge. We write
e : x− x if e is a loop at x, i.e., incident with x. We denote by E(x) the set of
edges incident with x, and by N(x) the set {y ∈ V | x− y}. We have x ∈ N(x)
if there is a loop at x. A graph is simple if no two edges have the same set of
ends. It may have loops.

A walk starting at a vertex x is a possibly infinite sequence x0, e1, x1, ..., en,
xn, ... such that x = x0, x1, ..., xn, ... are vertices and each ei is an edge whose
ends are xi−1 and xi. It is a path if the vertices x0, ..., xn, ... are pairwise distinct.
In both cases, we say that each xi is accessible from x0.

A directed graph (a digraph) is defined similarly as a triple G = (V,E, Inc).
Its edges are called arcs. An arc a is directed from its tail x to its head y, and
we denote this by a : x→ y. Its half-arcs are the pairs (x, a) and (a, y), which
encodes the direction of a. Hence Inc ⊆ (V ×E)∪(E×V ). A loop at x has two
half-arcs (x, e) and (e, x). A digraph is simple if, for any x, y, it has no two arcs
from x to y. In that case, it can be defined as a pair (V,E) where E ⊆ V × V .

We denote by E+(x) the set of arcs outgoing from x, and by N+(x) the set
of heads of the arcs in E+(x). We have x ∈ N+(x) if there is a loop at x.

A directed walk starting at a vertex x is a possibly infinite sequence x =
x0, e1, x1, ..., en, xn, ... as above such that x = x0 and ei : xi−1 → xi for each
i. Without ambiguity unless it is reduced to such x0, it can be specified as
the sequence of arcs e1, ..., en, .... It is a directed path if the vertices x0, ..., xn, ...
are pairwise distinct. We say that each xi is accessible from x0. We denote
by G/x the induced subgraph of G whose vertices are those accessible from x
by a directed path, and x is called the root. We denote by Und(G) the graph
underlying G : each arc e : x→ y of G is made into an edge e : x−y of Und(G).

We write VG, EG, EG(x), E
+
G(x), N

+
G (x), IncG etc. to specify, if necessary,

the relevant graph or digraph G.
For graphs and digraphs, inclusion is denoted by ⊆, i.e. G = (V,E, Inc) ⊆

H = (V ′, E′, Inc′) if and only if V ⊆ V ′, E ⊆ E′ and Inc ⊆ Inc′. Induced
inclusion denoted by ⊆i holds if, furthermore, E is the set of edges or arcs of
E′ whose ends, tails and heads are in V . We write then G = H[V ]. If G ⊆ H,
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we denote by H − G the induced subgraph of H[VH − VG] of H obtained by
removing the vertices of G and the edges or arcs incident to them.

The diameter of a graph or digraph G is the least upper of the distance of
any two vertices. The distance is the length of a shortest path in the graph G,
or in Und(G) if G is directed.

A homomorphism η : G→ H of graphs or of digraphs maps VG to VH , EG to
EH , IncG to IncH and preserves incidences in the obvious way. It maps loops
to loops but can map a nonloop edge or arc to a loop. It preserves labels if any.
We extend the notion of homomorphism by allowing "forgetful" operations. A
homomorphism Und(G)→ H whereG is directed andH is not is also considered
as a homomorphism G→ H. Similar conventions concern labelled graphs.

Isomorphism is denoted by ≃ and the isomorphism class of G by [G].We will
use u.t.i. to abreviate up to isomorphism. Unless otherwise mentioned, unique
with mean unique up to isomorphism.

Definition 1.1 : Quotient graphs and digraphs
(a) An equivalence relation ∼ on a graph G is an equivalence on VG ∪ EG

such that
(i) no vertex is equivalent to an edge,
(ii) if e and f are equivalent edges, then each end of e is equivalent to some

end of f and vive-versa.
The quotient graph G/ ∼ has vertex set VG/ ∼, edge setEG/ ∼ and incidence

relation IncG/∼ such that ([e], [v]) ∈ IncG/∼ if and only if (e′, v′) ∈ IncG for
some e′ ∼ e and v′ ∼ v.

(b) The definition is similar for a digraph G: we require that if e and f are
equivalent arcs, then the tail (resp. the head) of e is equivalent to that of f .
The quotient graph is defined as for graphs.

(c) A quotient graph or digraphG can be defined from an equivalence relation
∼ on VG. The associated equivalence relation is defined on edges or arcs as
follows :

(i) two edges are equivalent if and only if each end of one is equivalent
to some end of the other;

(ii) two arcs are equivalent if and only if their tails are equivalent
and so are their heads.

(d) In all cases, we have a surjective homomorphism η∼ : G → G/ ∼ that
maps a vertex, an edge or an arc to its equivalence class. An edge e : x − y is
mapped to a loop e′ in G/ ∼ if x ∼ y. The same holds for arcs.

Trees
A tree is a nonempty simple graph that is connected and has neither loops

nor cycles. We call nodes its vertices. This convention is useful in the frequent
case where we discuss simultaneously a graph and a tree constructed from it.

The set of nodes of a tree T is denoted by NT . A subtree of a tree T is a
connected subgraph of it, hence, it is a tree.
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A tree has (locally) finite degree if each node has finite degree. It has bounded
degree if the degrees of its nodes are bounded.

An infinite path is a tree with one node of degree 1 and all others of degree
2. A biinfinitepath has all its nodes of degree 2.

A rooted tree is a tree T equipped with a distinguished node called its root
and denoted by rtT . We denote it also by Tr to specify simultaneously the root
r and the underlying undirected tree T . In a way depending on r, we direct its
edges so that every node is accessible from r by a directed path. If x → y in
Tr, then y is called a son of x, and x is the (unique) father of y. The depth of a
node is its distance to the root (the root has depth 0). The height of a rooted
tree is the least upper-bound of the depths of its nodes.

Let R be a rooted tree. By forgetting its root and making its arcs into undi-
rected edges, we get a tree T := Unr(R). Hence, R = TrtR . If x is a node of
R, then the digraph R/x is a rooted tree with root x, called the subtree of R
issued from x. It is induced on the set of nodes accessible from x by a directed
path. If i ∈ N, the truncation at depth i of R, denoted by R ↾ i, is the induced
subgraph of R whose nodes are at distance at most i of the root. It is a rooted
tree with same root as R and R ↾ 0 is the tree reduced to rtR. We denote by
Rx the rooted tree Unr(R)x : that is, we take x as new root for R.

A homomorphism of rooted trees : R → R′ maps rtR to rtR′ . A star is a
rooted tree of height 1.

A homomorphism from a rooted tree R to a tree T is defined as a homomor-
phism of trees : Unr(R)→ T .

Lemma 1.2 : An isomorphism of rooted trees η : R → R′ induces, for
each u ∈ NR, an isomorphism : R/u→ R′/η(u) and, in particular, a bijection
N+

R (u)→ N+
R′(η(u)) such that R/v ≃ R′/η(v) if v ∈ N+

R (u).

Definition 1.3 : Combinations of rooted trees.
(a) We define the profile π(R) of a rooted tree R as the multiset of iso-

morphism classes [R/u]≃ for all u in N+
R (rtR), i.e., all sons u of the root. As

trees may have infinite degree, π(R) may have ω occurrences of some [R/u]≃. It
follows from Lemma 1.2 that two rooted trees are isomorphic if and only if they
have the same profile. Hence, a rooted tree is fully defined, u.t.i., by its profile.

(b) If R and S are disjoint rooted trees, we denote by R⊲S the rooted tree
obtained by taking the union of R and S, and by adding an arc from the root
of R to that of S. The root of R is thus the root of R ⊲ S. The finite rooted
trees are generated from single nodes by this operation.

It is clear that π(R⊲ S) = π(R)⊎ {[S]≃}. Clearly, π(R⊲S) = π(R) if [S]≃
has ω occurrences in π(R).

Lemma 1.4 : Let S, S′, R and R′ be rooted trees.
(1) If R⊲ S ≃ R′ ⊲ S′ and S ≃ S′, then R ≃ R′.
(2) If R ⊲ S ≃ R′ ⊲ S′, R ≃ R′ and the root of R has finite degree, then

S ≃ S′.
Proof: (1) Since R⊲ S ≃ R′ ⊲ S′, we have
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π(R⊲ S) = π(R′ ⊲ S′) = π(R) ⊎ {[S]≃} = π(R′) ⊎ {[S′]≃}.

If [S]≃ has finitely many occurrences in π(R ⊲ S), say p, then it has p − 1
occurrences in π(R) and the same number in π(R′).We get π(R) = π(R′) hence
R ≃ R′. The same holds if [S]≃ has ω occurrences in π(R⊲ S).

(2) We have π(R) = π(R′) and π(R)⊎{[S]≃} = π(R′)⊎{[S′]≃}. Since π(R)
is finite, we can conclude that [S]≃ = [S

′]≃. �

2 Unfoldings of directed graphs

We review from [11] some definitions relative to weighted directed graphs and
their unfoldings. Complete unfoldings yield a notion of regular tree that gener-
alizes the classical one [6, 7] in that their nodes can have infinite degree, and
their sets of sons are not ordered. They are the complete unfoldings of finite,
weighted, directed and rooted graphs.

In this section, all trees are rooted and thus directed in a canonical way. All
graphs are directed; we will call them digraphs to shorten writings.

Equality of trees and digraphs is understood in the strict sense : same nodes
or vertices, and same arcs. Their isomorphisms are specified explicitely and
denoted by ≃. We recall that u.t.i abreviates up to isomorphism, and that
unique means unique u.t.i.

2.1 Weighted directed graphs and their unfoldings

Definition 2.1 : Weighted directed graphs (or digraphs).
A weighted digraph is a triple G = (V,E, λ) such that (V,E) is a simple3

digraph whose set of arcs E is weighted, that is, equipped with a labelling
λ : E → N+ ∪ {ω}. We recall from Section 1 that simple digraphs have no
parallel edges, but can have loops, and that E is a subset of V × V. Actually,
we can handle parallel arcs by means of weights: an arc (x,y) with weight
λ(x, y) > 1 encodes λ(x, y) parallel arcs from x to y. A simple digraph is a
weighted one whose arcs have all weight 1.

A weighted digraph G is rooted if it has a distinguished vertex called its root,
denoted by rtG such that every vertex is accessible from the root by a directed
path (i.e., G = G/rtG). A homomorphism of rooted digraphs : G → H maps
rtG to rtH .

Definition 2.2: Unfoldings
Let H and G be rooted and weighted digraphs.
(a) A surjective homomorphism η : G → H is an unfolding of a H if it

satisfies the following condition:

3We only consider simple digraphs, although definitions and results could be extended to
weighted digraphs with parallel arcs. The associated complete unfoldings would be the same
trees.
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Figure 1: Example 2.3(4).

(U) If (x, y) ∈ EH , u ∈ VG, and η(u) = x, then λH(x, y) =
Σ{λG(u, v) | η(v) = y},

equivalently, if η(u) = x, then η induces a weighted surjection: (E+G(u), λG)→
(E+H(x), λH). If all weights in G and H are 1, Condition (U) means that η is a
bijection of N+

G (u) onto N
+
H(x).

We will also say thatG is an unfolding ofH. From the accessibility condition
in the definition of a rooted digraph, unfoldings only concern connected graphs.
They are called op-fibrations by Boldi and Vigna [5].

(b) A complete unfolding η : G→ H is an unfolding such that G is a rooted
tree. We will also say that G is a complete unfolding of H or that H unfolds
completely into G.

Examples 2.3 : (1) An arc x→ y with weight ω such that x is taken as root
unfolds (not completely) into a finite star, where at least one arc has weight ω.
It unfolds completely into Sω, i.e., the tree, u.t.i., whose root has ω sons that
are leaves.

(2) Let x→ y be as in (1). If in addition, there is a loop y → y of weight 1,
this rooted and weighted digraph unfolds completely into the union of ω infinite
directed paths with same origin, and that are otherwise disjoint.

(3) A loop z → z of weight 2 unfolds completely into a complete binary
rooted tree.

(4) The left part of Figure 1 shows an unfolding of the digraph on the
right part. The roots are s and [s]. The common complete unfolding of these
two rooted digraphs consists of an infinite directed path augmented with two
pendent arcs originating from each node.�

Lemma 2.4 : If η : G → H and κ : H → K are unfoldings, then κ ◦ η
: G→ K is an unfolding.
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Theorem 2.5 [11] Theorem 3.5(1,3) : Every rooted and weighted directed
graph H has a complete unfolding. Any two complete unfoldings of it are iso-
morphic.
Proof sketch: We recall the proof of the construction of a complete unfold-

ing of H. We first assume that H has no weight, i.e. that all arcs have weight 1.
We define Unf (H) as the rooted tree of finite directed walks in H starting from
rtH . The root is the empty walk (reduced to rtH), and the father of a node
(e1, ..., en) is (e1, ..., en−1). The unfolding homomorphism γ:Unf (H)→ H maps
a node (e1, ..., en) to the head of en, and the arc (e1, ..., en) → (e1, ..., en−1) to
en.

If H has weights, we replace each arc e : x → y having weight λH(e) by
λH(e) parallel arcs (e, i) : x→ y, for i ∈ N+, 1 ≤ i ≤ λH(e). We obtain a rooted
digraph Exp(H), called the expansion of H, and we define Unf (H) from walks
in Exp(H) instead of H. This construction shows that if x ∈ NUnf (H), then
Unf (H)/x ≃ Unf (H/γ(x)). �

We will denote by Unf(H) the complete unfolding of H, a rooted tree
defined u.t.i that we distinguish from the concrete tree Unf (H) whose nodes
are walks in Exp(H), or in H if H has no weight, equivalently, if all the weights
are 1.

2.2 Complete unfoldings and regular trees

The notion of an infinite regular tree is important in applications to seman-
tics, in particular because the complete unfolding of a finite transition system
is regular [3, 6, 7], and more generally for the monadic second-order logic of
infinite structures, see [9, 12]. We will consider regular trees that are complete
unfoldings of finite digraphs.

A digraph or a tree can have labels attached to its vertices, nodes or arcs.
We review definitions and results from [11].

Definition 2.6 : Regular trees.
(a) A rooted, possibly labelled, tree T is regular4 if it has, u.t.i, finitely many

subtrees T/x, inheriting the possible labels of T , i.e., if the set of isomorphism
classes {[T/x] | x ∈ NT } is finite. In the latter case, its cardinality is the
regularity index of T, denoted by Ind(T ).

(b) If T is a regular rooted tree of index p, then T/x is regular of index at
most p for each x ∈ NT , because (T/x)/y = T/y for y ≤T x (meaning that x is
on the directed path from the root to y).

Every finite tree is regular. A rooted tree of height 1 (a star) is regular of
index 2 even if its infinite.

4Slightly different notions of regular trees are studied in [6, 9, 12]. However, they have in
common the finiteness of the set of subtrees, up to isomorphism.
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Definition and remarks 2.7 : The canonical quotient of a rooted and
weighted digraph.

Let G be a rooted and weighted digraph. Let ≈ be the equivalence relation
on VG such that x ≈ y if and only if Unf (G/x) ≃ Unf (G/y). Its quotient
H := G/ ≈ is defined as follows (we repeat Definition 1.1):

VH := {[x]≈ | x ∈ VG},

rtH := [rtG]≈,

EH := {([x]≈, [y]≈) | (u, v) ∈ EG for some u ∈ [x]≈, v ∈ [y]≈},

λH([x]≈, [y]≈), the weight of the arc ([x]≈, [y]≈), is the number of
arcs (x, v) in H, for some v ∈ [y]≈.

The labelling λH is well-defined by Lemma 1.2 (more details in Lemma 3.9 of
[11]). By the definition of H, the mapping η : VG → VH such that η(x) := [x]≈
is a surjective homomorphism. Condition (U) is easy to check by means of these
lemmas. Hence η : G→ H is an unfolding. We call G/ ≈ the canonical quotient
of G.

Conversely, if α : G → H is an unfolding, then H is isomorphic to G/ ≈′

where x ≈′ y if and only if α(x) = α(y).
If G is finite, then G/ ≈′ is the unique rooted and weighted digraph with a

minimal number of vertices of which G is an unfolding. �

For the purpose of further reference, we collect these observations.
Proposition 2.8: Let G be a rooted and weighted digraph.
(1) The homomorphism η : G→ G/ ≈ is an unfolding.
(2) If G is finite, then G/ ≈ is, up to isomorphism, the unique rooted and

weighted digraph of minimal size of which G is an unfolding. �

The digraph on the right of Figure 1 is the canonical quotient of the one on
the left, and of their common complete unfolding.

Theorem 2.9 [11], Theorem 3.13: (1) A rooted tree T is regular of index at
most p if it is the complete unfolding of a finite, rooted and weighted digraph
with p vertices. Its canonical quotient, of which it is a complete unfolding, has
Ind(T ) vertices.

(2) A regular tree T is the complete unfolding of a unique rooted and
weighted digraph having Ind(T ) vertices.
Proof sketch : Let H be a finite, rooted and weighted digraph with p ver-

tices. We have observed in Theorem 2.5 that if x ∈ NUnf (H), then Unf (H)/x ≃
Unf (H/γ(x)) where γ is the unfolding : Unf (H) → H. Hence the complete
unfolding Unf (H) has at most p different subtrees Unf (H)/x, u.t.i..

Conversely, let T be a regular tree of index p. Let ≈ be the equivalence rela-
tion on NT such that u ≈ v if and only if T/u ≃ T/v. The quotient construction
of Definition 2.7 shows that T is a complete unfolding of the finite, rooted and
weighted digraph T/ ≈ that has p vertices. �
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Finite, rooted and weighted digraphs can be used as finite descriptions of
regular trees. The following result shows that this description is effective.

Theorem 2.10 [11] Theorem 3.22: (1) Given a finite weighted digraph H
and two vertices x, y ∈ VH , one can decide whether Unf(H/x) = Unf(H/y).

(2) If H as above is rooted, one can construct the canonical quotient
Unf(H)/ ≈. �

The following result is similar to a theorem by Norris [18] about universal
coverings (that we will recall in Section 3).

Theorem 2.11 [11] Theorem 3.20 : Let H be a finite weighted digraph
with p vertices. Let x, y ∈ VH . Then:

Unf(H/x) = Unf(H/y) if

Unf(H/x) ↾ (p− 1) = Unf(H/y) ↾ (p− 1).

2.3 First-order definition of regular trees

We recall from Section 1 that a tree, either rooted or not, has finite degree if
each node has finite degree. It has bounded degree if the degrees of its nodes are
bounded by an integer. A regular tree has bounded degree if it has finite degree.

Each rooted tree T can be identified to the relational structure (NT , sonT );
the root can be identified as the unique node x such that sonT (y, x) does not
hold for any node y. In our first-order formulas we will denote the root by
the nullary symbol rt for readability. In other words, we will represent T by
S(T ) := (NT , sonT , rtT ) that we also call a relational structure.

We first prove the following theorem, and later on, an extension.

Theorem 2.12 : A rooted tree of finite degree is regular if and only if it is
definable among rooted trees by a first-order sentence.�

Saying that a rooted tree T is first-order definable (FO definable in short)
among rooted trees means that there exists a first-order sentence5 ϕ such that,
a relational structure of the form S(U) := (NU , sonU , rtU) for some rooted tree
U satisfies ϕ, which we denote by S(U) |= ϕ, if and only if U ≃ T . (Note that
rtU is FO-definable from sonU).

There is a monadic second-order (MSO) sentence expressing that a relational
structure (D,R) where R is a binary relation on D represents a rooted tree T ,
hence is of the form (NT , sonT ), but no such FO sentence does exist [10]. Hence,
an FO definability result for regular trees must be relative to the class of rooted
trees.

5A sentence is a formula without free variables.
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For having a similar result for regular trees with nodes of infinite degree,
we will use the generalized quantifier ∃ω defined so that a formula ∃ωx.ϕ(x) is
valid if and only if there exist infinitely many objects x such that ϕ(x) is valid.
"Infinite" means "countably infinite", because all graphs, trees and relational
structures are finite or countably infinite. We obtain an extension of FO logic
denoted by FOω. For an example, the sentence :

∃x{¬arc(x, x)∧∀y[x �= y =⇒ (arc(x, y)∧¬∃z(arc(y, z))]∧∃ωy.arc(x, y)}

expresses that a simple directed graph G represented by the relational struc-
ture (V, arc) (where arc(u, v) means: u→ v) is isomorphic to a star Sω i.e., a
tree with root x and countably many leaves adjacent to it. Such an expression
is not possible without the generalized quantifier ∃ω.

Theorem 2.13 : A rooted tree is regular if and only if it is definable among
rooted trees by an FOω sentence.

Proof of Theorem 2.12.

Let T be a regular tree defined as a complete unfolding of a canonical (cf.
Theorem 2.9) finite rooted and weighted digraph H without weights ω, whose
vertices are rtH = 1, 2, ..., p. Let α : T → H be the unfolding mapping. Since
H is canonical, Unf (H/i) ≃ Unf (H/j) implies i = j.

For each i = 1, ..., p, let Ui be isomorphic to the finite rooted tree Unf (H/i) ↾
(p− 1). It follows then from Theorem 2.11 that Ui ≃ Uj implies i = j.

For every node y of T , we have :

(C) α(y) = i if and only if (T/y) ↾ (p− 1) ≃ Ui.

Since Ui is finite, there is an FO formula θi(y) such that, for every y ∈ NT ,
S(T ) |= θi(y) if and only if (T/y) ↾ (p− 1) ≃ Ui.

LetW be a rooted tree, given by the relational structure S(W ) = (NW , sonW ,
rtW ).

Claim : W ≃ T if and only if
(1) S(W ) |= θ1(rtW ).
(2) For every node y of W , there is i ∈ [p] such that S(W ) |= θi(y), and for

every i, there is such a node y.
(3) For every node y of W , if S(W ) |= θi(y), then, for every j, the node y

has exactly s sons z such that S(W ) |= θj(z) where s is the weight of the arc
i→ j in H, and s = 0 if there is no such arc.

These three conditions hold if W ≃ T by Property (C) and the definition of
an unfolding.

Let us conversely assume that a rooted tree W satisfies (1)-(3).
Let α : NW → VH be defined by α(y) = i if and only if S(W ) |= θi(y). It

is well-defined and surjective by Condition (2) and because for every y ∈ NW ,
there is at most one i ∈ [p] such that S(W ) |= θi(y) (recall that the trees Ui

are pairwise nonisomorphic). Condition (1) yields α(rtW ) = 1. Condition (3)
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shows that α is an unfolding : W → H. As W is assumed to be a rooted tree,
it is a complete unfolding of H.

Conditions (1)-(3) are expressible by a single FO sentence, constructed from
the digraph H.

The proof of Theorem 2.13 will establish that, conversely, if a rooted tree of
finite degree is FO-definable among rooted trees, then it is regular. �

For proving Theorem 2.13, we extend the operation ⊲ defined in Definition
1.3 into ⊲s for 1 ≤ s ≤ ω:

if R and R′ are rooted trees, R ⊲s R′ is the union of R and s pairwise
disjoint copies of R′ that are also disjoint from R;

we add arcs from rtR to the roots of the copies of R′. Then rtR is
the root of the resulting tree.

Furthermore, • will denote a rooted tree reduced to a single node.

Proof of Theorem 2.13.

"Only if" The proof is a variant of that of Theorem 2.12. The rooted trees
Ui have bounded height but they may have nodes of infinite degree, hence we
need the quantifier ∃ω for writing formulas θi(y).

Claim : For each i ∈ [p] there exists an FOω sentence θi(y) such that, for
every y ∈ NT , S(T ) |= θi(y) if and only if (T/y) ↾ (p− 1) ≃ Ui where α(y) = i.

For expressing Condition (3) of the proof of Theorem 2.12. when s = ω, we
must express that a node y has infinitely many sons z such that S(W ) |= θj(z).
This is possible with the quantifier ∃ω.

Proof of the claim.
The trees Ui have maximal depth p− 1. We will prove the existence of FOω

formulas θi,q(y) where 0 ≤ q ≤ p− 1, such that, for every y ∈ NT , we have :

S(T ) |= θi,q(y) if and only if (T/y) ↾ q ≃ Ui ↾ q.

We will say that θi,q defines Ui ↾ q. Note that if q < p − 1, we may have
Ui ↾ (q + 1) ≃ Ui ↾ q.

The proof is by induction on q, simultaneously for all i.
If q = 0, then Ui ↾ q ≃ •, hence θi,0(y) is ¬∃z.(son(y, z)).
If q ≥ 0, then we express Ui ↾ (q + 1) in terms of the trees Uj ↾ q.
Let i → j1, ..., i → jr be the arcs in H outgoing from i, with respective

weights s1, ..., sr. We have :

Ui ↾ (q + 1) ≃

((...((• ⊲s1 (Uj1 ↾ q)) ⊲
s2 (Uj2 ↾ q)) ⊲

s3 ...) ⊲sr Ujr ↾ q).

By the induction hypothesis, we have FOω formulas θjm,q(y) that define the
trees Ujm ↾ q. We can combine them into θi,q+1(y) such that :
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S(T ) |= θi,q+1(y) if and only if (T/y) ↾ (q + 1) ≃ Ui ↾ (q + 1).

To handle the cases where sm = ω, we use the quantifier ∃ω.
Hence, T is defined by an FOω sentence ϕT .

"If" We prove that if a rooted tree is definable among rooted trees by an
FOω sentence ϕ, then it is regular.

We first give an idea of the proof. We can describe an arbitrary rooted tree
S "inside" a labelled infinite binary rooted tree B, which we write S = τ(B),
where τ is anMSO transduction, actually of the most simple type, also called an
MSO interpretation, see [11]. The set of structures B such that τ(B) satisfies
ϕ is MSO definable hence, contains a regular tree B0. It will follow from the
definition of τ that T := τ(B0) is regular. Here are the formal details.

We let B be the set of colored binary trees B := ({0, 1}∗, son0, son1,D)
whose nodes are the words on {0, 1}, where soni(u, v) holds if and only if v is ui
(i is 0 or 1; in B, one distinguishes a left son from a right son), and D ⊆ {0, 1}∗

is prefix-closed (that is u ∈ D if uv ∈ D). This set will be handled as a unary
relations when writing formulas.

From B as above, we define a rooted tree τ(B) := (N, son) as follows:

N is the set of nodes w in D, that are not the right son of any node
(hence ε ∈ N).

son(u, v) holds if and only if u, v ∈ N , v <B u and no intermediate
node on the directed path in B from u to v is in N .

It is clear that τ(B) is a rooted tree and every rooted tree is τ(B) for some
B ∈ B .

The condition on D, the set N and the relation son are MSO-definable.
(Hence the mapping from B �−→ τ(B) is a monadic second-order transduction,
cf. [10], of the most simple type).

It follows that if ϕ is an FOω sentence relative to structures (N, son) that
describe rooted trees, then, one can define (algorithmically, [10]) an MSOω

sentence ψ such that B |= ψ if and only if T (B) |= ϕ. (MSOω sentences are
monadic second-order sentences written with the generalized quantifier ∃ωx.
This is equivalent to using the set predicate Fin(X) expressing that a set X is
finite.)

However, a linear order ≤ on the set of nodes of any tree B in B, say the
lexicographic order on {0, 1}∗, can be defined because we distinguish left and
right sons in B. It follows that the finiteness of a nonempty set X ⊆ NB can be
expressed by :

"X has a maximal element MX , a minimal element mX and the
pair (mX ,MX) belongs to the reflexive and transitive closure of the
successor relation of the linear order (X,≤)".

This is MSO expressible, hence ψ can be translated into an MSO sentence
ψ′ that does not use ∃ω.
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A classical result by Rabin (see [20]), shows that if some tree B satisfies ψ′,
then some regular tree R in B satisfies it. It is easy to see that τ(R) is regular
if R is. �

Remarks 2.14 : (1) If a rooted tree T is defined by an FOω sentence on
the structure (NT ,≤T ) instead of (NT , sonT ), then, the same proof shows that
T is regular.

(2) The same proof shows that if a rooted tree is MSOω-definable, then it
is regular, which is not the result by Rabin as these trees may have infinite
degree. �

Corollary 2.15 : The MSOω theory of a regular tree is decidable.
Proof : Let T be defined by an FOω sentence ϕT . Let θ an MSOω sentence

to be decided. We apply the method of the second part of the proof of Theorem
2.13 to the MSOω sentence ϕT ∧θ. From ϕT ∧θ, we construct an MSO sentence
ψ such that B |= ψ if and only if τ(B) |= ϕT ∧ θ. Then, B |= ψ if and only if
the tree τ(B) is isomorphic to T and T |= θ. This is decidable [20]. �

Remarks 2.16: Complete unfoldings and equations in trees.
Let C be a rooted tree that is not reduced to a root. Let X be a set of

leaves.
For every rooted tree R, let C[R] be the rooted tree defined u.t.i., by sub-

stituting in C for each leaf in X an isomorphic copy of R disjoint from C and
all others. There exists a unique rooted tree R such that R ≃ C[R]. Unicity is
of course u.t.i.. Then R ≃ Unf(D) where D is the rooted digraph defined as
follows from C :

- we delete the leaves in X,
- for every arc u→ x of C, we create an arc u→ rtC .
This is an observation that we state without proof because we will not use

equations in trees. Equations in trees are frequently solved by taking least fixed
points in complete partial orders [6, 7], which needs many preliminary definitions
and lemmas. By using complete unfoldings, we obtain unique solutions in a
direct way.

3 Coverings

We consider finite weighted undirected graphs and their coverings. We will
use trees (undirected and without root) and also rooted trees, in particular the
regular trees considered in the previous section.

Equality of trees and graphs is understood in the strict sense : same nodes
or vertices, and same edges. Isomorphisms are specified explicitely and denoted
by ≃.
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3.1 Coverings of weighted graphs

We first review definitions and results about unweighted graphs from [1, 16, 18].
More details, proofs and references are in [11].

Definition 3.1 : Covering.
Let G,H be graphs. A covering γ : G → H is a surjective homomorphism

such that, if γ(x) = y, then γ defines a bijection : EG(x) → EH(y). We will
also say that G is a covering of H.

The following proposition is due to Redemeister.
Proposition 3.2: Let γ : G→ H be a covering between connected graphs.
(1) If H is a tree, then G is isomorphic to H.
(2) Every connected graph is covered by a tree that is unique u.t.i..
(3) If G is finite, then, either γ is an isomorphism or |VG| > |VH | and |VG|

is a multiple of |VH |.

Definition 3.3: Universal coverings of graphs
(a) Every connected graph H has a covering that is a tree. We recall its

construction. For a vertex x of H, we define UC(H,x) as the rooted tree of all
finite walks inH that start at x and do not use a same edge twice in a row. Each
(unrooted) tree Unr(UC(H,x)) is a universal covering of H. They are pairwise
isomorphic for all vertices x by Proposition 3.2. We define UC(H), called the
universal covering of H, as the isomorphism6 class of the trees Unr(UC(H,x)).

(b) If there is an automorphism of H that maps x to y, then UC(H,x) is
isomorphic to UC(H, y): this is clear from the descriptions in terms of walks.
However, the converse does not hold : take as counter-example the union of the
two graphs of Figure 2 with an edge between the two vertices marked a, that
we call x and y. Then UC(H,x) ≃ UC(H, y) but there exists no automorphism
of H that maps x to y. �

Examples 3.4 : (1) A biinfinite path (defined in Section 1) is a universal
covering of two loops at a same vertex, of two parallel edges or of any cycle.

(2) An edge is a universal covering of a single loop.
(3) Any infinite tree whose nodes have all degree k is a universal covering of

any connected k-regular graph.
(4) The two graphs of Figure 2 have the same universal coverings. By Propo-

sition 3.2, they cover only themselves.�

We will use the notion of an equivalence relation ∼ on a graph of Definition
1.1.
Proposition 3.5 : (1) If ∼ is an equivalence on a graph G such that, if x

and x′ are equivalent vertices, then ∼ defines a bijection between EG(x) and
EG(x′), then the canonical homomorphism α : G→ G/ ∼ is a covering.

6We use boldface symbols to indicate that we consider isomorphism classes of trees. To
the opposite, a tree UC(H,x) is constructed concretely from edges and vertices of H.
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Figure 2: Two graphs not covering any graph. Example 3.4(4).

(2) Every connected graph H is isomorphic to T/ ∼ where T is its universal
covering and ∼ is an equivalence relation as in (1).
Proof : (1) The proof is straightforward.
(2) Let H be connected and γ : T → H be a universal covering. We define

x ∼ y for x, y ∈ VH ∪EH if and only if γ(x) = γ(y). The result follows. �

We now introduce weighted graphs.
Definitions 3.6 : Half-edges and related notions
(a) We recall that a graph is defined as a triple G = (VG, EG, IncG) and

that the elements of IncG are its half-edges. This description allows graphs
with parallel edges and loops. An edge e is a loop at a vertex x if and only if
(e, x) ∈ IncG and there is no pair (e, y) in IncG such that y �= x. We denote by
IncG(x) the set of half-edges (e, x) for some e.

(b) If T is a tree and (e, x) ∈ IncT , we denote by T/(e, x) the rooted tree
induced by the nodes linked to x by a path not going through e; its root is x.
We have T/(e, x) ⊆i Tx: here, we have an inclusion of trees having the same
root x.

If T = Unr(R) for some rooted tree R, then R/x = T/(e, x) if e links x to
its father. If e : x− y is an edge of a tree T , then Tx = T/(e, x)⊲ T/(e, y); the
tree T/(e, x) is obtained from Tx by removing T/(e, y).

In a tree, an half-edge (e, x) is directed toward a vertex y �= x if e is the first
edge on the unique path from x to y.

It follows from Lemma 1.4(2) that if e : x−x′ and f : y−y′ are two edges of
a tree T , if x has finite degree, Tx ≃ Ty and T/(e, x) ≃ T/(f, y) then Tx′ ≃ Ty′
and T/(e, x′) ≃ T/(f, y′). This may be false if we do not assume that x has
finite degree.

We now generalize the notion of covering of Definition 3.1.

Definitions and remarks 3.7 : Weighted graphs and their coverings.
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(a) A weighted graph is a 4-tuple G = (V,E, Inc, λ) such that (V,E, Inc) is
a simple graph (no parallel edges and no two loops at a same vertex) and λ is
a weight function7 on the set Inc of half-edges.

A graph G is made into a weighted graph W (G) as follows: p parallel edges
between x and y are fused into a single edge whose two half-edges have weight
p, and, similarly, p loops at x are fused into a single one of weight p.

(b) We say that G is a subgraph of a weighted graph H, written G ⊆ H, if
VG ⊆ VH , EG ⊆ EH , each edge (or loop) of G has the same incident vertices
in H as in G (which implies IncG ⊆ IncH) and λG(e, x) ≤ λH(e, x) for every
(e, x) ∈ IncG. We do not consider a loop (e, x) as included in an edge e : x− y
(cf. Definition 3.17(c)).

(c) Let G,H be weighted graphs. A covering γ : G → H is a surjective
homomorphism (of unweighted graphs) such that, if γ(x) = y and e ∈ EH(y),
then λH(e, y) = Σ{λG(e

′, x) | e′ ∈ EG(x), γ(e
′) = e}, equivalently, if γ(x) = y,

then γ induces a weighted surjection (IncG(x), λG) → (IncH(y), λH). We will
also say that G is a covering of H.

If all half-edges and loops of G and H have weight 1, these graphs are simple
and the covering condition means that γ is injective on each set IncG(x), whence
bijective, and we get the notion of covering of Definition 3.1.

Each graph G covers the weighted graph W (G). If G, finite, covers H, then
|VG| ≥ |VH | but Proposition 3.2 does not hold (see below Example 3.10(3)). If
|VG| = |VH | then |EG| ≥ |EH | because several edges get fused into a single one
with larger weights.

Proposition 3.8 : If γ : G→ H and δ : H → K are coverings, then so is
δ ◦ γ : G→ K.

Remarks 3.9 : 1) If pairwise disjoint weighted graphs are coverings of H,
then, their union is a covering of H.

2) If γ : G → H is a covering and G is connected, then H is connected
because γ maps every path in G to a walk in H. If H is not connected, then G
is the union of pairwise disjoint coverings of its connected components. It follows
from these facts that we need only consider connected coverings of connected
weighted graphs.

3) If G is a covering of a graph H, then G is also a graph, because its
half-edges must have weight 1.

Examples 3.10 : 1) The complete bipartite graph K3,4 (with 3+4 vertices)
covers an edge whose half-edges have weights 4 and 3.

2) Three parallel edges cover an edge whose two half-edges have weight 3,
which covers itself a loop of weight 3.

3) The two graphs of Figure 2 cover both the weighted graph consisting of
the edge e : x− y and the loop f : y− y such that (e, x) has weight 6, (e, y) has
weight 1 and (f, y) has weight 2. As they have both 7 vertices, a prime number,

7The two halves of an edge may have different weights.
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they do not cover any graph apart themselves, by Proposition 3.2. This example
shows that this proposition does not extend (at least immediately) to weighted
graphs.

4) The graph G consisting of two vertices, x and y, an edge e : x − y and
loops f and g at x and y with weights λ(e, x) = 3, λ(e, y) = 2, λ(f, x) = 4 and
λ(g, y) = 5, covers H consisting of a single vertex with a loop of weight 7.

Theorem 3.11 [11] Theorem 4.24: Given a finite weighted graphH without
weights ω, one can decide if it is covered by a finite (unweighted) graph and one
can construct one if possible.
Proof sketch : Let H = (V,E, Inc, λ) be as in the statement, and without

loops. Assume that γ : G→ H is a covering, where G is a finite graph. Let V =
[p]. For each i, let wi :=

��γ−1(i)
��. Let ei,j : i−j be an edge of H, with i < j. Let

mi,j = λ(ei,j , i) and mj,i = λ(ei,j , j). We have
��γ−1(ei,j)

�� =mi,j .wi =mj,i.wj .
The system ΣH of equations of the formmi,j .xi = mj,i.xj , with one equation

for each edge ei,j is satisfied by the numbers (w1, ..., wp). For some weighted
graphs H, it may have no solution. Otherwise, the solutions (w1, ..., wp) of ΣH

in positive integers are the vectors (
��γ−1(1)

�� , ...,
��γ−1(p)

��) for the finite coverings
γ of H by a graph G. The existence of a solution is decidable. A unique one
such that w1 + ... + wp is minimal can be computed if there exists one, and it
yields a covering γ : G→ H where G is a graph. The extension to the case of
H with loops is straightforward because loops bring no constraints. �

Example 3.12 : Let H be the cycle C3 with vertices 1,2,3 and weights on
its half-edges such that we get the equations 2x1 = 3x2, 4x2 = 3x3, x3 = 5x1.
They have no solution in N+ so that H is not covered by any finite graph. It
is covered by the tree whose set of nodes is N1 ∪N2 ∪N3 where N1, N2, N3 are
infinite and pairwise disjoint, each node in N1 has 2 neighbours in N2 and 5
in N3, each node in N2 has 3 neighbours in N1 and 4 in N3, and each node in
N3 has 1 neighbour in N1 and 3 in N3. This tree does not cover any graph. It
covers a finite weighted graph by Theorem 3.15(2) below.

3.2 Universal coverings

We extend to weighted graphs the notion of universal covering.
Definition 3.13 : Universal coverings
A covering of weighted graphs γ : G→ H is universal if G is a tree, which

implies that H is connected. We also say that G is a universal covering of H.
Any two universal coverings of a connected and weighted graph are isomorphic,
as we will recall from [11], Theorem 5.7. �

We first give some useful examples.

Examples 3.14 : 1) An infinite tree T whose nodes have all degree p where
1 < p ≤ ω is a universal covering, say by γ, of a loop of weight p > 1 incident to
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some vertex x, where γ maps all nodes of T to x. It is also a universal covering
of an edge whose half-edges have both weight p.

2) A tree such that every node of degree 3 is adjacent to a node of degree
4 and vice-versa is a universal covering of K3,4 and also, of an edge whose
half-edges have weights 4 and 3.

3) A star Unr(Sω) consisting of one node adjacent to ω leaves is a universal
covering of an edge whose half-edges have weights 1 and ω.

4) A universal covering γ of a graph H consisting of a path x− y − z with
a loop at x, all weights being 1, is the path z1 − y1 − x1 − x2 − y2 − z2 with
γ(x1) = γ(x2) = x, γ(y1) = γ(y2) = y and γ(z1) = γ(z2) = z.

5) A biinfinite path (cf. Section 1 and Example 3.4(1)), is a universal covering
of the following weighted graphs:

(a) a cycle (in particular two parallel edges) having weights 1, or an edge
with both half-edges of weight 2,

(b) the weighted graph H as in 4) except that the weight of the half-edge at
z is 2,

(c) one loop of weight 2 or two loops of weight 1 incident to a same vertex,
(d) a path both ends of which have a loop of weight 1, or that has a loop of

weight 1 at one end and an half-edge of weight 2 at the other (directed towards
the loop, cf. Definition 3.6(b)), or half-edges of weight 2 at both ends, directed
one toward the other.

Theorem 3.15 [11], Theorem 5.7: (1) Every connected weighted graph has
a universal covering. Any two universal coverings are isomorphic.

(2) Every tree T is the universal covering of a connected and weighted graph
H such that, if T covers a weighted graph G, then G covers H. This graph H
is unique up to isomorphism.�

For reviewing these proofs, we need some definitions and constructions.
Definition 3.16 [11] Definition 5.3: Expanded symmetrized digraphs and

universal coverings
(a) Let H = (V,E, Inc, λ) be a connected and weighted graph. We fix a

linear order8 ≤ on V . The associated expanded symmetrized digraph of H is the
(unweighted) digraph ES(H) := (V,E′, Inc′) defined as follows. For each edge
e : x− y of E, we define the following arcs of ES(H):

(e+, i) : x→ y if x < y, i ∈ N+, 1 ≤ i ≤ λ(e, x),

(e−, i) : y → x if x < y, i ∈ N+, 1 ≤ i ≤ λ(e, y),

(eℓ, i) : x→ x if x = y (e is a loop), i ∈ N+, 1 ≤ i ≤ λ(e, x).

The set Inc′ is defined accordingly. The digraph ES(H) is strongly con-
nected.

(b) Construction of universal coverings.

8Another linear order yields isomorphic graphs and trees.
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Figure 3: Example 3.17.

Let x be a vertex of H. We let W(H,x) be the set of finite directed walks
in ES(H) that start from x and that are defined as sequences of arcs (g1, .., gn)
such that, for each p = 1, ..., n− 1,

if gp = (e
+, i), then gp+1 �= (e

−, 1),

if gp = (e
−, i), then gp+1 �= (e

+, 1),

if gp = (e
ℓ, i), then gp+1 �= (e

ℓ, 1).

We call them good walks. Hence,W(H,x) is the set of walks used to define the
tree Unf (ES(H), x) from which are deleted those involving certain repetitions.
This definition generalizes the construction of UC(G,x) for an unweighted graph
G, defined from walks in G that do not follow the same edge twice consecutively,
cf. Definition 3.3.

We define UC(H,x) as the rooted tree whose set of nodes isW (H,x), whose
root is the empty walk, and such that (g1, ..., gn) is the father of (g1, ..., gn+1).
We define γ : UC(H,x)→ H such that9 γ(g1, ..., gn) is the head of gn, and if f is
the arc : (g1, ..., gn)→ (g1, ..., gn+1), then γ(f) := e where gn+1 is (e+, i), (e−, i),
or (eℓ, i). Hence γ is a homomorphism Unr(UC(H,x)) → H, and furthermore
a universal covering. �

Example 3.17: Figure 3 shows a weighted graph to the left and the cor-
responding digraph ES(H) to the right. Figure 4 shows the first levels of the
unfolding of ES(H) from x. The dotted arcs are deleted so as to ensure the
conditions of Definition 3.16(b).

Definitions and remarks 3.18 : Quotients of trees.
(a) Let T be a tree and ∼ be an equivalence relation on NT satisfying the

following condition:

(N) : if v ∼ v′, w is a neighbour of v, and v has exactly p (p may
be ω) neighbours equivalent to w, then v′ has exactly p neighbours
equivalent to w.

9We write γ(g1, .., gn) for γ((g1, .., gn)).
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Figure 4: Example 3.17

Let H := T/ ∼ be the weighted graph defined as follows :

VH := NT/ ∼, EH contains an edge e : [v]∼ − [w]∼ if and only if v
is adjacent to some vertex of [w]∼ if and only if, by Condition (N),
each vertex of [v]∼ is adjacent to some vertex of [w]∼ ; the weight
λ(e, [v]∼) is the number of edges of T linking v and a vertex of [w]∼
where w is adjacent to v.

Fact : T is a universal covering of H.

(b) We call H the canonical quotient of T if ∼ is the equivalence relation on
NT such that x ∼ y if and only if Tx ≃ Ty. �

We will study the trees whose canonical quotient is finite.

Proof sketch of Theorem 3.15 :
(1) We use Definition 3.16(b). Theorem 5.7 of [11] establishes that for any

two vertices x and y of H assumed connected, we have Unr(UC(H,x)) ≃
Unr(UC(H, y)). Any of these trees is a universal covering of H and, u.t.i.,
they define the universal covering UC(H) of H. If γ : T → H is a universal
covering of H, connected and weighted, and u ∈ NT , then Tu ≃ UC(H, γ(u)).

(2) Let T be a tree and ∼ be the equivalence relation on NT such that
x ∼ y if and only if Tx ≃ Ty. This equivalence relation satisfies Condition (N)
of Definition 3.18 because an isomorphism α:Tx → Ty is also an isomorphism
Tu → Tα(u) for every neighbour u of x. The canonical homomorphism γ : T →
T/ ∼ such that γ(v) = [v]∼ and γ(e) is the edge [v]∼ − [w]∼ if e : v − w is a
universal covering of H := T/ ∼ because Condition (N) implies that an edge
[v]∼−[w]∼ is defined from an edge v−w of T , and that λ(e, [v]∼) is well-defined.

Let β : T → G be a universal covering of a weighted graph G (it must be
connected) with p vertices. If u ∈ NT , then Tu ≃ UC(G, γ(u)). Let ≈ be the
equivalence on G defined by x ≈ y if and only if UC(G,x) ≃ UC(G,y) if and
only if Tu ≃ Tv where β(u) = x and β(v) = y. Hence, x ≈ y implies γ(x) = γ(y)
and we have a covering G → G/ ≈ that is isomorphic to T/ ∼= H. This
weighted is defined in a canonical, hence unique way. �
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4 Universal coverings of finite weighted graphs

From now on, we will study universal coverings of finite weighted graphs. We
extend the notion of regularity to trees without root and we identify the regular
trees that are universal coverings of finite weighted graphs. Not all of them are.

4.1 Strongly regular trees

Definition 4.1 : Regular and strongly regular trees.
(a) A (possibly labelled) tree T is regular if it is Unr(R) for some regular

rooted tree R.
(b) It is strongly regular if it has, u.t.i., finitely many associated rooted trees

Tx for x ∈ NT , that is, if the set {[Tx]≃ | x ∈ NT } is finite. �

We will prove in Theorem 4.8 that strong regularity implies regularity, which
is not immediate from the definition.

Example 4.2 : The infinite path, defined as the rooted tree R such that
NR := N and x ≤R y if and only if y ≤ x is regular but Unr(R) is not strongly
regular because the rooted trees Unr(R)x are pairwise non isomorphic.�

Theorem 4.3 : A tree T is strongly regular if and only if it is the universal
covering of a finite weighted graph, if and only if it is the universal covering of
a finite weighted bipartite graph.
Proof: Let γ : T → H be a universal covering, where H is weighted graph

(it must be connected) with p vertices. When proving Theorem 3.15, we have
seen that Tu ≃ UC(H, γ(u)) if u ∈ NT . Hence, u.t.i., there are at most p rooted
trees Tu and T is strongly regular.

Conversely, let T be strongly regular. The proof of Theorem 3.15(2) shows
that T is a universal covering of the finite graph H := T/ ∼ . Furthermore this
assertion proves that H is the unique weighted graph covered by T such that
|VH |+ |VG| is minimal.

To get a bipartite graph, we define on T a proper 2-coloring, and we define
∼′ such that x ∼′ y if and only if Tx ≃ Ty and x and y have the same color.
Then T is a universal covering of the finite weighted graph H′ := T/ ∼′ that is
bipartite. �

Hence, finite weighted graphs can be used as finitary descriptions of strongly
regular trees, even of infinite degree. The above construction defines a minimal
and canonical one. These descriptions are effective by Theorem 4.5 below.

It follows from Theorems 3.11 and 4.3 that certain strongly regular trees are
not universal coverings of any graphs. The characterization of those that are is
arithmetical, cf. Theorem 3.11, rather than logical or combinatorial.

Examples 4.4 : 1) Let T consist of a biinfinite path P where each node
x has , in addition, an incident pendent edge x − x′. The rooted trees Tx for
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x ∈ NP are all isomorphic. So are the trees Tx′ . The quotient graph is s − s′,
with a loop at s that represents [Tx] of weight 2. The two other half-edges have
weight 1.

2) The canonical quotient of the universal covering of K3,4 is an edge with
weights 3 and 4.F example 3.10(1). �

The following theorem collects several results proved in [11] Theorems 5.15
and 5.12 and Proposition 5.18 :
Theorem 4.5 : Let H be a connected and weighted graph having p vertices.

Let γ : T → H be a universal covering and u, v ∈ NT .
(1) Each rooted tree Tu is regular of index at most p.
(2) We have Tu ≃ Tv if and only if Tu ↾ (p− 1) ≃ Tv ↾ (p− 1).
(3) One can decide whether Tu ≃ Tv.�

If H is unweighted, Assertion (3) is a result by [18], see also [16].

Corollary 4.6 : Each strongly regular tree T of finite degree is the unique
tree10 (NT , edgT ) satisfying an FO sentence ϕT . For a strongly regular tree T
with nodes of infinite degree, the same holds for some FOω sentence ϕT .
Proof : As for Theorem 2.12 with help of Theorem 4.5(2). �

The converse does not hold as an infinite path (defined in Example 4.2), is
first-order definable among rooted trees but not strongly regular. To find an
exact logical characterization of strongly regular trees is an open question.

Corollary 4.7 : (1) One can decide the isomorphism of strongly regular
trees defined as universal coverings of finite and weighted graphs.

(2) One can decide whether Unr(Unf(H)) ≃ T where H is a finite, rooted
and weighted digraph H, and T is a universal covering of finite and weighted
graph G.
Proof : (1) Let G and H be finite, connected and weighted graphs with

respectively p and q vertices. Then, Assertions (2) and (3) of Theorem 4.3 can
be extended as follows11 , where u ∈ VG and v ∈ VH :

(2’) UC(G,u) ≃ UC(H, v) if and only if UC(G,u) ↾ (p + q − 1) ≃
UC(H, v) ↾ (p+ q − 1),

(3’) one can decide whether UC(G,u) ≃ UC(H, v), whence also
whether UC(G) ≃ UC(H) by testing all pairs (u, v).

(2) Let ϕT be the FOω sentence that defines T according to Corollary 4.6.
By Corollary 2.14, one can decide whether Unr(Unf(H)) satisfies ϕT , hence
whether Unr(Unf(H)) ≃ T.�

Hence, finite weighted graphs can be used as finite descriptions of strongly
regular trees, even of infinite degree. The above construction defines a minimal

10Edges are specified by a binary relation edgT on nodes.
11See [16] for a thorough analysis of this fact in the case where G and H are graphs.
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and canonical one. It follows from Theorems 3.12 and 4.6 that certain strongly
regular trees are not universal coverings of any graphs. The characterization of
those that are is arithmetical, cf. Theorem 3.12, rather than logical or combi-
natorial.

Characterizations of strongly regular trees

Theorem 4.8 : The following properties of a tree T are equivalent:

1) T is strongly regular, i.e., the set {[Tx]≃ | x ∈ NT } is finite.

2) The rooted trees Tx are regular and have bounded index.

3) The set {[T/(e, x)]≃ | (e, x) ∈ IncT } is finite.

4) The rooted trees T/(e, x) are regular and have bounded index.

Proof : We first prove that 1) implies 2), 3) and 4).
Let T be strongly regular. By Theorem 4.3, there is a covering γ : T → H

where H = (V1, V2, E, Inc, λ) is a finite bipartite and weighted graph, hence
without loops. For defining ES(H), we choose a linear order on vertices such
that V1 < V2. Without lost of generality, we take T := Unr(UC(H, r)) for some
r ∈ V1.

We recall from the construction of Definition 3.16(b) that the nodes of a
rooted tree UC(H,u) are the good walks starting from u.

We extend as follows the definition of UC(H,u). Let e : u− v be an edge of
H. We define UC(H,u, e) as the set of good walks that do not start by an arc
specified as follows:

if u ∈ V1 and v ∈ V2, we forbid (e
+, 1) as first arc;

if u ∈ V2 and v ∈ V1, we forbid (e−, 1)as first arc.

Then UC(H,u, e) is a rooted tree, similar to UC(H,u), actually obtained
from it by deleting a subtree.

Let x and y be nodes in T . Let y be defined in UC(H, γ(x)) = Tx by a
good walk (g1, .., gn) in ES(H) starting from γ(x). The walks (gn+1, .., gp) such
that (g1, .., gn, gn+1, .., gp) is a good walk are the nodes of UC(H, γ(y), γ(gn))
by the restrictions made to the initial steps of their definitions as walks. It
follows that Tx/y ≃ UC(H, γ(y), γ(gn)). The subtrees of Tx are, apart from
itself, isomorphic to the rooted trees UC(H,u, e) where e is incident with u.
There are 2. |E| such pairs (u, e), hence Tx is regular of index at most 2. |E|+1.
This proves Assertion 2).

For proving Assertion 3), consider an edge f : x − y in T . The subtree
T/(f, y) = Tx/y is isomorphic to UC(H, γ(y), γ(f)). Hence, there are at most
2. |E| of them, u.t.i.

For proving Assertion 4), we consider (T/(e, x))/z where e : x− y in T and
z ∈ T/(e, x). If z = x, then (T/(e, x))/z = T/(e, x). Otherwise there is a path
in Ty from x to z with last arc f . We have (T/(e, x))/z ≃ UC(H, γ(z), γ(f)).
Hence, T/(e, x) has at most 2. |E|+1 subtrees u.t.i.. It is regular, which proves
Assertion 4).
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Figure 5: Case 3 in the proof of 2)=⇒ 3) in Theorem 4.8.

3) =⇒ 1). Let e : x − y be an edge of a tree T and z ∈ NT : we have
Tx = T/(e, x) ⊲ T/(e, y). (See Definition 1.3 for ⊲). Hence, if there are p
subtrees of the form T/(f, z),u.t.i., there are at most p2 rooted trees Tx, u.t.i..

4) =⇒ 2) : The subtrees Tx/y of Tx are Tx if y = x and (T/(e, z))/y if
e : x − z and z is on the path in Tx from x to y ; we may have y = z. Hence,
each rooted tree Tx is regular and its index is at most 1 + Ind(T/(e, z)).

2) =⇒3) : This proof is the most technical one. Let T be a tree.
Claim : If each rooted tree Tx is regular of index at most p, then T has less

than p2p+3 nonisomorphic rooted subtrees T/(e, y).
Proof : Let us fix x ∈ NT . For each (e, y) ∈ IncT , we examine how the

rooted tree T/(e, y) is related to Tx and its subtrees.
Case 1 : x = y. We have T/(e, y) = T/(e, x) = Tx ⊲−1 T/(e, y′) = Tx ⊲−1

(Tx/y
′) where y′ is the other end of e. This gives at most p trees T/(e, y).

Case 2 : x �= y and (e, y) is directed toward x. Then T/(e, y) = Tx/y. This
gives at most p trees T/(e, y).

Case 3 : x �= y and e is not directed toward x. The path from y to x goes
through nodes z1, ..., zs and edges f1, ..., fs+1. See Figure 5 for an example. We
have :

T/(fs+1, x) = C,
T/(fs, zs) = Bs ⊲ T/(fs+1, x) = Bs ⊲C,
T/(fs−1, zs−1) = Bs−1 ⊲ T/(fs, zs) = Bs−1 ⊲ (Bs ⊲C),
...
T/(f1, z1) = B1 ⊲ (B2 ⊲ (...⊲ (Bs−1 ⊲ (Bs ⊲C))...)),
T/(e, y) = A⊲ T/(f1, z1) = A⊲ (B1 ⊲ (B2 ⊲ (...⊲ (Bs−1 ⊲ (Bs ⊲C))...))).
We have C = T/(fs+1, x)) = Ty/x. Let us denote x by zs+1. For each

i ≤ s + 1, we have T/(fi, zi)) = Ty/zi, and there are at most p nonisomorphic
trees Ty/zi.
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If s + 1 > p, we can shorten the expression of T/(e, y). To do this we let
j be the maximum integer ≤ s + 1 such that T/(fj , zj) ≃ T/(fi, zi) for some
i < j. Let i be the minimal one. Then :

T/(e, y) ≃ A⊲ (B1⊲ (B2⊲ (...⊲ (Bi−1⊲ (Bj ⊲ (Bj+1⊲ ...⊲ (Bs⊲C))...))).
If this expression contains more than p−1 trees Bk, k ∈ {1, ..., i−1, j, ..., s},

we have T/(fj′ , zj′) ≃ T/(fi′ , zi′) for some i
′ < j′ < j.We can again delete some

trees Bk, and we repeat deletions until we get an expression with less than p
trees Bk. We have:

A = Tx/y ⊲
−1 T/(e, y′) = Tx/y ⊲

−1 Tx/y
′. Similarily,

Bi = T/(fi+1, zi)⊲
−1 T/(fi, zi−1) = Tx/zi ⊲

−1 Tx/zi−1

for i = 1, ..., s− 1,

and C = Tx ⊲
−1 Tx/(fs+1, zs).

Hence, we have at most p2 nonisomorphic trees for each of A,Bi, C, hence for
Case 3, we get at most (p2)2+(p2)3+ ...+(p2)p+(p2)p+1 < p.(p2)p+1 = p2p+3.

Cases 1) and 2) are covered by this large estimate. �

Assertion 3) follows. We use the fact that each tree Ty has at most p non-
isomorphic subtrees Ty/z, but the bound on the number of nonisomorphic trees
T/(e, y) is done from considering a single tree Tx. If, in the proof of the claim,
x is a leaf, then C is a single node and we improve the bound to p2p+1 which
remains certainly overestimated. �

4.2 Deciding strong regularity

We prove that one can decide whether a regular tree is strongly regular.

Theorem 4.9 : One can decide if the tree Unr(Unf(H)) where H is a
finite rooted and weighted digraph is strongly regular. If it is, one can construct
a finite weighted graph of which it is the universal covering.�

Corollary 4.7 shows that the problem is semi-decidable : if we are given a
finite rooted and weighted digraph H and a finite weighted graph G, we can
decide whether Unr(Unf(H)) ≃ UC(G). It suffices to decide if the regular tree
Unf(H) satisfies the FOω sentence that describes UC(G) with respect to the
class of trees, which is possible by this corollary. For proving the theorem, we
need only find a decidable condition ensuring that Unr(Unf(H)) is not strongly
regular. The proof needs some definitions and preliminary results.

Lemma 4.10 : Let H be a rooted and weighted digraph and T be the tree
Unr(Unf (H)). Let e : y → x be an arc of Unf (H) where x is at depth p. One
can build rooted and weighted digraphs H ′ and H ′′ such that12 :

12The relation ⊆i denotes induced inclusion of digraphs without their roots. That is formally,
Unr(H) ⊆i Unr(H ′′) ⊆i Unr(H′).
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H ⊆i H
′′ ⊆i H

′, |VH′ − VH| ≤ p+ 1, |VH′′ − VH | ≤ p,

Unf (H ′) ≃ Tx and Unf (H ′′) ≃ T/(e, y).

Proof : We let γ : Unf (H) → H be the unfolding homomorphism and
x0 → x1 → ... → xp be the directed path in Unf (H) from the root x0 to
x = xp, so that y = xp−1. We first build a weighted digraph K by adding
vertices and arcs to H as follows. We add

new vertices z0, z1, ..., zp,
for each i = 1, ..., p, we add an arc zi → zi−1 of weight 1,
for each arc f : xi → w of Unf (H) , i = 0, ..., p,
we add an arc zi → γ(w) of weight λH(γ(f)) if13 w �= xi+1 or of weight

λH(γ(f))− 1 if w = xi+1 and λH(f) ≥ 2.
We have Unf (K/zp) ≃ Tx: just consider the directed paths in Exp(K)

starting from zp (cf. Theorem 2.5). The unfolding mapping γ′ is γ extended
by γ′(zi) := xi, for i = 0, ..., p. Hence, |VK − VH | = p+ 1.

Some vertices of H, in particular the root rtH may not be accessible in K
from zp. Hence, we takeH′ := K/zp.We takeH ′′ := K/zp−1 with root is zp−1.�

Example 4.11 Figure 6 shows a weighted digraph H with root 1. The
weights 1 are not shown. The tree T := Unr(Unf (H)) has a path a = rtUnf (H) →
b → c → d such that γ(a) = γ(d) = 1, γ(b) = 2 and γ(c) = 5, where
γ : Unf (H) → H is the unfolding homomorphism. In order to make d into
the root of T , we build K with root d1 such that Unf (K) ≃ Td. The vertices
added to H by the construction of Lemma 4.10 are d1, c5, b2 and a1, and the
added arcs are in red. Some weights of the added arcs are as follows: the arc
c5→ 1 has weight 2 whereas the weight of 5 → 1 in H is 3. Similarly, the arc
a1 → 2 has weight 1 whereas the weight of 1 → 2 in H is 2. The arc d1 → 2
has weight 2, as the arc 1→ 2 in H. �

We denote by dR(x, y) the distance of x and y in a rooted tree R; it is the
same as in the unrooted tree Unr(R).

Notation for subtrees: Let R be a rooted tree and e : y → x be an arc of R.
Hence, x is a son of y. We let T := Unr(R).

We denote by Ux the rooted tree T/(e, y) = Tx/y = Ty − Ty/x. Its root is
y. We have Tx = R/x ⊲ Ux.

We also have Ty/x = Tz/x = R/x for any node z ≥R y.

Lemma 4.12 : Let R be a rooted tree and T := Unr(R).
(1) Let x, z be nodes of R such that dR(x, z) > dR(x, rtR) ≥ 1. Then Tx/z =

R/z.
(2) Assume that y <R x ≤R w <R rtR, dR(x, y) ≥ dR(x, rtR) and Ux ≃ Uy.

Then, Uw ≃ R/z for some z.
Proof: (1) Consider the path in T from x to z. If it is in R/x, then Tx/z =

(R/x)/z = R/z as z <R x.

13This condition holds trivially if i = p.
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Figure 6: The digraphs and the tree of Example 4.11.

Otherwise, let w be the node of this path that is closest to the root. If
w �= rtR, then the node following w on this path is a son u of w. We have z in
R/u = Tx/u and so, we have Tx/z = (Tx/u)/z = (R/u)/z = R/z as z ≤R u.

If w = rtR, then the node following w on this path is a son u of w (u = z
if dR(x, z) = dR(x, rtR) + 1). Hence, z ≤R u because dR(x, z) = dR(x, rtR) +
dR(rtR, z) ≥ dR(x, rtR) + 1. Hence, Tx/z = (R/u)/z = R/z.

(2) Let y, x,w be as stated. We have y <R y′ ≤R x <R x′ ≤R rtR where x′

is the father of x and y′ is that of y.
Let α be an isomorphism : Uy = Ty/y

′ → Ux = Tx/x
′.

We first prove that Ux ≃ R/z for some z.
We have in Ty/y

′ a path P from y′ to x′. (Its edges are directed in opposite
directions in Ty/y

′ and in R.) Its length is dR(x, y). The isomorphism α maps
it to a path P ′ of same length in Tx/x

′ from x′ to some node z := α(x′) below
x′ in the rooted tree Tx.

We have dR(x
′, z) = dR(x, y) > dR(x

′, rtR) = dR(x, rtR)− 1. Hence, by (1),
we have Tx′/z = R/z.

Furthermore, the isomorphism α shows that (Tx/x
′)/z ≃ (Ty/y

′)/x′.We have
Tx′/z = (Tx/x

′)/z and (Ty/y
′)/x′=Tx/x

′ = Ux.Hence, Ux ≃ R/z, as claimed.
Assume now that x <R x′ ≤R w <R w′ ≤R rtR where w′ is the father of

w. We take a path P from y′ to w′, going through x′. Its length is dR(x, y) +
dR(x′, w′) hence again, more than dR(x′, rtR). Its image under α is a path P ′
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of equal length from x′ to z := α(w′). We have by (1) Tx′/z = R/z. By α we
have (Tx/x

′)/z ≃ (Ty/y
′)/w′.

We have Tx′/z = (Tx/x
′)/z and (Ty/y

′)/w′ = Tw/w
′ = Uw. Hence, Uw ≃

R/z, as claimed. �

Definitions 4.13 : Contexts and substitutions.
(a) A context is a rooted tree C that has a distinguished leaf denoted by ∗,

and that is not the root. Its depth p is that of ∗ (and not the maximal depth
of a leaf). A context of depth p can be expressed as A1 ⊲ (A2 ⊲ (A3 ⊲ ... ⊲
(Ap ⊲ ∗)...)) for some rooted trees A1, ..., Ap.

(b) If R is a rooted tree, we denote by C[R] the rooted tree obtained by
substituting R for ∗ in C. Hence, C[R] ≃ A1 ⊲ (A2 ⊲ ... ⊲ (Ap ⊲ R)...). If C
and R are disjoint, then C[R] := (NR ∪NC − {∗}, sonC[R], rtC) where:

sonC[R](u, v) :⇐⇒ sonR(u, v) ∨ (v �= ∗ ∧ sonC(u, v))

∨(v = rtR ∧ sonC(u, ∗)).

If C and R are not disjoint, we replace one by an isomorphic copy and the
resulting tree is well-defined u.t.i.

(c) Let x, y ∈ NR be such that y <R x ≤R rtR. There is a context Cy,x such
that R/x = Cy,x[R/y]. Its nodes are those of R/x not in R/y together with
the leaf ∗ that replaces R/y. Let (e1, ..., eq) be the sequence of arcs of the path
from x = x0 to y = xq and (x0, x1, ..., xq) be the sequence of nodes. Then :

Cy,x = A1 ⊲ (A2 ⊲ ... ⊲ (Aq ⊲ ∗)...)

where Ai := R/xi−1 −R/xi, i = 1, ...q.

There is a "dual" context Dy,x, defined from Cy,x as above by :

Dy,x = Aq ⊲ (Aq−1 ⊲ ...(A1 ⊲ ∗)...).

If x is not the root, we have Uy = Dy,x[Ux]. Otherwise, Uy = Dy,x − {∗}.�

Figures 7 and 8 illustrate these definitions. Part (a) shows a rooted tree R
with root r, Part (b) shows the context Cx,r = E ⊲ (D ⊲ (C ⊲ (B ⊲ ∗))). We
have R = Cx,r[A] = Cx,r[R/x]. Part (c) the rooted tree Ux = Unf (R)/(e, y).
We have Unr(R)x = R/x ⊲ Ux. Part (d) shows Cx,u and part (e) shows Dx,u.
In particular, Cx,u = D ⊲ (C ⊲ (B ⊲ ∗)) and Dx,u = B ⊲ (C ⊲ (D ⊲ ∗)).

Remark 4.14 : If C and C′ are isomorphic contexts of finite degree and
C[R] ≃ C′[R′] for rooted trees R,R′, then R ≃ R′. This follows from Lemma
1.4(2) for contexts C and C′ of depth 1. Then, we use an induction of the
common depth of C and C′, that we can both express of the form:

A1 ⊲ (... ⊲ (Ap ⊲ ∗)...).
This implication may be false if C is not of finite degree. �
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Figure 7: A rooted tree R and associated contexts, cf. Definition 4.13.

Lemma 4.15 : Let γ : R → H be a complete unfolding of a rooted and
weighted digraph H.

(1) If e : x → y and f : x′ → y′ are arcs of R such that γ(e) = γ(f), then
we have R/x−R/y ≃ R/x′ −R/y′.

(2) If (e1, ..., eq) is (the sequence of arcs of) a path from x = x0 to y = xq, if
(f1, ..., fq) is a path from x′ = x′0 to y

′ = x′q, and γ(ei) = γ(fi) for each i, then
Cy,x ≃ Cy′,x′ and Dy,x ≃ Dy′,x′ .
Proof : Without loss of generality, we can assume that R = Unf(H).
(1) Hence, x is a walk (g1, ..., gp) in H from rtH to u and γ(x) = u.
Then, y = (g1, ..., gp, (g, i)) cf. Theorem 2.5, g : u → v is an arc of H,

1 ≤ i ≤ λ(g), γ(y) = v and γ(e) = g.
The tree R/x−R/y consists of the walks in Exp(H) starting from rtH and

of the form (g1, ..., gp, hp+1, ....., hn) such that hp+1 �= (g, i).
Similarly, x′ is a walk (g′1, ..., g

′

m) from rtH to u and we have γ(x′) = u.
Then y′ = (g′1, ..., g

′

m, (g, j)) and 1 ≤ j ≤ λ(g) , γ(y) = v.γ(f) = g.
The tree R/x′ −R/y′ consists of the walks in Exp(H) of the form
(g′1, ..., g

′

m, h
′

m+1, ....., h
′

q) with h′p+1 �= (g, j).
If i = j, the mapping:

(g1, ..., gp, hp+1, ....., hn) �→ (g′1, ..., g
′

m, hp+1, ....., hn)

is an isomorphism : R/x−R/y → R/x′ −R/y′.

Otherwise, we the mapping :
(g1, ..., gp, hp+1, ....., hn) �→ (g′1, ..., g

′

m, β(hp+1), ....., hn)
where β(hp+1) is (g, i) if hp+1 = (g, j), and hp+1 otherwise. (Recall that

hp+1 �= (g, i)).

(2) Let (e1, ..., eq) be a path from x = x0 to y = xq in R. Then (cf. Definition
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Figure 8: Examples for the proof of Theorem 4.9. See also Figure 7.

4.13) Cy,x = A1 ⊲ (A2 ⊲ ...(Aq ⊲ ∗)...) where Ai := R/xi−1 − R/xi and
Cy′,x′ = A′1 ⊲ (A

′

2 ⊲ ... ⊲ (A′q ⊲ ∗)...) where A
′

i := R/x′i−1−R/x
′

i for i = 1, ...q.
By (1), we have isomorphisms Ai → A′i from which we get Cy,x ≃ Cy′,x′

and Dy,x ≃ Dy′,x′ .�

Proposition 4.16 : Let R be a rooted tree. The tree Unr(R) is strongly
regular if and only if R has only finitely many subtrees Ux up to isomorphism.
Proof : Theorem 4.8 shows that Unr(R) is strongly regular if and only it

has, u.t.i., finitely many rooted subtrees Unr(R)/(e, z). These trees are those of
the forms R/y and Ux for y ∈ NR and x ∈ NR − {rtR}, but since R is regular,
there are finitely many trees R/y, u.t.i.. The assertion follows. �

In the following proposition, H is a finite rooted weighted digraph with p
vertices, γ : R → H a complete unfolding and T := Unr(R). We can assume
that H canonical (cf. Definition 2.7) so that have R/x ≃ R/y if and only if
γ(x) = γ(y) for any nodes x, y of R. This is effective because one can construct
a equivalent canonical digraph from one that is not (Theorem 2.9). Equivalence
means that their complete unfoldings are isomorphic.

We let R := {R1, ..., Rp} be such that each subtree R/x is isomorphic to one
and only one tree in R.

Proposition 4.17 : If T is strongly regular, if x, y ∈ NR are such that
y <R x <R rtR and γ(x) = γ(y), then, for every w such that γ(w) = γ(x), we
have Uw ≃ R/z for some z.
Proof : Let x, y ∈ NR be such that y <R x <R rtR and γ(x) = γ(y). Let

(e1, ..., eq) be the path in R from x to y. Its image by γ is the directed walk
(γ(e1), ..., γ(eq)) in H. This path can be extended into an infinite path in R :

x0 = x→ ...→ x1 = y → ...→ x2 → ......→ xn−1 → ...→ xn → ...
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such that the image by γ of each subpath from xi to xi+1 is (γ(e1), ..., γ(eq)).

We have :

γ(xi) = γ(x) for each i ≥ 0,

Cxi+1,xi ≃ Cxi,xi−1 and Dxi+1,xi ≃ Dxi,xi−1for i ≥ 1 by Lemma
4.15(2).

Assume now that T is strongly regular. As the set of rooted trees Uxi is
finite u.t.i., one can find two of them, say Uy and Us such that y <R s and
dR(s, y) > dR(s, rtR). Lemma 4.12(2) yields that Uy and all trees Uxi belong to
R, u.t.i, which means that they each of them is isomorphic14 to one in R. The
same holds for Uw if w ≥R xi for some i because by Proposition 4.17, they are
of the form R/z.

Let now w be any node in R such that γ(w) = γ(x). Since R/x ≃ R/w,
there is in R/w a path from w to some node u whose sequence of arcs (g1, ..., gq)
is such that γ(gi) = γ(ei) for each i. The above proof works then for w and u
instead of x and y. �

Proof of the Theorem 4.9 : As observed above after the statement, if H
is a finite weighted digraph, the property that T := Unr(Unf(H)) is strongly
regular is semi-decidable, because if we are given a finite weighted graph G, we
can decide if UC(G) ≃ Unr(Unf(H)).

However, the following condition is necessary and sufficient for T to be
strongly regular. Its negation is semi-decidable.

(Z) for all x, y ∈ NR such that y <R x <R rtR, if γ(x) = γ(y) then
Ux ∈ R.

Claim 1 : T is strongly regular if and only if Condition (Z) holds.
Proof : By Proposition 4.17, it holds if T is strongly regular.
We now prove the converse. We enumerate R as {R1, ..., Rp} and we let Xi

be the set of nodes x �= rtR such that R/x = Ri. We assume that Condition
(Z) holds. We consider each set Xi.

Case 1: Xi contains two comparable nodes y <R x. For every w ∈ Xi, we
have u <R w such that u ∈ Xi by the argument used at the end of the proof of
Proposition 4.17. Hence Uw ∈ R.

Case 2 : Case 1 does not hold, hence, Xi is an antichain.
Let y ∈ Xi and rtR → y1 → y2 → ...→ yn = y be the directed path P in R

from the root to y.
We have Uy = Dy,rtR − {∗}.
Subcase (2.1) : Each node yk is in a set Xj that is an antichain. Then n ≤ p

because no two nodes yk can be in a same antichain, as yk <R yk′ if k′ < k. If

14By using Remark 4.14, one can prove that if R has finite degree, then the trees Uxi are
all isomorphic. We conjecture that the same holds in general but we have yet no proof.
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another similar path from rtR to y′ ∈ Xi has the same images by γ as P , then,
by Lemma 4.15, we have Dy,rtR ≃ Dy′,rtR hence Uy = Dy,rtR − {∗} ≃ Uy′ =
Dy′,rtR − {∗} (cf. Definition 4.13(c)).

As these paths have bounded lengths, they have finitely many different im-
ages by γ. Hence, there are finitely many such trees contexts Dy,rtR and trees
Uy , u.t.i..

Subcase (2.2) : Otherwise, let m be maximal such that ym belongs to a set
Xj that is not an antichain.

Then, Uy ≃ Dy,ym [Uym ]and Uym ∈ R.
As in Subcase (2.1), we have finitely many contexts of the form Dy,ym u.t.i..
As R is finite, we obtain finitely many trees Uy of this form, u.t.i..
To sum up the trees Ux are either in R u.t.i, of the forms described in

Subcases (2.1) and (2.2). Hence, they are finitely many u.t.i and T is strongly
regular.�

Claim 2 : The negation of Condition (Z) is semi-decidable.
Proof : The negation of (Z) says that there exist x and y such that y <R

x <R rtR, γ(x) = γ(y) and Uy /∈ R. We let R be Unf(H). A node x can be
given to an algorithm as a sequence of arcs, from which we get γ(x). Lemma
4.10 shows that for every y ∈ NR, one can construct a finite weighted and
rooted digraph H′′ such that Unf (H ′′) ≃ Uy. For each i = 1, ..., p, we know
the unique node z of H such that Unf (H, z) ≃ Ri. We can decide whether
Unf (H ′′) ≃ Unf (H,z) by Theorem 2.9, hence finally, whether Uy ∈ R.�

Hence, we have a semi-decidable condition for Unr(R) not to be strongly
regular. As we also have a semi-decidable condition for strong regularity, this
concludes the proof.

The latter semi-decision procedure finds (painfully) a finite weighted graph
G such that UC(G) ≃ Unr(R) if there exists one .�

Theorem 4.9 is a decidability result. It does not give a usable algorithm. An
improvement of Proposition 4.17 might help, see its footnote refering to Remark
4.14.

4.3 Diameter and automorphisms of strongly regular trees

To complete our study of strongly regular trees, we characterize those of fi-
nite diameter. As we allow nodes of infinite degree, an infinite tree such as Sω
may have finite diameter. In relation with diameter, we examine their automor-
phisms. An ℓ-tree as a tree with loops at some nodes.

Proposition 4.18 : The universal covering of a finite connected weighted
graph H has a finite diameter if and only if H is an ℓ-tree such that :

1) it has no two half-edges (e, x) and (f, y) of weights at least 2 such that
(e, x) is in the direction of y and (f, y) is in that of x, and
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2) it has at most one loop e, its weight λ(e, x) is 1, and there is no half-edge
(e, y) of weight at least 2 directed toward x.

Otherwise, UC(H) contains a biinfinite path.�

Note that an infinite tree may have an infinite diameter without containing
any biinfinite path: an example is the union of finite paths of all lengths that
have in common a unique node.
Proof : "Only if" : Assume that UC(H) has finite diameter. As it is a

tree, it does not contain a biinfinite path. Examples 3.14(5) show "forbidden"
cases, where UC(H) contains an biinfinite path. We examine these cases.

(i) H contains a cycle G, then UC(G) ⊆ UC(H), this is clear from Defini-
tion 3.16(b) and UC(G) is a biinfinite path.

Hence, H is an ℓ-tree because a loop is not a cycle, and its universal covering
is an edge.

(ii) If H has two half-edges (e, x) and (f, y) of weights at least 2 such
that (e, x) is directed toward y and (f, y) is directed toward x, (cf. Example
3.14.5(d)), then H contains a weighted graph G consisting of a path between x
and y with end half-edges (e, x) and (f, y) of weight 2 all other weights being 1.
Then G is covered by a cycle, UC(G) is a biinfinite path contained in UC(H).
This case is thus excluded.

The other cases are :
(iii) H has two loops or one loop of weight at least 2, (cf. Examples 3.14.5

(c) and 3.14.5 (d)).
They are excluded by a similar proof. Hence, Conditions 1) and 2) are

satisfied.
"If" Let H be a weighted tree (without loops) satisfying Condition 1) of the

statement. If all weights are 1, then it is a tree, and UC(H) ≃ H by Proposition
3.2, hence has finite diameter since H is finite.

Otherwise, there is a vertex s such that, on every path from s to a leaf, there
is no half-edge (e, x) such that λ(e, s) > 1 and that is directed towards s. We
call it a good root. We prove its existence by induction on the number of edges
: let x be a leaf with pendent edge e : x − y. By induction, H ′ defined as H
minus x and e has a good root s. If λ(e, x) = 1 then s is a good root for H. If
λ(e, x) > 1 then x is a good root for H by Condition 1).

Let s be a good root for H and d be its maximum distance to a leaf. Let
< be a linear ordering of VH such that the father u in the rooted tree Hs of a
node v is smaller, u < v. In ES(H), there is no arc of the form (e−, i) for i ≥ 2.
Hence on each directed walk that defines a node of UC(H, s), we have only arcs
of the form (e+, i) and so the nodes are increasing with respect to <. Hence,
they are on paths of length at most d, the rooted tree UC(H, s) has height d
and its diameter is at most 2d.

Assume now that H has a loop of weight 1 at some node s and satisfies
Conditions 1) and 2). By Condition 2), s is a good root. The graph H is
covered by K consisting two copies of Hs minus the loop, linked by the nodes
that are copies of s. It is clear that K, rooted by any of the two copies of s, is a
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tree satisfying Condition 1). We have UC(H) ≃ Unr(K) and the diameter of
K is at most 2d+ 1. �

Let α : T → T be an automorphism of a tree T . A node x is fixed if α(x) = x
and an edge e : x− y is fixed if x and y are fixed or if α(x) = y and α(y) = x.
By automorphism we mean one that is not the identity. A tree may have no
automorphism, according to this shortened terminology.

Theorem 4.19 : A strongly regular tree has an infinite diameter if and only
if it has an automorphism without any fixed node or edge.
Proof : Let γ : T → H be a universal covering of a finite weighted graph

H. By Proposition 4.18, T has a biinfinite path P . Since VH is finite, P has a
subpath x− y − z1 − ...− zp − x′ − y′ such that:

γ(x) = γ(x′), γ(y) = γ(y′). Since H is simple, the two edges x−y and x′−y′

have the same image by γ.
Without loss of generality, we can consider that T = UC(H,γ(x)). It fol-

lows from the construction described in Definitionq 3.3 and 3.16 that P can be
extended into a path :

x− y − z1 − ... − zp − x′ − y′ − z′1 − ...− z′p − x′′ − y′′ such that the image
of x′ − y′ − z′1 − ...− z′p − x′′ − y′′ by γ is the same walk in H as the image of
x− y − z1 − ...− zp − x′ − y′. We can repeat this extension, to the right and to
the left, infinitely many times, and we get a biinfinite path P ′ in T of the form:

...xi−yi−zi,1− ...−zi,p−xi+1−yi+1−zi+1,1− ... where i ∈ Z such
that:

x0 = x, y0 = y, x1 = x′, y1 = y′, z0,j = zj , z10,j = z′j , for all i and
j = 1, ..., p.

We now define an automorphism α of T . We first define:

α(xi) := xi+1, α(yi) := yi+1, α(zi,j) := α(zi+1,j) for all i ∈ Z and
j = 1, ..., p.

Then we extend α outside of P ′. We let U be T minus the edges of P ′

(we keep in U the nodes of P ′). It is a union of disjoint trees. Let Uw be the
connected component containing w where w is any node of P ′: it is a tree
with root w. We can extend α so that it defines isomorphisms of rooted trees
: Uxi −→ Uxi+1 , Uxi −→ Uxi+1 , Uzi,j −→ Uzi+1,j for all i ∈ Z and j ∈ [p].We
obtain an automorphism of T without any fixed vertex or edge.

"If" Conversely, assume that α is an automorphism of T with no fixed vertex
or edge. Let x �= α(x) such that the distance between x and α(x) is minimal.
Let e : x− y be an edge on the path from x to α(x) (we may have y = α(x)).
Let f : α(x)− α(y).

Case 1 : (f ,α(x)) is directed toward x. If y = α(x) and x = α(y), we have
a fixed edge. If y = α(y), we have a fixed vertex. Otherwise, y and α(y) are at
smaller distance than x and α(x). This case cannot happen.
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Case 2 : (f ,α(x)) is not directed toward x. We have a path x − y − z1 −
... − zp − α(x) − α(y) in T . As α is an automorphism, we have Tx ≃ Tα(x)
and Ty ≃ Tα(y). By Theorem 2.9 we can assume that H is canonical. Hence,
γ(x) = γ(α(x)) and γ(y) = γ(α(y)). As in the first part of the proof, we can
extend x− y − z1 − ...− zp − α(x)− α(y) infinitely many times to the left and
the right, and we get a biinfinite path, hence T has an infinite diameter. �

Remark 4.20 : A strongly regular tree UC(H) of infinite diameter, for an
example a biinfinite path, may also have automorphisms with a fixed node or
edge. But it may also have no such automorphism. For an example, consider
H defined as the union of the cycle 1− 2− 3− 1 and paths 1− a, 2− b− c and
3− d− e− f . Its universal covering γ : T → H consists in a biinifinite path P
whose image is the biinfinte periodic walk ... − 1 − 2 − 3 − 1 − 2 − 3 − ... and
paths of lengths 1,2,and 3 attached to P . The neighbourhoods in H of radius 3
of its vertices are pairwise nonisomorphic. Hence, an automorphism of T must
be as constructed in the first part of the proof of Theorem 4.19.�

5 Conclusion

The strongly regular trees arise as universal coverings of weighted graphs, a
notion that is useful in distributed computing [1]. Here, we have been interested
in the structure of such trees, from a purely combinatorial anf logical view.

We have generalized the standard definition of universal coverings to weighted
graphs, so that they can have nodes of infinite degree.

We have established several decidability results concerning them, by using
related results relative to the complete unfoldings of finite weighted directed
graphs representing transition systems.

Open questions:

(1) Can one find a usable, or even efficient, algorithm for deciding strong
regularity of a regular tree, as opposed to the decidability result of Theorem
4.9.

(2) Can one find a logical characterization of strongly regular trees? (cf.
Theorem 4.12)

(3) What can be said of the universal covering of a graph from Caucal’s
hierarchy [4] ? Presumably its monadic second theory is decidable [12].
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