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ABSTRACT

Context. The transition between convective and radiative stellar regions is still not fully understood. This currently leads to a poor
modelling of the transport of energy and chemical elements in the vicinity of these regions. The sharp variations in sound speed located
in these transition regions give rise to a signature in specific seismic indicators, opening the possibility to constrain the physics of
convection to radiation transition. Among those seismic indicators, the ratios of the small to large frequency separation for l = 0 and 1
modes (r010) were shown to be particularly efficient to probe these transition regions. Interestingly, in the Kepler Legacy F-type stars,
the oscillatory signatures left in the r010 ratios by the sharp sound-speed variation have unexpected large amplitudes that still need to
be explained.
Aims. We analyse the r010 ratios of stellar models of solar-like oscillating F-type stars in order to investigate the origin of the observed
large amplitude signatures of the r010 ratios.
Methods. We tested different possibilities that may be at the origin of the large amplitude signatures using internal structures of stellar
models. We then derived an analytical expression of the signature, in particular, of the amplitude of variation, that we tested against
stellar models.
Results. We show that the signature of the bottom of the convective envelope is amplified in the ratios r010 by the frequency depen-
dence of the amplitude compared to the signal seen in the frequencies themselves or the second differences. We also find that with
precise enough data, a smoother transition between the adiabatic and radiative temperature gradients could be distinguished from
a fully adiabatic region. Furthermore, we find that among the different options of physical input investigated here, large amplitude
signatures can only be obtained when convective penetration of the surface convective zone into the underlying radiative region is
taken into account. In this case and even for amplitudes as large as those observed in F-type stars, the oscillating signature in the
r01 ratios can only be detected when the convective envelope is deep enough (i.e. at the end of the main sequence). Assuming that
the origin of the large amplitude glitch signal is due to penetrative convection (PC), we find that the PC must extend downward the
convective to radiative transition significantly (about 1 − 2 Hp) in order to reproduce the large amplitudes observed for the ratios of
F-type stars. This deep extension of the convective envelope causes doubt that the origin of the large amplitudes is due to PC as it is
modelled here or implies that current stellar modelling (without PC) leads to an underestimation of the size of convective envelopes.
In any case, studying the glitch signatures of a large number of oscillating F-type stars opens the possibility to constrain the physics
of the stellar interior in these regions.

Key words. stars: oscillations - stars: evolution - convection

1. Introduction

Asteroseismology is a powerful tool for probing stellar interi-
ors. This is done through the interpretation of stellar intrinsic
oscillation frequencies (e.g. Cox 1980; Unno et al. 1989; Gough
1993; Cunha et al. 2007; Chaplin & Miglio 2013; García & Bal-
lot 2019, and references therein). The properties of the oscilla-
tion modes and their frequencies are determined by the structure
in the regions in which they are trapped. In solar-like oscillat-
ing stars such as the Sun, the turbulent convection in the outer

layers excites the normal modes of the star in a frequency do-
main in which they are almost purely acoustic, and their fre-
quencies follow a nearly regular pattern (asymptotic regime).
Deviations from this regularity arise when the structure varies
more rapidly locally than the wavelength of the excited modes
(so-called glitch). This generates an oscillatory component (so-
called glitch signature) to the frequencies and the frequency dif-
ferences in addition to the smooth component (Gough 1990;
Roxburgh & Vorontsov 2001). The study of the signatures of
acoustic glitches has been proven to successfully unveil internal
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Fig. 1. r010 ratios according to the frequency scaled to νmax. Left: For the Sun (computed from the BISON frequencies; Broomhall et al. (2009);
Hale et al. (2016)) and KIC10162436. Right: For KIC1435467 and KIC6679371 (data from Lund et al. 2017b).

stellar characteristics such as the location of the base of the sur-
face convective zone (BSCZ) and the helium second-ionisation
(HeII) zone for the Sun (Monteiro et al. 1994; Roxburgh &
Vorontsov 1994; Christensen-Dalsgaard et al. 1995; Ballot et al.
2004; Monteiro & Thompson 2005; Houdek & Gough 2007;
Roxburgh 2009; Christensen-Dalsgaard et al. 2011) and distant
stars (Monteiro et al. 2000; Gough 2002; Mazumdar et al. 2012;
Verma et al. 2017, 2019; Farnir et al. 2019).

Here we focus on the determination of the location of the
base of the convection zone and its properties. The determina-
tion of the location of the BSCZ allows us to characterise the
convection process at the transition with the underlying radiative
interior. This is crucial to improve our current understanding of
stellar convection, and especially to constrain its modelling in
stellar evolution models. The current modelling of convection
in stellar evolution models is based on the mixing length theory
(hereafter MLT) (Böhm-Vitense 1958; Canuto et al. 1996). This
theory assumes that the fluid acceleration vanishes at the bound-
ary of the convective zone, defined either by the Schwarzschild
or Ledoux criteria. However, due to their inertia, convective cells
penetrate the sub-adiabatic region below the convective enve-
lope. These motions are able to impact the local temperature
gradient and mix the chemical elements to an extent that is not
yet known. Three types of processes can occur in this situation
(e.g. Zahn 1991; Anders et al. 2022a). Convective overshoot cor-
responds to turbulent motions from the convective region which
penetrate in the neighbouring radiative region but not altering
the radiative gradient. Convective entrainment refers to turbu-
lent motions which do alter the radiative gradient or erode the
gradient of chemical composition. The third process, the pene-
trative convection, changes the radiative temperature to the adi-
abatic one in a region that is stable by the Schwarzschild crite-
rion (see Anders et al. 2022b, for a more detailed description of
the three processes). Penetrative convection is the focus of this
work. Zahn (1991) predicted a penetrative convection region (i.e.
with a fully adiabatic temperature gradient) at the base of the
convective envelope of the order of one pressure scale height.
The extension of the penetrative region was measured for the
Sun to be about 0.2-0.3 pressure scale height (Hp). In addition, a
smooth and mostly subadiabatic transition from the adiabatic to
a radiative temperature gradient was favoured by the data (e.g.
Christensen-Dalsgaard et al. 2011; Zhang et al. 2019).

Different seismic indicators can provide information on the
location of the BSCZ: the frequency variations can be inspected
directly (e.g. Monteiro et al. 1994), or alternatively, quantities
such as the phase shift variation (Roxburgh & Vorontsov 1994;
Roxburgh 2009), the second differences (e.g. Gough 1990), the
fourth differences (Basu 1997), and the ratios of small to large
separation (Roxburgh 2009; Mazumdar et al. 2014). Because the
amplitude of the signature of the acoustic glitches is a few orders
of magnitude lower than the actual frequencies, all these meth-
ods require high-precision data. This precision was achieved
for distant stars with the space missions CoRoT (Baglin 2006;
Baglin et al. 2013) with uncertainties of about 0.50 µHz, and
with Kepler (Borucki et al. 2009; Koch et al. 2010) with an un-
certainty of about 0.05 µHz for the best targets. With the excep-
tion of the ratios of the small to large separations, in all seismic
indicators mentioned above, the signature of the helium second-
ionisation region dominates the signature left by the BSCZ. This
issue can be critical when the uncertainties on the individual fre-
quencies are large, especially for F-type stars. Monteiro et al.
(1994) developed a method, using the frequency variation, that
allows filtering the HeII signature out. This method was suc-
cessful in determining the location of the BSCZ of the Sun and
other Kepler stars (Pereira et al. 2017). Later, Roxburgh (2009)
showed that the signature of the BSCZ dominates in the ratios
of small to large separations of l = 0, 1 p-modes (hereafter r010)
of the Sun, while the signature of HeII is found to be residual.
The frequency ratios can be described by a smooth variation in
frequency (hereafter a smooth component), on which is super-
imposed a periodic variation with frequency (oscillating com-
ponent). The smooth component is an efficient indicator of the
convective core extension (Deheuvels et al. 2016).

Similarly to the Sun, the oscillatory component found in the
r010 ratios of the CoRoT star HD52265 was proposed to be the
signature of envelope penetrative convection, hereafter PC (Le-
breton & Goupil 2012, 2014). This was the first detection of this
signature in another star than the Sun. Moreover, the amplitude
of the signature was found to be larger than in the Sun, even
though the stars have similar properties. Mazumdar et al. (2014)
used the oscillatory signature in the r010 ratios to determine the
acoustic radius of the BSCZ of 12 Kepler stars. The use of the
r010 ratios to probe PC was extended to 19 Kepler Legacy stars
by Christophe (2019). The amplitude of the signature for some
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stars was found to be much larger than the one found for the Sun,
allowing us to characterise the location of the BSCZ for distant
stars, despite the larger uncertainties in the frequencies.

In the present work, we focus on the ratios of small to large
separations r01 and r10 (r010), and more precisely, on the oscil-
lating part of these ratios. Our goal is to investigate whether the
origin of the large-amplitude signature in the oscillations of these
ratios in F-type stars is PC. Then, we investigate to what extent
constraints may be placed on the temperature gradient immedi-
ately below the convective envelope and on the extension of the
PC region if this process caused the signature. Our study is based
on stellar models and on an analytical (nearly independent of the
stellar model) study of this signature in the sharply varying re-
gion (adapted from Monteiro et al. 1994).

In Section 2 we describe the seismic indicators used to char-
acterise the location of the BSCZ and the observations. In Sec-
tion 3 we investigate the origin of the large amplitude signature
in solar-like oscillating F-type stars. In Section 4 we define an
expression of the signature of the glitch in the ratios according to
the structure of the star in the sharply varying region. Then, we
compare theoretical predictions of the amplitude and period of
the signal to those of stellar models in Section 5. We determine
the detectability of this signature in Section 6. In Section 7 we
compare the results obtained with the frequency ratios to those
obtained with other seismic indicators, namely the frequencies
themselves and the second differences. The impact of some spe-
cific changes in the structure below the BSCZ is addressed in
Section 8. We finally discuss the results and conclude in Section
9.

2. Large-amplitude signature in the ratios r010 of
solar-like oscillating F-type main-sequence stars

2.1. Definition

The five-point small separations between modes (with frequen-
cies νn,l) of angular degree l = 0 and 1 and radial order n are
defined by (Roxburgh & Vorontsov 2003)

d01(n) =
1
8

(νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0), (1)

d10(n) = −
1
8

(νn−1,1 − 4νn,0 + 6νn,1 − 4νn+1,0 + νn+1,1). (2)

The ratios of small to large separation are defined by

r01(n) =
d01(n)
∆1(n)

and r10(n) =
d10(n)

∆0(n + 1)
, (3)

where ∆l(n) = νn,l − νn−1,l is the large separation. We here-
after refer to r010 as the function representative of r01 and r10
with frequency (see the curves of Fig. 1). These ratios of small
to large separations are only weakly sensitive to surface layers
(Roxburgh & Vorontsov 2003), which means that surface effects
do not need to be considered when observations are compared to
models. Magnetic activity may nevertheless have a slight impact
on the ratios (Thomas et al. 2021). For stars similar to the Sun,
these specific ratios are dominated by the signature of the BSCZ
and convective core, and they are less sensitive to the helium
second-ionisation glitches. On the other hand, these frequency
differences have larger uncertainties than the frequencies alone,
and care must be taken when the observed ratios are interpreted.

Table 1. Inputs physics of the A0 model.

Mass (M�) 1.40
Opacities OP
Xini 0.7231
Yini 0.2620
(Z/X)ini 0.0206
αCGM 0.6838
Atmosphere Eddington
Metal mixture AGSS09 + S10
Equation of State OPAL2005
Nuclear reaction rates NACRE + LUNA
Core overshoot (Hp) 0.15
Transport Atomic diff. (without rad. acc.)

2.2. Observations

Figure 1 shows the r010 ratios according to the ratio of the
frequency ν and the frequency at maximum power νmax for
the Sun, computed from the BISON frequencies (Broomhall
et al. 2009; Hale et al. 2016) and for three Kepler Legacy stars
(KIC10162436, KIC6679371 and KIC1435467) using the ratios
provided by Lund et al. (2017b,a). Two main characteristics can
be seen: a long-term smooth trend, and an oscillatory compo-
nent. The long-term trend of the ratios decreases with increasing
frequencies. It has been shown that the slope and mean value
of r010 ratios are good indicators of the extension of convective
cores (when present) and of the amount of hydrogen in the core
(Popielski & Dziembowski 2005; Cunha & Metcalfe 2007; De-
heuvels et al. 2010; Silva Aguirre et al. 2011; Cunha & Brandão
2011; Brandão et al. 2014; Deheuvels et al. 2016).

The oscillatory component is visible in the ratios of all stars
presented in Fig.1. For the Sun, Roxburgh (2009) showed that
this signature is related to the BSCZ and that the period of the
signal is related to its acoustic radius t(r) =

∫ r
0 dr/c (its coun-

terpart, the acoustic depth τ, is defined by τ(r) =
∫ R∗

r dr/c, with
R∗ being the radius of the star). Christophe (2019)1 showed that
these oscillations are also present in some Kepler Legacy stars
(at least 19 stars with amplitudes larger than the uncertainties on
the ratios). He identified the signal to be the signature of a glitch
below the second helium-ionisation zone and associated it with
the BSCZ. He also showed that for stars in which the signature
can be measured, the amplitude of the signal is larger for F-type
than for G-type stars. In the following sections, we assess the ori-
gin of these large signals compared to the Sun and determine the
link between the shape of the signal and the physical properties
of the sharply varying region.

3. Origin of the large-amplitude signals

3.1. Possible causes

The oscillatory component of the ratios r010 or the signature of
the acoustic glitch is induced by a sharp variation in the adiabatic
sound speed,

c2
s =

Γ1P
ρ
≈

kBΓ1T
mHµ

, (4)

where Γ1 is the first adiabatic exponent, P is the pressure, ρ is the
density, T is the temperature, µ is the mean molecular weight at
1 See chapter II of https://tel.archives-ouvertes.fr/tel-
02883979/document
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Table 2. Stellar models with changes in the input physics with respect to model A0.

Model Affected Change in the input physics
A0 - -
A1 Γ1 EoS: SAHA-S(a) , Turbulent mixing: calibrated on helium surface abundance of Kepler F-type stars (b)

A2 µ Turbulent mixing: homogenising turbulent mixing down to T=5 × 106 K, and no mixing below
A3 T Surface penetrative convection: ξPC

(c) = 0.2
A4 T Surface penetrative convection: ξPC

(c) = 1.0
A5 T Surface penetrative convection: ξPC

(c) = 2.0
A6 T Surface penetrative convection: Extension equivalent to model A5 with a smoother transition (β = 0.5)
A7 T Surface penetrative convection: Extension equivalent to model A5 with a smoother transition (β = 2.0)
B1 T No atomic diffusion
B2 T No atomic diffusion, Penetrative convection: ξPC

(c) = 2.0
B3 T No atomic diffusion, PC: Extension equivalent to model B2 with a smoother transition (β = 0.5)
B4 T No atomic diffusion, PC: Extension equivalent to model B2 with a smoother transition (β = 2.0)

Notes. (a) Baturin et al. (2017) . (b) Verma & Silva Aguirre (2019), we used a turbulent diffusion coefficient because of the strong helium and
metal depletions induced by atomic diffusion in F-type stars. This enables us to stay in the parameter space of the equation of state (EoS) for the
hydrogen mass fraction (0.10 < X < 0.90) . (c) Zahn (1991) .

a given level within the star, kB is the Boltzmann constant, and
mH is the proton mass. The rapid variation in the sound speed
can arise from sharp variations in Γ1, the temperature, and/or in
the mean molecular weight µ, or from a variation of all these
parameters.

However, as we show in Sect. 3.2, standard stellar models
do not predict an oscillatory component with large amplitudes.
Hence the origin of the large magnitude of the oscillation ampli-
tude is not yet identified. Three cases are then possible:

First adiabatic exponent (Γ1): A sharp variation in Γ1 may
be induced by an ionisation region that is not well taken into ac-
count in stellar models, such as the region of heavy elements,
which is located below the helium region. Brito & Lopes (2017,
2018, 2019) showed that these ionisation regions create a signal
in the derivative of the frequency phase shift. This signature is
not well reproduced by the models, and the authors suggested
that a process such as radiative accelerations (e.g. Michaud et al.
2015) could maintain enough metals in the surface convective
zone to reconcile models and observations. These authors also
suggested that an equation of state based on the chemical ap-
proach, such as SAHA-S (Gryaznov et al. 2004; Ayukov et al.
2004; Gryaznov et al. 2006; Baturin et al. 2013, 2017), may in-
duce this type of signature in stellar models.

Mean molecular weight (µ): Sharp variations in µ occur at
the transition between fully mixed and stable regions (i.e. at the
transition between convective and radiative regions) and are usu-
ally neglected in standard models.

Temperature (T ): Sharp variations in the temperature gradi-
ent are due to the transition between different processes of en-
ergy transport inside the star due to the presence of convection.
They are known to induce glitches, especially in presence of pen-
etrative convection or overshooting. Because the amplitude of
the oscillatory component in the r010 ratios is larger for F-type
stars, the signal may also come from the iron-nickel convective
zone induced by the accumulation of these elements by the ef-
fect of radiative accelerations around T ≈ 200 000 K (Richard
et al. 2001; Théado et al. 2009; Deal et al. 2016). This iron/nickel
convective zone appears deeper than the hydrogen/helium zones.

Frequency ratios r010 have little sensitivity to the surface lay-
ers, and some of the above possibilities can therefore be dis-
carded. The impact of radiative accelerations is mostly noted at
the very surface of stars, and we tested that the impact of the
accumulation of heavy elements and the formation of an iron

convective zone cannot be detected by the ratios (see Sect. 6
for more details). Competition between microscopic and macro-
scopic transport processes is also likely to reduce the formation
of a strong mean molecular weight gradient.

3.2. Stellar models

In order to identify the origin of the large-amplitude oscilla-
tory component of the r010 ratios, we computed stellar models
with the Cesam2k20 stellar evolution code (the new version of
the Code d’Evolution Stellaire Adaptatif et Modulaire, previ-
ously called CESTAM; Morel & Lebreton 2008; Marques et al.
2013; Deal et al. 2018) with the aim of testing different scenar-
ios according to the possible causes mentioned above. The input
physics of the reference standard model A0 is presented in Ta-
ble 1. The other models are presented in Table 2.

3.2.1. Input physics

All stellar models were computed with a mass of 1.40 M�, typi-
cal of the F-type stars at solar metallicity, and Xc < 0.3, which is
representative of the three F-type stars shown in Fig. 1 (see Silva
Aguirre et al. 2017). The effect of mass is addressed in Section 6.
We used the OPAL2005 (Rogers & Nayfonov 2002) or SAHA-S
(Baturin et al. 2017) equations of state and the OP opacity ta-
bles (Seaton 2005). Nuclear reaction rates were taken from the
NACRE compilation (Angulo 1999), except for the 14N(p, γ)15O
reaction, for which we used the LUNA rate (Imbriani et al.
2004). We adopted an Eddington grey atmosphere for surface
boundary conditions. Convection was computed according to the
Canuto et al. (1996) formalism with a solar-calibrated mixing
length parameter, αCGM = 0.6838. We chose the AGSS09 metal
mixture (Asplund et al. 2009) with meteoritic abundances for re-
fractory elements from Serenelli (2010) and adopted calibrated
solar values for the initial composition. All stellar models, except
when specified otherwise, include the effect of atomic diffusion
without radiative accelerations following the Michaud & Proffitt
(1993) formalism.

Convective-core step overshoot was included with an exten-
sion of 0.15 Hp except when specified otherwise. Anticipating
the results of later sections, we draw specific attention to the im-
pact on the ratios of the temperature gradient profiles below the
convective envelope that is induced by convective penetration.
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3.2.2. Temperature gradient profiles in the PC region

We considered two types of temperature gradients in the pene-
trative convective region below the convective border defined by
the Schwarzschild criterion. Models A3, A4, and A5 include a
PC region with a fully adiabatic temperature gradient following
the Zahn (1991) formalism, whereas models A6, A7, B3, and
B4 were built assuming a smoother transition between the adi-
abatic and the radiative temperature gradients, following Eq. 6
(qualitatively similar to the temperature gradient shown in Fig. 2
of Anders et al. 2022a). In all these models, the PC region is
assumed to be fully mixed with a uniform chemical composition.

Fully adiabatic temperature gradient. The Zahn (1991) for-
malism is based on two main hypotheses. Firstly, the temperature
gradient is considered fully adiabatic in the PC region. Secondly,
the convective flux is assumed to be proportional to ρ3W, where
W is the root mean square of the velocities directed downward.
This leads to an extent of the penetrative convective region (Lp)
defined by

Lp

Hp
=
ξPC

χp
, (5)

where Hp is the pressure scale height, χp is the conductivity
gradient, and ξPC is the ratio of the convective efficiency in the
unstable region to that of the stable region. This last parameter
cannot be determined from first principles and needs to be cali-
brated. Zahn (1991) determined that ξPC should have a value of
the order of unity (see also Berthomieu et al. 1993, for the Sun).
The higher its value, the deeper the PC region. Models A3, A4,
and A5 were computed with ξPC = 0.2, 1.0, and 2.0, respec-
tively. This represents 3.9, 19, and 39% of the size of the sur-
face convective zones of the models at Xc = 0.10, respectively.
For a 1.0 M�, assuming the same input physics as model A4
(ξPC = 1.0), we find an increase of 21 and 22% of the depth of
the convective envelope at the age of the Sun and at Xc = 0.10,
respectively. However, for the Sun, the increase is found to be
about ten times smaller from helioseismology (e.g. Christensen-
Dalsgaard et al. 2011; Zhang et al. 2019).

We stress that ξPC ≈ 1.0 found for the Sun in the early
1990s came for the use of an equation of state that was less
accurate than the current ones. This affects the value of χP,
hence the value of ξPC. All this tends to indicate that the value
of ξPC depends on the input physics of the models and therefore
probably on the type of stars. Hence, the same calibration value
should not be expected for ξPC for an F-type and a G-type star.

Smoother temperature gradient in the PC region. For the
Sun, Baturin & Mironova (2010) proposed that the tempera-
ture gradient in the PC region undergoes a smooth transition
between the adiabatic and radiative gradient. Later, Christensen-
Dalsgaard et al. (2011) confirmed this with helioseismology. An-
ders et al. (2022a) showed with 3D simulations that the penetra-
tive convective regions were adiabatic over almost 90% of the
region, with a smoother rather than a steep transition close to the
bottom of the region. They also predicted a PC region extension
of 20-30% of a mixing length, which is larger than the depth
seismically characterised for the Sun.

When the large amplitude of the glitch signatures in F stars is
assumed to be due to the presence of a PC region below the CZ,
PC extensions larger than that of the Sun must be considered.
Accordingly, we cannot use the expression of the temperature
gradient from Christensen-Dalsgaard et al. (2011). This expres-
sion assumes that the radiative gradient decreases monotonically

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
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Fig. 2. r010 ratios for the 1.4M� models A0 to A5 all at Xc = 0.10. All
curves have a mean of about 0.07, and all but A0 are gradually shifted
by 0.01 for clarity.

below the Schwarzschild boundary, which is not the case for the
stellar envelopes in F-type stars. Following the shape of the tran-
sition predicted by Anders et al. (2022a) (see their Fig. 2), we
rather define an empirical ad hoc expression for the temperature
gradient in the PC region,

∇ = ∇ad −
∇ad − ∇rad

2

[
1 −

2
π

arctan
(
ζ(r) − αPC Hp(rcz)
β(∇ad − ∇rad)4

)]
, (6)

where ζ(r) = r − rcz, with rcz being the radius where ∇ad =
∇rad, αPC is the extension of the PC region in units of pressure
scale height, Hp(rcz) is the pressure scale height at rcz , and β is
the parameter controlling the steepness of the transition (higher
values of β lead to smoother transitions). Models A6 and B3
were computed with β = 0.5 and αOV = 1.0 Hp, and models A7
and B4 were computed with β = 2.0 and αOV = 1.0 Hp.

3.2.3. Cause of the signal

All stellar models presented in this section are compared at the
same evolutionary status, that is, at the moment at which their
hydrogen content in the core is Xc = 0.10. Figure 2 shows the
r010 ratios for models A0 to A5. The ratios exhibit a smooth com-
ponent that is qualitatively similar to that of KIC10162436. The
standard A0 model shows no large oscillatory component. The
changes in the input physics affecting Γ1 and µ have no signif-
icant impact on the ratios (models A1 and A2 in Fig. 2). The
only scenario inducing a large oscillatory component (i.e. that
could be detected despite the larger uncertainties on the frequen-
cies of F-type stars) of those we tested is the addition of a large
region of PC (model A5). This conclusion is consistent with that
of Lebreton & Goupil (2012) and Christophe (2019). We there-
fore theoretically explore the possibility of large PC regions. The
observed F-type stars will be analysed in a future work.

Assuming the large-amplitude signature seen in the ratios
r010 of F-type stars is linked to large PC regions, the period of
the signal is related to tcz, the acoustic radius of the base of the
PC region, and the amplitude is larger when the PC region is
larger. This aspect is analytically demonstrated in Section 4.2
and 6.
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Fig. 3. Internal structure profiles with and without penetrative convection. Left: Temperature gradients as function of acoustic radius for the B1
and B2 models with M = 1.4 M� and Xc = 0.15. The grey lines represent the adiabatic and radiative gradients of model B2 (which are very
similar to those of B1). The vertical dashed black line on the right represents the position of the Schwarzschild limit for both models. The line
on the left represents the bottom of the penetrative convective region of model B2. The downward arrow shows the middle of the acoustic cavity
(tcz/T ≈ 4180 s). Right: dΓ1/dτ as a function of the acoustic radius for models B1 and B2.
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Fig. 4. µ gradient as a function of the acoustic radius for models A0, A5,
and A5 with the turbulent mixing calibrated by Verma & Silva Aguirre
(2019).

4. Theoretical BSCZ glitch signature

In this section, we determine the analytical expression of the am-
plitude of the signal in the r010 ratios according to the structural
quantities, similarly to what Monteiro et al. (1994) and Rox-
burgh & Vorontsov (1994) reported for the frequency and phase
shift variations, respectively. This expression is useful to extract
valuable information about the convection to radiation transition
in stars for which the amplitude of the glitch signature is larger
in the r010 ratios than in the frequency variations. We considered
the expression for the frequency variation as given by Monteiro
et al. (1994) and propagated it into Eq. 3, assuming a fully adi-
abatic PC region (Zahn 1991). For convenience, specific models
without atomic diffusion (B1 and B2) were computed and used
only in this section in order to satisfy the assumption on dµ/dτ
(see below). Their input physics are presented at the bottom of
Table 2.

4.1. Signal in the frequency variations

The frequency variations induced by the sharp change in tem-
perature gradient from adiabatic to radiative at the BSCZ is de-
scribed by (Monteiro et al. 1994; Roxburgh & Vorontsov 1994)

δνglitch(ν) =a1(τd)
(
ν̃

ν

)2
sin(4πντd + 2φ)

+a2(τd)
(
ν̃

ν

)
cos(4πντd + 2φ),

(7)

where ν̃ is a reference frequency, τd is the acoustic depth of the
BSCZ, and φ is some constant phase. The above expression can
be rewritten as

δνglitch(ν) = A(ν) cos(4πντd + φ′(ν)), (8)

with

A(ν) =

[
a1(τd)2

(
ν̃

ν

)4
+ a2(τd)2

(
ν̃

ν

)2]1/2

, (9)

φ′(ν) =2φ − arctan
[
a1(τd)
a2(τd)

(
ν̃

ν

)]
. (10)

The amplitudes a1 and a2 (expressed in Hz) are related to the
structure of the star at τd by

a1(τ) =
g

32π3ν̃2T

[
h1(τ)h2(τ) −

1
4

(
γ − 1
∇ad

d∇rad

dτ

)]
, (11)

a2(τ) = −
g

32π2csν̃T
h1(τ), (12)

with

h1(τ) = (γ − 1)
∇rad − ∇ad

∇ad
, (13)

h2(τ) =
g
cs

(
3h1(τ)

16
−

Γ1 + 3
8

+
U − 2
4Vg

)
. (14)
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Fig. 5. Glitch parameters and signature with and without penetrative convection. Top: Amplitudes a1 (dotted lines), a2 (dashed lines), and Amax
(solid lines) (Eq. 11, 12, and 15) as functions of the extent of the PC region in pressure scale height for models B1 (left panel) and B2 (right
panel) at Xc = 0.15. The dot-dashed lines represent the BSCZ. Bottom: Ratios r010 according to the frequency for the same models. The error bar
represents the typical mean uncertainty on the ratios, such as the one obtained for KIC10162436.

Here, U and Vg are defined as (Unno et al. 1989, Eq18.18)

U =
4πρr3

m
=

3ρ
ρ̄

; Vg =
gr
c2

s
.

T = t(R∗) is the total acoustic radius of the star, g is the local
gravity, γ is the ratio of specific heats and is equal to Γ1 = 5/3
in the perfect gas approximation, r is the local radius, G is the
gravitational constant, and ∇ad and ∇rad are the adiabatic and ra-
diative temperature gradients, respectively. The total amplitude
of the signal at ν = ν̃ = νmax is defined by

Amax =
(
a2

1 + a2
2

)1/2
. (15)

These expressions are obtained under the following assump-
tions for the region around the BSCZ:

•
∇ − ∇ad

∇ad
=
∇rad − ∇ad

∇ad
H(τ − τd), with H(τ) the Heaviside

function. For a fully adiabatic penetrative convection region,
this assumption is verified close to the transition region, as
shown in the left panels of Figs. 9 and 3.

•
dΓ1

dτ
≈ 0 (see right panel of Fig. 3 for the validity of this

assumption, i.e. dΓ1/dτ < 1.5 × 10−5 s−1)

•
dµ
dτ
≈ 0,

• the region is fully ionised, and the pressure in the fully
ionised region is approximated by ideal gas plus radiative
pressure.

In the context of a fully adiabatic PC region, all these assump-
tions are reasonable, except for the neglect of a possible gradient
in the mean molecular weight that can arise because of the effect
of atomic diffusion (see Fig. 4 and model A2 in Fig. 2). Accord-
ingly, in this section, our stellar models are computed assuming
no atomic diffusion in order to avoid any potential contamina-
tion of the signal from any sharp variations in µ in the relevant
region. The variation in the amplitude induced by atomic diffu-
sion (i.e. the µ gradient) has already been discussed for the Sun
(Basu & Antia 1994). The impact of this specific assumption for
F-type stars will be estimated in a future work.

Figure 5 shows a1, a2 , and Amax for models B1 and B2 (see
Table 1 and 2 for the input physics). Below the Schwarzschild
convective zone limit ((rcz − r)/Hp > 0.1), a1 decreases and a2
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Fig. 6. Predicted glitch signature from Eq. 16 for model B1 and B2 at
Xc = 0.15.

increases. a1 is only slightly affected by the inclusion of a PC
(model B2) region, whereas a2 becomes significantly larger (by
about a factor of 2) than in absence of convective penetration,
and it therefore dominates the a1 contribution in the presence
of PC. Moreover, the deeper the PC region, the higher the a2
value because the difference between the adiabatic and radiative
temperature gradients increases.

4.2. Signal in the r010 ratios

We now use the expression of the frequency variation (Eq. 7) and
inject it in Eq. 3. We obtain the following expression for the ratio
of small to large separations of l = 0, 1 models (see Appendix A
for the detailed calculation):

r010, glitch(ν) ≈a1(τd)
(
ν̃

ν

)2
×

1
4∆̄

f12(ν) × sin (4πνtd + 2φ)

+a2(τd)
(
ν̃

ν

)
×

1
4∆̄

f21(ν) × cos (4πνtd + 2φ) ,
(16)

with

f12(ν) =3 +

[
ν2(ν2 + ∆̄2)
(ν2 − ∆̄2)2

]
cos

(
4π∆̄td

)
+

[
4ν2(ν2 + ∆̄2/4)
(ν2 − ∆̄2/4)2

]
cos

(
2π∆̄td

)
,

(17)

f21(ν) =3 +

[
ν2

ν2 − ∆̄2

]
cos

(
4π∆̄td

)
+

[
4ν2

ν2 − ∆̄2/4

]
cos

(
2π∆̄td

)
,

(18)

where ∆̄ is the mean large separation assumed to be the same for
the l = 0 and l = 1 mode degrees.

Because the period of the signature of the BSCZ in the r010
ratios is the acoustic radius of the BSCZ rather than its acoustic
depth (Roxburgh 2009), we converted the expressions so that
they are written in terms of td instead of τd.

Because ∆̄/ν << 1,

f12(ν) ≈ f21(ν) ≈
(
cos (2Φt) + 4 cos (Φt) + 3

)
≤ 8, (19)

where Φt = 2π∆̄td. We then recover the same frequency depen-
dence as for δν in Eq.7, except for an amplification factor ≤ 2/∆̄.
For model B2 at Xc = 0.15, the amplitude of δν is ≤ 0.2 µHz and
that of r010, glitch is ≤ 0.0067. This is to be compared with the un-
certainties around νmax of KIC10162436, for instance (Fig. 1),
which are 0.17 µHz and 0.0030 for the frequencies and the ra-
tios, respectively. Whereas the maximum amplitude of δν is very
close to the uncertainty, the amplitude of the signature in the ra-
tios is amplified up to more than a factor of 2, facilitating the
signature detection with the ratios.

For ν̃ = νmax and for frequencies ν around νmax, the expres-
sion can be written

r010, glitch(ν) ≈
Amax

4∆̄
× f12/21(νmax) × sin

(
4πνtd + φ′

)
, (20)

where f12/21(νmax) ≈ f12(νmax) ≈ f21(νmax). In this case, the ratios
approximately depend on a constant amplitude.

5. Validation

5.1. Validation of the fitting procedure

In this section, we test the analytical expression of the r010 ratios
defined in Sect. 4.2 using stellar models. Oscillation frequencies
were computed with the code ADIPLS (Christensen-Dalsgaard
2008). The ratios can be divided into two components (smooth
and oscillatory) following an expression of the form

r010(ν) =r010, smooth(ν) + r010, glitch(ν). (21)

Deheuvels et al. (2016) (hereafter D16) developed a method
for characterising the signal of the smooth component with a
second-order polynomial fitting and constrained the extension of
convective cores for eight Kepler stars. The second-order poly-
nomial expression of the frequency is defined by

PD16(ν) = c0 + c1(ν − β) + c2(ν − γ1)(ν − γ2), (22)

where β, γ1 , and γ2 should be adapted so that c0, c1 , and c2 are
uncorrelated (see Appendix B of D16). For the purpose of this
work, the c coefficients do not necessary need to be uncorrelated.
We then characterise the smooth component with a simpler form
of the second-order polynomial such as

P(ν) = c0 + c1ν + c2ν
2. (23)

This expression is used to characterise the smooth component
of the ratios in the following sections. The ratios are then fitted
using the following expression:

r010(ν) =P(ν) + a1(τd)
( ν̃
ν

)2
×

1
4∆̄

f12(ν) × sin (4πνtd + 2φ)

+ a2(τd)
( ν̃
ν

)
×

1
4∆̄

f21(ν) × cos (4πνtd + 2φ) ,
(24)

where a1, a2, td , and φ are the parameters fitted simultaneously
with the coefficients c0, c1 , and c2 of the smooth component
P(ν). The reference frequency is defined as ν̃ = νmax. We also
tested a second approximated expression,

r010(ν) =P(ν) + a2(τd)
( ν̃
ν

)
×

1
4∆̄

f21(ν) × cos (4πνtd + 2φ) ,

(25)

because a2 dominates a1 in presence of PC. We used model B2
as an illustration.

We assessed three scenarios:
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Table 3. Cases considered to validate the fitting procedure with model B2.

Case Xc ν̃ [µHz] ∆̄ [µHz] ¯σfreq [µHz] Fitting eq. a1 [µHz] a2 [µHz] Amax [µHz] td [s] φ [radian]
0.25 1232.6 65.1 - Theoretical 0.056 0.225 0.232 3931 -

1 0.10 Eq. 24 0.100+0.068
−0.067 0.185+0.041

−0.099 0.220+0.026
−0.032 3943+32

−37 0.83+0.25
−0.27

0.10 Eq. 25 - 0.227+0.026
−0.028 0.227+0.026

−0.028 3957+27
−34 0.91+0.46

−0.37

2 0.17 Eq. 24 0.132+0.066
−0.081 0.145+0.077

−0.095 0.212+0.041
−0.043 3830+83

−81 1.86+0.54
−0.61

0.17 Eq. 25 - 0.218+0.043
−0.046 0.218+0.043

−0.046 3844+83
−79 1.41+0.60

−0.51

0.15 1091.4 59.8 - Theoretical 0.055 0.196 0.204 3757 -

3 0.10 Eq. 24 0.160+0.026
−0.044 0.101+0.068

−0.065 0.194+0.020
−0.018 3716+38

−38 1.54+0.25
−0.28

0.10 Eq. 25 - 0.207+0.023
−0.030 0.207+0.023

−0.030 3736+37
−41 0.913+23

−0.24

4 0.17 Eq. 24 0.102+0.068
−0.068 0.120+0.077

−0.075 0.179+0.052
−0.056 3751+125

−157 1.25+1.014
−0.728

0.17 Eq. 25 - 0.188+0.045
−0.045 0.188+0.045

−0.045 3770+120
−136 1.07+1.4

−0.69

5 0.30 Eq. 24 0.098+0.094
−0.068 0.108+0.100

−0.073 0.180+0.083
−0.077 3751+246

−292 1.48+1.21
−1.01

0.30 Eq. 25 - 0.143+0.097
−0.090 0.143+0.097

−0.090 3753+321
−355 1.55+1.09

−1.07

0.05 982.2 55.5 - Theoretical 0.052 0.183 0.190 3575 -

6 0.10 Eq. 24 0.058+0.049
−0.040 0.149+0.031

−0.050 0.163+0.024
−0.024 3535+52

−56 1.27+0.40
−0.36

0.10 Eq. 25 - 0.174+0.022
−0.023 0.174+0.022

−0.023 3563+47
−51 0.89+0.30

−0.26

7 0.17 Eq. 24 0.116+0.060
−0.071 0.119+0.075

−0.080 0.183+0.045
−0.044 3490+140

−118 1.71+0.65
−0.73

0.17 Eq. 25 - 0.181+0.054
−0.051 0.181+0.054

−0.051 3521+148
−131 1.26+0.79

−0.69

Table 4. Fitted parameters of the ratios for the Sun

ν̃ [µHz] ∆̄ [µHz] Fitting eq. a1 [µHz] a2 [µHz] Aν̃ [µHz] td [s] φ [radian]
2500(a) 135.1(b) - - - 0.085(a) 1370(a) -

- - - - - - 1370 ± 110(c) -
- - - - - [0.033; 0.089](d) [1488; 1533](d) -
- - - - - - 1422 ± 20(e) -

Eq. 24 0.071+0.008
−0.015 0.034+0.023

−0.022 0.079+0.004
−0.004 1427+12

−12 0.39+0.19
−0.18

Eq. 25 - 0.083+0.004
−0.004 0.083+0.004

−0.004 1434+10
−10 2.85+0.15

−0.17

Notes. (a) Monteiro et al. (1994) , (b) Huber et al. (2011) , (c) Ballot et al. (2004) , (d) Christensen-Dalsgaard et al. (2011) , (e) Roxburgh (2009)

– one scenario using precise frequencies with a mean uncer-
tainty of σfreq = 0.10 µHz and a frequency range of [0.6;
1.4] νmax (representative of the total frequency range of
KIC10162436),

– a second scenario considering a mean uncertainty of
0.17 µHz (representative of KIC10162436) and a frequency
range of [0.7; 1.2] νmax (more centred around νmax),

– finally, a third scenario considering a mean uncertainty of
0.30 µHz and a frequency range of [0.7; 1.2] νmax.

We finally selected seven test cases. Cases 1 and 2 represent
model B2 at Xc = 0.25 and ¯σfreq = 0.10 and 0.17 µHz, respec-
tively. Cases 3, 4, and 5 represent model B2 at Xc = 0.15 and

¯σfreq = 0.10, 0.17, and 0.30 µHz, respectively. Finally, cases 6
and 7 represent model B2 at Xc = 0.05 and ¯σfreq = 0.10 and
0.17 µHz, respectively. All the cases are presented in Table 3.
The uncertainties were generated randomly with a Gaussian dis-
tribution around the mean value using a standard deviation of
20% of the mean value.

The fitting procedure is based on the emcee Python package
(Foreman-Mackey et al. 2013). We used 5000 burning steps and

500 production steps for the Markov chain Monte Carlo method
(MCMC). Uniform uninformative priors were chosen for a1, a2
([0.0; 0.4]), tcz ([500; 8500] s) and φ ([-2π; 4π]) to keep the pa-
rameters in the range expected for stellar interiors. Similarly to
D16, the covariance matrix C was estimated with a Monte Carlo
simulation using the frequencies of the model and the random
uncertainties described above for all cases. Because the covari-
ance matrix is nearly non-invertible, we truncated it using the
singular value decomposition (SVD) approach. The likelihood
function L is then

L(D,Θ) ∝ −
1
2

(
r010,target − r010,mod

)T
C−1

(
r010,target − r010,mod

)
,

(26)

where D and Θ represent the target and the model parameters,
respectively. The quantity r010,target represents the ratios of the
target models and in later section those of a real star. The quan-
tity r010,mod represents the ratios obtained with Eq. 24 and 25.
The results of the fit for each case are presented in Table 3.
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Fig. 7. Probability density of tcz when no prior is imposed for the model
B2 at Xc = 0.15 with a mean uncertainty of 0.30 µHz. The vertical
dashed blue lines represent the theoretical value given by the stellar
model from which the frequencies were computed. The downward ar-
row shows the middle of the acoustic cavity (tcz ≈ 4180 s).

5.2. Validation of the results

For the validation, we considered the numerical frequencies of
model B2 as our data and fit their r010 ratios using Eq. 24 and
Eq. 25. In the fit, the functions f12,21/∆̄ were assumed to be
known and were computed according to Eq. 17 and Eq. 18. We
now compare the amplitudes and acoustic radius resulting from
the fit with the theoretical predictions computed according to
Eqs. 11 and 12. An example of posterior distributions for the
fitted parameters is shown in Appendix B. The amplitudes Amax
and the acoustic radius td = tcz are well retrieved by the fitting
procedure within the 1σ interval for most cases (and 2σ for all
cases). Similarly to the results of Monteiro et al. (1994), we find
a degeneracy between a1 and a2 , as shown in Fig. C.1. The two
fitting functions perform similarly for all cases, indicating that
the function with the fewest parameters (Eq. 25) may be suf-
ficient to analyse stars other than the Sun. Figure 6 shows the
predicted glitch signature from Eq. 16 for model B1 and B2.

For case 5, we considered a larger mean uncertainty of
0.30 µHz. The uncertainties are of the same order of magnitude
as the amplitude, and the fitting of the glitch signature is more
dependent on the prior imposed on tcz. In this case, we therefore
adopted a two-step procedure. Firstly, we fit the signature with-
out any informative prior. The distribution of tcz is presented in
Fig. 7 for model B2 at Xc = 0.15. Two peaks are clearly seen.
One peak at large tcz (close to the surface) is representative of
a small-amplitude oscillation made possible by the large uncer-
tainties and a second peak at the value extracted from the struc-
ture of the model. The strength of the latter depends on the ratio
of the amplitude and the uncertainties. Secondly, we again per-
formed the fit with informative priors ([3000; 4500] s) around
the significant peak. In this case, and when the second peak can
be detected, the amplitude is retrieved much more clearly.

The reliability of the fit depends on the contrast between the
amplitude of the signature and the uncertainties on the ratios.
For ξPC < 1.0, the amplitude is often not large enough to be
detected for uncertainties typical of F-type stars (e.g. 0.17 µHz
for KIC10162436, which represents 0.0030 for the ratios; see
bottom panels of Fig. 5) with the input physics we considered
in the models. An analysis of the detectability of the signature
is deferred to Sect. 6. We first consider the case of the Sun as

representative of a small PC region, but with highly precise fre-
quencies in the following section.

5.3. Sun as a test case

We first tested our procedure on a solar-calibrated model with the
same physics as model A0. The results are of the same quality
level sd the cases presented in Sect. 5.2.

We next applied the one-step procedure to the BISON data of
the Sun (Broomhall et al. 2009; Hale et al. 2016). We considered
a prior on tcz of [500; 2000] s because the position of the BSCZ
of the Sun is expected to be about tcz/T < 0.5 (with T = 3701 s
obtained with ∆νSun = 135.1 µHz). The results of the fits are
presented in Table 4. When compared to the results of Monteiro
et al. (1994), Ballot et al. (2004), and Christensen-Dalsgaard
et al. (2011), the fitted value of tcz lies between the values found
in the three papers. The total amplitudes determined from the fits
are similar for both fitting equations and similar to those found
in previous studies. The differences found for the acoustic radius
between the three determinations may come from the use of dif-
ferent solar frequency data sets (the Libbrecht et al. 1990 data
set was used in Monteiro et al. 1994, the six-year GOLF data
set is used in Ballot et al. 2004, the Schou 1999 data set is used
in Christensen-Dalsgaard et al. 2011, and the BISON data set is
used in this work). Moreover, the value of the total acoustic ra-
dius of the Sun used to determine tcz from τcz was obtained here
using ∆νSun = 135.1 µHz, which may not be the same values as
for the large separations used in the other studies. For example, a
change of a few µHz would reconcile the value of acoustic radii
of the BSCZ. We checked that the two-step approach does not
improve the agreement of tcz. The frequencies of the Sun are so
precisely known that the approximations made in Appendix A
maybe be too crude to analyse the solar signature of the glitch.
The approach was also restricted to the use of l = 0 and 1 (be-
cause we used r010 ratios) to mimic the conditions for stars other
than the Sun, while the frequency variation method (see Mon-
teiro et al. 1994) used as a comparison was applied with many
more degrees (l up to 20). All this may explain the difference
in tcz. We also stress that when compared to the results of Rox-
burgh (2009), which were also obtained with r010 ratios, tcz is
very similar.

6. Detectability of the signal in the r010 ratios

Because the r010 ratios are not expected to be sensitive to surface
layers, the signature of the BSCZ is only detectable if the sur-
face convective zone extends deep enough downward. The top
left panel of Fig. 8 shows the evolution of the ratio of the acous-
tic radius of the BSCZ (tcz) over the acoustic radius of the star
(T ) for stellar models with masses between 1.2 and 1.5 M�, with
a solar initial chemical composition and a PC region of ξPC =
2.0 (same input physics as model A5). In order to determine
whether the signature of the glitch is detectable, we compared
the total amplitude at ν = νmax (Amp = Amax f12/21(νmax)/(4∆̄))
presented in Eq. 20 with typical uncertainties of 0.0015 and
0.0030. The first uncertainty is the mean uncertainty of the ra-
tios around νmax of 16 Cyg A, and the second uncertainty is the
mean uncertainty of the ratios for frequencies between 0.85 and
1.15 νmax of KIC10162436. The detection threshold was set to
Amp/σratio = 1. This criterion is a convenient indication of de-
tectability, it is sufficient but not necessary, as it does not mean
that a detection cannot be made with a lower amplitude to the
uncertainty ratios. Using this criterion, we remain on the con-
servative side. For the smallest ratio uncertainty, the signature
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Fig. 8. Detectability of the signature in the r010 ratios for different quantities. The open and black circles show that the signature of the BSCZ
glitch has an amplitude, Amp = Amax f12/21(νmax)/(4∆̄), that is larger than 0.0015 and 0.0030 (the mean uncertainty of the r010 ratios of 16 Cyg
A and KIC10162436 around νmax), respectively. Top left: Ratio of the acoustic radius of the BSCZ (tcz) over the total acoustic radius (T ) for
models with masses between 1.2 and 1.5 M� and ξPC = 2. The dashed line represents the position of the iron/nickel convective zone induced by
their accumulations due to radiative accelerations for a 1.5 M� model. Top right: Associated evolutionary tracks in a Kiel diagram. Middle left:
Amplitudes Amax according to the ratio of the acoustic radius of the BSCZ (tcz) over the total acoustic radius (T ) for the same models. Middle
right: Amplitudes Amax/(4∆ν) according to the ratio of the acoustic radius of the BSCZ (tcz) over the total acoustic radius (T ) for the same models.
Bottom: Amplitudes Amax/(4∆ν) according to f12,21 at ν̃ = ν = νmax. For the top left, middle and bottom panels, the dotted grey lines represent the
same models with ξPC = 0.
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of the BSCZ is detectable in the r010 ratios according to the se-
lected threshold if the BSCZ is deeper than tcz/T ≈ 0.55. It
extends below tcz/T ≈ 0.45 for the largest uncertainty, which is
representative of KIC10162436. This implies that in stars with
a deep surface convective zone (M. 1.3 M� at solar metallic-
ity or for Xc < 0.3 − 0.2 for more massive stars), the signature
is more likely detectable. When the input physics is set, the de-
tectability is directly linked to the effective temperature of the
star (Teff < 6500 K and Teff < 6183 K for uncertainties of 0.0015
and 0.0030, respectively, for the models presented in Fig. 8).
This can be explained by the fact that the size of the surface
convective zone is directly correlated with Teff . The detection of
a high amplitude glitch signature like this then provides strong
constraints on the input physics of the models that control the
lifetime of a star on the main sequence (e.g. overshoot or chem-
ical transport close to the core).

Equation 20 shows that the amplitude of the signal mainly
depends on the product of Amax/(4∆ν) and the functions f12/21.
The contributions to the amplitude of these terms are presented
in the middle panels and in the bottom panel of Fig 8. For the
signal to be detectable, the amplitude Amax needs to be larger
than about 0.1 µHz, but the contribution of f12/21 also plays an
important role. f12/21 are five times larger at tcz/T = 0.3 than at
0.6. In other words, the deeper the convection to radiation tran-
sition, the more likely the detection, almost independently of the
value of Amax, as shown in the bottom panel of Fig 8. This point
also strengthens the constraining potential of this signal on the
modelling of the stellar interior of these stars.

We also found that the changes in Γ1 induced by the SAHA-
S equation of state, or the sharp temperature gradient induced by
an iron-nickel convective zone (see the dashed line in the top left
panel of Fig. 8) appears too close to the surface to be detected.
This explains the fact these changes do not lead to any signal in
the r010 ratios.

The top right panel of Fig 8 shows the position of 3 Kepler F-
type stars in a Kiel diagram. The input physics of the models of
the theoretical evolutionary tracks place KIC10162436 in the de-
tectable region (considering uncertainties on the ratios of 0.003),
while the two other stars are placed in the detectable region con-
sidering uncertainties of the ratios of 0.0015. These three stars
will be analysed in a forthcoming paper.

7. Comparison with other seismic indicators

In this section, we analyse the same models as in the previous
section (cases 1, 3, and 6) using other seismic indicators, namely
the frequency variation (Monteiro et al. 1994) and the sec-
ond differences (e.g. Gough 1990; Monteiro et al. 1993; Verma
et al. 2019). The fit of the signal was performed with the code
called seismic inferences for glitches in stars (SIGS) presented
in Pereira et al. (2017).

The version of the code2 for fitting the frequencies imple-
ments an automatic procedure for extracting the signal in νn,`
through an iterative approach for removing the smooth compo-
nent for each set of frequencies of degree ` and as a function of
mode order n. This implementation uses the method described
by Monteiro et al. (1994) in Appendix C, with the simplification
done for low-degree data as used by Monteiro et al. (2000). The
smooth component of the frequencies of the oscillations (what
these would be in a star without a glitch) was iterated until it
converged, and the final residuals were used to fit with the pre-
dicted expression for the signal. Pereira et al. (2017) added an

2 SIGS for frequencies: https://github.com/Fill4/sigs_freq

Table 5. Results of the fit for cases 1, 3, and 6 of the frequency variation
(freq.) and the second differences (diff.).

Xc ν̃ [µHz] ∆̄ [µHz] Fit Amax [µHz] td(∗) [ s]
0.25 1232.6 65.1 Th. 0.232 3931

Freq. 0.241+0.015
−0.016 3943+14

−17

Diff. 0.238+0.015
−0.015

(a) 3935+16
−18

0.15 1091.4 59.8 Th. 0.204 3757

Freq. 0.205+0.016
−0.016 3626+17

−16

Diff. 0.206+0.016
−0.016

(a) 3735+16
−20

0.05 982.2 55.5 Th. 0.190 3575

Freq. 0.373+0.018
−0.018 4109+164

−916

Diff. 0.257+0.017
−0.018

(a) 3438+26
−28

Notes. (∗) Because both methods provide the acoustic depth τd of the
glitch, the acoustic radius td is calculated from td = t0 − τd, with t0 =
1/(2∆ν). (a) The amplitudes are obtained by dividing A∗cz by f f21(νmax
obtained for the second differences (see Appendix C).

automatic and fairly robust approach to accomodate the need to
have an initial guess and when the data are sparse and contain
significant observational uncertainties.

The version of the code3 for fitting the second differences
uses the approach from Monteiro et al. (1993). For low-degree
data, a simplification was introduced by replacing the spline
fits with the use of Eq. 27, which is similar to what was re-
ported by Gough (1990) and also used by several other authors
(e.g. Mazumdar et al. 2014, and references therein). The ap-
proach removes a smooth component once from the second dif-
ferences of the frequencies, defined as

∆2νn,` ≡ νn+1,` − 2νn,` + νn−1,` , (27)

and then fits the predicted expression of the signal to the residu-
als.

The details for both implementations and for the building of
the automatic procedure are given in Pereira et al. (2017). The
method reported by Pereira et al. (2017) can use any variation
in the expression for the signature in the frequencies and second
differences. In their application, the lowest-amplitude case was
considered by assuming no PC (a1 is the only term used). This
choice does not have a significant impact on the determination
of the reference amplitude Amax, calculated at νmax. Because we
here test the effect of a PC, the frequency dependence of the am-
plitude of the signature is better represented, as shown by Mon-
teiro et al. (1994), by including the a2 term because a2 >> a1
in the presence of PC. The fitting functions (see Appendix C for
the details on the signal for the second differences) are then

δν =a2

(
ν̃

ν

)
cos(4πντcz + 2φ)

+ AHeII

(
ν̃

ν

)
sin2(2πβHeIIν) cos(4πντHeII + 2φHeII),

δ∆2ν =A∗cz

(
ν̃

ν

)
sin(4πντcz + 2φ)

+ A∗HeII

(
ν

ν̃

)
exp

[
−βHeII

(
ν̃

ν

)2]
sin(4πντHeII + 2φHeII).

(28)
3 SIGS for second differences: https://github.com/Fill4/sigs_
diff
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Both procedures in SIGS include the additional component, with
an amplitude AHeII that takes the glitch due to the second He
ionisation into account.

In order to make the comparison of amplitudes meaningful,
the amplitude of δ∆2ν associated with the BSCZ (A∗cz) is ex-
pressed according to a2 following the same approach as in Ap-
pendix A. It can then be written

δ∆2νcz ≈ a2(τ)
(
ν̃

ν

) [ 2ν2

ν2 − ∆̄2
cos

(
4π∆̄τd

)
− 2

]
cos (4πντcz + 2φ)

≈ a2(τ)
(
ν̃

ν

) [
2 −

2ν2

ν2 − ∆̄2
cos

(
4π∆̄τd

)]
sin

(
4πντcz + 2φ′

)
,

(29)

where φ′ = φ − π/4. Amax ≈ a2 in the considered cases because
the models include PC. Amax can then be retrieved from A∗cz using
the amplitude of Eq. 29.

The results of the fit of the signals for the three cases are pre-
sented in Table 5. For cases 1 and 3, the position of the glitch is
well retrieved by both seismic indicators. The amplitude is also
well recovered with the fit of the frequency variation. Neverthe-
less, the deeper the glitch (i.e. the more evolved the star), the
less efficiently retrieve these two indicators the glitch properties
because the amplitude of the signature is smaller (see Fig. 8 for
the variation of Amax with depth), especially for the frequency fit.
For the second differences, the amplification of the amplitude by
the frequency dependence is maximum for BSCZ at tcz/T = 0.5
and decreases when the BSCZ deepens (see Fig. C.1), which is
consistent with the results of Ballot et al. (2004). This explains
why the position and amplitude of the glitch signature for case 6
are not well retrieved by the second differences either.

Accordingly, for G-type stars with highly precise frequen-
cies (e.g. the Sun), the three methods ought to perform equiv-
alently to retrieve the properties of the glitch signature induced
by the BSCZ. For stars with lower frequency precision, the sec-
ond differences and the ratios r010 are expected to perform bet-
ter than the frequency variation. The efficiency of these last two
methods depends on the position of the glitch. Deeper glitches
(tcz/T < 0.4) should be better retrieved by the ratios, and the
second differences should perform better for tcz/T > 0.4. For
F-type stars, the conclusions are the same.

8. Impact of a smoother transition and a µ gradient

The top panels of Fig. 9 show the comparisons of the temper-
ature gradients and r010 ratios for models B2, B3, and B4 at
Xc = 0.10. The smoother transition of models B3 and B4 occurs
at the same location as the bottom of the PC region of model
B2. The fitted amplitudes (with a mean uncertainty on the fre-
quency of 0.10 µHz and using Eq. 24) are 0.172+0.023

−0.022, 0.140+0.021
−0.021

and 0.080+0.021
−0.019 µHz for models B2, B3, and B4, respectively.

The distinction between the two types of temperature gradients
may be possible with precise frequencies (σfreq ≈ 0.10 µHz), but
would be more difficult for larger uncertainties (e.g. typical error
for F-type stars).

When atomic diffusion is taken into account, a µ gradient
is built at the bottom of the PC region. We assumed here that
the mixing in the PC region was the same as in the convective
zone down to the position at which the temperature gradient is
radiative (below the transition, around 2600 s). The bottom pan-
els of Fig. 9 show the comparisons of the temperature gradients
and r010 ratios for models A5, A6, and A7 at Xc = 0.10. The

smoother transition of models A6 and A7 occurs at the same lo-
cation as the bottom of the PC region of model A5. The fitted am-
plitudes (with a mean uncertainty on the frequency of 0.10 µHz)
are 0.177+0.026

−0.026, 0.131+0.021
−0.020 and 0.077+0.027

−0.024 µHz for models A5,
A6, and A7, respectively.

For model A5, the amplitude appears to be amplified (see the
discussion in Sect. 4.1 about the impact of a µ gradient). We note
that in addition to the BSCZ glitch signature, a second signature
seems to distort the signal for the models with atomic diffusion
(i.e. models A6 and A7 with a µ gradient at a different position
than the BSCZ). This might indicate that the signal is composed
of the signature of the BSCZ and a deeper µ gradient. This needs
confirmation, however.

9. Discussion and conclusion

We have theoretically studied the diagnostic power of the ratios
r010 to probe the depth of the surface convective zone of F-type
stars. The oscillations of these ratios indeed present very large
amplitudes that are not observed in G-type stars, that is, stars
with lower mass, and especially, cooler stars with deeper con-
vective envelopes.

Our numerical and analytical investigations confirm that con-
vective penetration below the convective envelope is able to pro-
duce the large-amplitude variations of the glitch signature that
are observed in the frequency ratios of solar-like F-type stars.
Stellar models including a large extension of the convective pen-
etration indeed produce large-amplitude BSCZ glitch signatures
as observed and the r010 ratios. These signatures provide the
location for the base of the extended convective region in the
models. No other physical effect investigated here is able to ex-
plain these observations. For the F-type star models and the in-
put physics we considered in this study, the large amplitudes
can indeed only be achieved when the extent is sufficiently deep
(1 − 2 Hp) so as not to be filtered by the ratios of frequen-
cies. The frequency dependence of the amplitude also ampli-
fies the detectability of the signature according to the depth of
the transition between the convective envelope and the radia-
tive zone below. However, the depth of the PC region exceeds
that measured for the Sun. For models with other input physics
(e.g. initial chemical composition or transport processes), the
extent of the PC region needed to explain the signature may
be different. Hence, this high value may be an indication that
the input physics of the models is still incomplete, which leads
to an underestimation of the size of convective envelopes, or it
might indicate that another mechanism causes the signature. This
should be assessed by modelling of the F-type stars of the Ke-
pler Legacy sample, with additional physics that may affect the
BSCZ.

Although convective penetration is also expected in lower-
mass, cooler stars such as the Sun, no such large amplitudes
are observed. Assuming then that PC causes the large-amplitude
signature of the r010 ratios, we find that the transition between
the convective envelope to the radiative interior is smoother and
shallower for less massive stars. For the Sun, we also found that
the free extension parameter ξ in the Zahn (1991) formalism is
no longer unity when updated microphysics is used, but is rather
a factor of ten lower. This tends to indicate that this parameter
depends on the physics of the models and that the Zahn (1991)
formalism needs to be developed further.

The analysis of the signature of the BSCZ in ratios r010 was
performed (similarly to previous works) without the contribution
of the µ gradient. We nevertheless found that it may impact the
oscillatory signature of the ratios, hence the characterisation of
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Fig. 9. Impact of the µ-gradient and of the smoothness of the temperature gradient on the r010 ratios. Left: Temperature gradients of model B2
(orange), B3 (blue), and B4 (green) for the top panel, and A5 (orange), A6 (blue), and A7 (green) for the bottom panel as a function of the acoustic
radius at Xc = 0.10. Right: Corresponding r010 ratios as a function of the frequency.

the glitch properties. The second paper of this series will indeed
be devoted to investigate the contribution of the µ gradient for a
deeper understanding of the glitch signatures seen in the ratios
r010.

Finally, our study emphasised that the ratios of small to large
separations can be used for stars other than the Sun to determine
valuable constraints on stellar interiors, despite larger uncertain-
ties on the frequencies. We also showed that in some specific
cases, the ratios r010 allow us to better recover the position of the
BSCZ than the second differences or the frequencies themselves.
Much can be done with the l = 0 and 1 modes alone, which
can be easily accessible for a large number of solar-like oscil-
lating main-sequence stars. This opens new interesting possibili-
ties to test 3D simulation predictions of temperature gradients in
the penetration convection regions outside of the solar parameter
space (e.g. Anders et al. 2022a; Breton et al. 2022) and to place
constraints on the physical conditions of these regions.
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Fig. A.1. Value of the f functions at ν̃ = ν = νmax for the same models
as in Fig. 8, i.e. with masses between 1.2 and 1.5 M� and ξPC = 2.

Appendix A: Expression of the r010 ratios

We first write all the frequencies needed to calculate d01 and d10
with a constant frequency ( ˜νn,l) plus a small variation,

νn,l = ˜νn,l + δνn,l , (A.1)

and assuming a mean large separation over ∆̄ for angular degree
0 and 1, we obtain

νn+1,l =νn,l + ∆̄ , (A.2)

νn−1,l =νn,l − ∆̄ . (A.3)

The frequencies needed to calculate the small separations are
then defined for l = 0, 1 by

νn,l = ˜νn,l + δν(νn,l),

νn+1,l = ˜νn,l + ∆̄ + δν(νn,l + ∆̄),

νn−1,l = ˜νn,l − ∆̄ + δν(νn,l − ∆̄).

(A.4)

Using the asymptotic expression of the frequency

νn,l ≈

(
n +

l
2

+
1
4

+ α

)
∆̄, (A.5)

we can define the relation between l = 0 and l = 1 modes by

νn,1 ≈ νn,0 +
∆̄

2
. (A.6)

We can then express the five frequencies required to estimate the
r01 ratios according to the frequency νn,0,

νn,0 = ˜νn,0 + δν(νn,0),

νn+1,0 = ˜νn,0 + ∆̄ + δν(νn,0 + ∆̄),

νn−1,0 = ˜νn,0 − ∆̄ + δν(νn,0 − ∆̄),

νn,1 = ˜νn,0 +
∆̄

2
+ δν(νn,0 + ∆̄/2),

νn−1,1 = ˜νn,0 −
∆̄

2
+ δν(νn,0 − ∆̄/2).

(A.7)

When this is injected in Eq. 3, we obtain

r01(n) =
1

8∆̄

[
δν(νn,0 − ∆̄) − 4δν(νn,0 −

∆̄

2
) + 6δν(νn,0)

−4δν(νn,0 +
∆̄

2
) + δν(νn,0 + ∆̄)

]
.

(A.8)

We now assume that the small frequency departure is due
to the BSCZ glitch and use Eq. 7 for δν. In the following, we
replace νn,0 by ν for sake of clarity,

δν(ν ± ∆̄) =a2(τd)
(

ν̃

ν ∓ ∆̄

) [
cos (4πντd + 2φ) cos

(
4π∆̄τd

)
∓ sin (4πντd + 2φ) sin

(
4π∆̄τd

)]
+ a1(τd)

(
ν̃

ν ± ∆̄

)2 [
sin (4πντd + 2φ) cos

(
4π∆̄τd

)
± cos (4πντd + 2φ) sin

(
4π∆̄τd

)]
,

(A.9)

δν(ν ±
∆̄

2
) =a2(τd)

 ν̃

ν ± ∆̄
2

 [cos (4πντd + 2φ) cos
(
2π∆̄τd

)
∓ sin (4πντd + 2φ) sin

(
2π∆̄τd

)]
+ a1(τd)

 ν̃

ν ± ∆̄
2

2 [
sin (4πντd + 2φ) cos

(
2π∆̄τd

)
± cos (4πντd + 2φ) sin

(
2π∆̄τd

)]
.

(A.10)

When we insert Eq. A.9 and A.10 into Eq. A.8, the r01 ratios
then become

r01(ν) =
a2(τd)

4∆̄

[(
ν̃ν

ν2 − ∆̄2

)
cos

(
4π∆̄τd

)
−

(
4ν̃ν

ν2 − ∆̄2/4

)
cos

(
2π∆̄τd

)
+3

(
ν̃

ν

)]
× cos (4πντd + 2φ)

+
a2(τd)

4∆̄

[(
ν̃∆̄

ν2 − ∆̄2

)
sin

(
4π∆̄τd

)
−

(
2ν̃∆̄

ν2 − ∆̄2/4

)
sin

(
2π∆̄τd

)]
× sin (4πντd + 2φ)

+
a1(τd)

2∆̄

[
−

(
ν̃2ν∆̄

(ν2 − ∆̄2)2

)
sin

(
4π∆̄τd

)
+

(
2ν̃2ν∆̄

(ν2 − ∆̄2/4)2

)
sin

(
2π∆̄τd

)]
× cos (4πντd + 2φ)

+
a1(τd)

4∆̄

[(
ν̃2(ν2 + ∆̄2)
(ν2 − ∆̄2)2

)
cos

(
4π∆̄τd

)
−

(
4ν̃2(ν2 + ∆̄2/4)
(ν2 − ∆̄2/4)2

)
cos

(
2π∆̄τd

)
+ 3

(
ν̃

ν

)2]
× sin (4πντd + 2φ) .

(A.11)

Similarly, centring the expression around the νn,1 and replacing it
by ν for sake of clarity, we obtain the same expression for r01(ν).
In the following, we then refer to r010(ν) as the combination of
r10(ν) and r01(ν).
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Because the period of the signature in the r010 ratios is the
acoustic radius rather than the acoustic depth (Roxburgh 2009),
we convert the previous expression in terms of td = T − τd in-
stead of τd (using T = 1/(2∆̄)). The r010 ratios are then given by

r010(ν) =
a1(τd)

4∆̄

(
ν̃

ν

)2 [
f11(ν) × cos (4πνtd + 2φ) +

+ f12(ν) × sin (4πνtd + 2φ)
]

+
a2(τd)

4∆̄

(
ν̃

ν

) [
f21(ν) × cos (4πνtd + 2φ)

+ f22(ν) × sin (4πνtd + 2φ)
]
,

(A.12)

with

f11(ν) = −

(
2ν3∆̄

(ν2 − ∆̄2)2

)
sin

(
4π∆̄τd

)
−

(
4ν3∆̄

(ν2 − ∆̄2/4)2

)
sin

(
2π∆̄τd

)
,

(A.13)

f12(ν) =

[
ν2(ν2 + ∆̄2)
(ν2 − ∆̄2)2

]
cos

(
4π∆̄td

)
+

[
4ν2(ν2 + ∆̄2/4)
(ν2 − ∆̄2/4)2

]
cos

(
2π∆̄td

)
+ 3,

(A.14)

f21(ν) =

[
ν2

ν2 − ∆̄2

]
cos

(
4π∆̄td

)
+

[
4ν2

ν2 − ∆̄2/4

]
cos

(
2π∆̄td

)
+ 3,

(A.15)

f22(ν) =

(
ν∆̄

ν2 − ∆̄2

)
sin

(
4π∆̄τd

)
+

(
2ν∆̄

ν2 − ∆̄2/4

)
sin

(
2π∆̄τd

)
.

(A.16)

For the excited solar-like oscillation modes, the ratio

R ≡ ∆̄/ν ≈
1

n + l/2 + ε
<< 1 .

This is confirmed in Table 3, which listsR ∼ 0.05 << 1,which is
roughly the same for the considered stellar models. Then at first
order,

f11(ν) ≈ −2R
(
R sin (2Φ) + 2 sin (Φ)

)
, (A.17)

f12(ν) ≈ f21(ν) ≈ 3 + cos (2Φt) + 4 cos (Φt) , (A.18)

f22(ν) ≈ R
(

sin (2Φ) + 2 sin (Φ)
)
, (A.19)

where Φt = 2π∆̄td and Φ = 2π∆̄τd.

We consider the ratios

f11

f12
≈ −4R

sin (Φ)
3 + cos (2Φt) + 4 cos (Φt)

. (A.20)

Table 3 shows that ∆td ∼ 1/4. This means Φt = 2π∆̄td ∼
2π/4 = π/2. On the other hand, Φ = 2π∆̄τd = 2π∆̄(T − td) =
π − 2π∆̄td = π/2 ≈ Φt , then

f11

f12
≈ −4R

sin (Φ)
3 + cos (2Φt) + 4 cos (Φt)

≈ −2R ≈ −0.1 , (A.21)

f22

f21
≈ 2R

sin (Φ)
(
cos (Φ) + 1

)
3 + cos (2Φt) + 4 cos (Φt)

≈ R ≈ 0.05 . (A.22)

This indicates that f11, f22 are negligible compared to f12, f21
, respectively. This is illustrated in Fig. A.1, which shows the fi j
coefficients.
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Appendix B: Fitting of a1, a2, Amax , and td

Figure B.1 shows the resulting parameters of the fit of the r010 signature of model B2 using Eq. 24.
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Fig. B.1. Case 4 with Eq. 24 of Table 3.
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Fig. C.1. Value of the f f functions at ν̃ = ν = νmax for the same models
as in Fig. 8, i.e. with masses between 1.2 and 1.5 M� and ξPC = 2.

Appendix C: Expression of ∆2ν according to a1 and
a2

The second differences are defined by

∆2νn,l = νn−1,l − 2νn,l + νn+1,l. (C.1)

Following the same approach as in Appendix A, the signa-
ture of the BSCZ in the second differences is expressed as

∆2νn,l,cz =a1(τ)
(
ν̃

ν

)2
[ f f11(ν) cos (4πντd + 2φ)

+ f f12(ν) sin (4πντd + 2φ)]

+ a2(τ)
(
ν̃

ν

)
[ f f21(ν) cos (4πντd + 2φ)

+ f f22(ν) sin (4πντd + 2φ)]

(C.2)

with

f f11(ν) = −
4ν3∆̄

(ν2 − ∆̄2)2
sin

(
4π∆̄τd

)
(C.3)

f f12(ν) =
2ν2(ν2 + ∆̄2)
(ν2 − ∆̄2)2

cos
(
4π∆̄τd

)
− 2 (C.4)

f f21(ν) =
2ν2

ν2 − ∆̄2
cos

(
4π∆̄τd

)
− 2 (C.5)

f f22(ν) =
2ν∆̄

ν2 − ∆̄2
sin

(
4π∆̄τd

)
. (C.6)

Similarly to the ratios r010 , the frequency-dependent terms
f f11, f f22 are negligible compared to f f12, f f21 , respectively.
This is illustrated in Fig. C.1, which shows the f fi j coefficients.

Again here as in Appendix A, we consider ∆/ν << 1 and
Φ = 2π∆τd, then

f f12(ν) ∼ f f21(ν) ≈ 2 cos (2Φ) − 2 = −4 sin2(Φ). (C.7)

Moreover, for 2Φ , 0 (when f f11 = f f22 = 0), then

f f11 ≈ −2 f f22 ≈ −4
∆

ν

Furthermore, | f f11/ f f12| << 1.
Again taking Φt = Φ ≈ π/2 , then

f f12(ν) ∼ f f21(ν) ≈ −4

These types of approximated behaviour are shown in Fig. C.1.

At ν ∼ νmax , we obtain

∆2νn,l,cz ≈a1(τ)[ f f12(ν) sin (4πντd + 2φ)]
+ a2(τ)[ f f21(ν) cos (4πντd + 2φ)]
≈ − 4[a1(τ) sin (4πντd + 2φ)]

+ a2(τ) cos (4πντd + 2φ)]

. (C.8)
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