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Summary: The present research aims at improving the accuracy of labels on Petri dish images containing Colony Forming 

Units using Artificial Intelligence algorithms. Indeed, the labeling methods proposed by classical computer vision software 

such as ScanStation for example, are prone to errors and the manual correction of these errors is a difficult task. We propose 

a methodology based on AI models. At first, a YOLO model is trained on the existing labels given by ScanStation. The 

bounding boxes provided by ScanStation and YOLO are then binarized using the OTSU algorithm to generate semantic labels 

that are used to train a U-Net. Then, a Xception model is trained to classify all the segments generated by the U-Net as either 

outlier or colony. For new data, the trained U-Net and Xception models are used to improve the labeling. The results indicate 

that the proposed approach improves the accuracy of the labeling process without human correction. 
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1. Introduction 
 

Microbial contamination is a pervasive 

phenomenon that poses a significant threat to human 

health worldwide. Microorganisms, including bacteria, 

viruses, fungi and parasites, can cause a wide range of 

infections, diseases and even death. According to the 

World Health Organization (WHO) [1], approximately 

10% of the world's population, or about 600 million 

people, become ill each year from eating contaminated 

food, resulting in 420,000 deaths and 33 million lost 

years of healthy life.  

 

The best way to prevent a microbial infection is to 

test samples for the presence of bacteria and other 

harmful microorganisms. However, their small size 

does not make them directly visible in a sample, and 

expensive equipment is often required to accurately 

detect and quantify these microorganisms.  

 

Petri dishes provide a cheap and simple alternative 

to this problem. When a sample is placed on a Petri 

dish containing a nutrient-rich medium, each bacterial 

cell will begin to grow and divide, forming a colony or 

‘Colony Forming Unit’ (CFU) as shown in Figure 1. A 

CFU is essentially a visible cluster of identical bacteria 

that have emerged from a single bacterial cell in the 

original sample. By counting the number of CFUs on a 

Petri dish, we can estimate the number of bacteria 

present in the original sample. 

 

 
Fig. 1. Growth of a CFU at h+0, h+6, h+12, h+18 and h+24 

after incubation (from left to right) 
 

The number of CFU is usually between 30 and 300 

in a single Petri dish, usually 90 mm in diameter 

(Figure 2). Counting CFU's in Petri dishes is an 

essential process for various industries, especially food 

but also cosmetics and pharmaceuticals. Accurate CFU 

counting helps determine the safety and quality of 

these industrial products for consumption or use, 

making it a crucial step in the manufacturing process. 

 

 
 

Fig. 2. Image of a Petri dish 24 hours later incubation 
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To evaluate automatic counting software, or to 

develop a supervised detection model, it is therefore 

essential to accurately label the images of Petri dishes 

containing CFUs, i.e., to mark with bounding boxes or 

masks all CFUs present in the dish.  

 

The traditional labeling method involves manual 

counting. However, counting CFUs is a time-

consuming and laborious process that requires skilled 

technicians with a keen eye for detail. In addition, 

visual interpretation can be subjective, as evidenced by 

the non-reproducibility of accurate labeling between 

two microbiologists, especially on dishes with many 

CFUs or clusters. Futhermore, the counting process is 

affected by various factors such as lighting conditions, 

colony shape and size, and observer experience. This 

can lead to variability and errors in labeling, affecting 

the accuracy and reliability of the analysis.  

 

To overcome this challenge, artificial intelligence 

(AI) algorithms have been explored in recent years [2, 

3]. However, these algorithms require a large, properly 

labeled dataset. In this study, we propose an AI-based 

approach called ‘Autolabel’ to improve the accuracy of 

labeling images of Petri dishes containing CFUs. 

Specifically, we use a combination of the YOLO [4] 

(You Only Look Once), a object detection algorithm 

that uses a single neural network to simultaneously 

predict bounding boxes, U-Net [5], a convolutional 

neural network architecture commonly used for 

semantic segmentation tasks, and Xception [6], an 

advanced neural network architecture designed for 

efficient and accurate image classification, to generate 

more accurate and reliable labels.  

 

The methodology of our approach, which consists 

of three major components: learning strategy (2.1), 

inference (2.2), and training and test datasets (2.3), is 

described in detail in Section 2 of this paper. The 

results of our study are presented in Section 3, while a 

conclusion on the effectiveness of our approach is 

drawn in Section 4. Finally, the perspectives of this 

research as well as possible improvement are discussed 

in Section 5. 

 

 

2. Methodology 
 

2.1. Learning strategy 

 

CFUs labels that are given by professional tools 

such as ScanStation (an incubator manufactured by 

Interscience equipped with a computer vision program 

that analyzes the box throughout its incubation 

process, allowing to identify growing CFUs), are not 

perfect and contains some errors, mainly on the edge 

of the box or in difficult cases such as a high density 

of CFUs, clusters, low contrasted CFUs or abnormal 

shaped CFUs.  To solve this problem, we proposed the 

following process, as describe in the diagram in figure 

3. 

 

 

 

Fig 3. Diagram representing the Autolabel process 

 

The purple boxes encompass Computer Vision algorithms, the green boxes signify AI algorithms, the black box represents a 

basic program, and the blue boxes indicate datasets or labels. The orange pathway symbolizes the training phase, or learning 

strategy, while the red pathway corresponds to the inference process.
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1) The deep learning algorithm YOLO was used 

to relabel the Petri dish images that 

ScanStation failed to label well. By manually 

selecting the best Petri dish images (labeled by 

ScanStation) to train YOLO, and then using 

the trained model to label the remaining Petri 

dish images (Figure 4), a large number of 

bounding boxes were generated.  

 

 
 

Fig 4. CFUs detection by YOLO 

 

2) In order to obtain semantic labels, the OTSU 

thresholding method was used to binarize the 

content of the bounding boxes from 

ScanStation and YOLO. The bounding boxes 

and OTSU semantic results are shown in 

Figure 5.  

 

 
 

Fig 5. CFUs segmentation with OTSU 

 

3) These binarized bounding boxes combinations 

are then used as semantic labels to train a U-

Net model, a convolutional neural network 

used for image segmentation.  

 

The primary purpose of employing U-Net lies 

in two aspects. Firstly, it aims to reduce the 

possibility of undetected CFU by generate 

segments that may not contain bounding 

boxes.  

 

Secondly, it seeks to establish semantic labels 

for all CFUs. This form of labeling can be 

utilized to train an instance segmentation 

model like Mask-RCNN [7], facilitating more 

accurate and comprehensive CFU detection. 

The output segments of the U-Net model can 

be seen in Figure 6. 

 

 
 

Fig 6. Output of U-Net 

 

4) Several outputs of the U-Net are then 

classified as 'UFC' or 'outlier'. For this 

purpose, a model based on Xception, 

commonly used for image classification was 

trained with two datasets (one per class). For 

the 'UFC' class, we used the segments given by 

U-Net which were identified inside a bounding 

box given by ScanStation and YOLO. For the 

'Outlier' class, we took the segments given by 

U-Net from boxes without CFU (before 

colony growth but with all artifacts like 

bubbles, annotations, impurities, etc.). 

 

If a segment contains multiple bounding 

boxes, meaning it’s a cluster, we separated the 

segment according to the distance from the 

center to the bounding box limit. The results of 

this segment sectioning can be seen in Figure 

7, and an example of segments removed by 

Xception (bubble) is shown in Figure 8.  

 

 
 

Fig 7. Section of two agglomerate segments 

 

 
 

Fig 8. Classification of an outlier (bubble) 
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2.2. Inference 

 

Once learning is complete, inference is performed 

by injecting the new data into the U-Net model for 

segmentation followed by Xception for classification. 

As a consequence, the imperfect labels of bounding 

boxes from ScanStation are transformed into instance 

segmentation, incorporating certain missed CFUs 

while eliminating identified outliers that could have 

been detected. Figure 9 shows the results of our 

improved Autolabel labeling algorithm. Individual 

colonies are identified by different shades of purple.  

 

 
 

Fig 9. Result of our method 

 

To compare the results with the original method, 

we transformed the individual segments into bounding 

boxes. 

 

 

2.3. Training and testing datasets 

 

In the training phase, we used a dataset consisting 

of 11,900 annotated Petri dish image sequences 

acquired from ScanStation. Each sequence includes 

several images illustrating the incubation and growth 

stages of CFUs. We selected a total of 989 Petri dishes 

based on the best visually apparent ScanStation results 

on the last image of the sequence. For each selected 

Petri dish, we extracted images containing CFUs at 2-

hour intervals, resulting in a dataset of 11760 images 

for training the YOLO model. The U-Net dataset 

contained 7584 images, each from the last image of the 

sequence and selected based on the best OTSU 

binarization result from the bounding boxes generated 

by YOLO and Scanstation. 

 

For training the Xception classifier, we provided an 

equal number of segments from both classes (13,027). 

We performed the test on a separate set of 166 images 

captured by a system from the same manufacturer as 

the training data. The manually corrected results from 

ScanStation were used as ground truth. 

 

It should be noted that, unlike the training dataset 

which contained only the best visual results from 

ScanStation, the test dataset used to evaluate our 

method contained mostly images of Petri dishes with 

difficult counting tasks, clumps, and/or high CFU 

numbers. 

 

3. Results 
 

The classical measure for evaluating object 

detection algorithms is the Intersection over Union 

(IoU) measure. However, given the non-

reproducibility of our data, the delimitation of 

bounding boxes is very subjective, which can lead to 

low IoUs, even for close detections. We therefore 

propose to adopt a metric based on a distance criterion 

(between the predicted center and the ground truth 

center of the colony) and on a shape criterion (average 

radius of the predicted colonies and the ground truth 

colonies). This new metric called 'Distance 

Normalized by Mean Radius' (DNMR) is defined as 

follows (eq. 1): 

 
DNMR = 1 −

𝑑𝑖𝑠𝑡(𝐶𝐺𝑇 , 𝐶𝑃𝑟𝑒𝑑)

𝑎𝑣𝑔(𝑅𝑎𝑑𝐺𝑇 , 𝑅𝑎𝑑𝑃𝑟𝑒𝑑)
 (1) 

 

where GT is the ground truth, Pred is the prediction 

either by ScanStation or our method, C is a center in a 

2D spatial position, and Rad is the radius. 

 

With this metric, we decided to apply a threshold 

of 0.5 to define if a colony is detected or not compared 

to the ground truth. As CFUs have a low degree of 

overlapping the threshold was set to 0.5, we ensured 

that any score beyond this value would provide a 

reliable indication of successful detection. This allows 

us to evaluate our method using the classical criteria: 

Precision, Recall and F1 score.  

Table 1 shows the precision, recall and F1 score 

obtained by ScanStation and our labeling method 

Autolabel on the Petri dish images of the inference 

base.  

 
Table 1. Precision, Recall and F1 Score comparaison 

 

Label Precision Recall 
F1 

Score 

ScanStation 0.622 0.590 0.606 

Autolabel 0.808 0.683 0.740 

 

The results clearly show that the Autolabel method 

performs better than a conventional ScanStation-type 

method in terms of precision, recall and F1 score. 

However, we found that some CFUs are still not 

detected, especially very small ones, due to the U-Net 

resolution limit imposed by the memory size of the 

GPU we used (RTX 2080Ti, 11gb VRAM). 

 

 

4. Conclusion 

 
Our research propose a novel approach to train  

machine learning models without using manually 

labeled images in the training phase. Instead, we relied 

on imperfect labels generated by an automated process 

(ScanStation). Despite this unconventional approach, 

our results demonstrated significant improvements in 

precision (+18%), recall (+9%), and F1 score (+14%). 

It should be noted that the testing dataset utilized a 

different labeling approach, a manual one, which 
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posed some challenges in replicating the same type of 

bounding boxes. To address this issue, we employed 

the ‘Distance Normalized by Mean Radius’ metric.  

 

Overall, this study highlights the potential of using 

AI algorithms to improve detection accuracy before a 

manual correction phase, which is typically a time-

consuming and labor-intensive task. Our approach 

leverages the power of AI generalization to improve 

the labeling accuracy of Petri dish images, using 

multiple cascaded algorithms, resulting in improved 

detection of CFUs. Although the results of our study 

demonstrate a significant improvement in the accuracy 

of Petri dish labeling, it is important to note that there 

is still tremendous potential for improvement. 

 

Furthermore, our approach has the potential to be 

applied beyond CFUs detection and used to test large 

datasets of interpretative labels, which can help 

highlight errors made by both human and automatic 

labeling processes. This can be particularly useful in 

scenarios where manual labeling is not feasible due to 

resource constraints or time limitations. By utilizing 

machine learning to identify errors in interpretative 

labels, we can improve the accuracy and reliability of 

data-driven applications in various domains. 

 

 

5. Perspectives 

 
In future research, we plan to apply the proposed 

approach to improve the label accuracy of a larger 

dataset of Petri dish images. We aim to use the 

generated labels to train a detection model such as 

YOLO or instance segmentation model like Mask R-

CNN. Our ultimate goal is to develop a robust and 

accurate detection model that can be used for a variety 

of applications, including bacterial colony detection 

and classification. 
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